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Noncanonical statistics of a finite quantum system with non-negligible system-bath coupling
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The canonical statistics describes the statistical properties of an open system by assuming its coupling with the
heat bath is infinitesimal in comparison with the total energy in thermodynamic limit. In this paper, we generally
derive a noncanonical density matrix for the open system with a finite coupling to the heat bath, which deforms
the energy shell to effectively modify the conventional canonical way. The obtained noncanonical distribution
reflects the back action of system on the bath and thus depicts the statistical correlations between two subsystems
by the mutual information as a result of energy conservation.
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I. INTRODUCTION

Statistical mechanics describes the average properties of a
system without referring to all its microscopic states. In most
situations, the validity of the canonical statistical description
is guaranteed in the thermodynamic limit, which requires that,
while the degrees of freedom of the heat bath is infinite, the
system-bath coupling approaches infinitesimal. However, if
the system only interacts with a small heat bath with finite
degrees of freedom, the system-bath interaction cannot be
ignored compared with the energy of the heat bath. The
properties of such a finite system have recently attracted a
lot of attention with regard to both experiments [1,2] and
theories [3–11].

Initiated from the pioneering work of Gibbs, the canonical
statistics until now has been built on a rigorous foundation.
For instance, if a pure state of the universe is assumed, then
the canonical form of the system reduced density matrix
is guaranteed by Levy’s lemma [12–15]. Nevertheless, the
conventional canonical statistics still cannot describe well
the thermodynamic behavior of the finite system when the
sufficiently large system-bath interaction is taken into consid-
eration. The statistics of an open system with considerable
system-bath coupling has been studied by harmonic oscilla-
tor [4,16] and spin [17] systems. In this paper, we generally
consider an effective system-bath coupling by assuming the
bath possesses a much more dense spectrum than that of
the system, and then the system-bath interaction energy can
be treated as the deformation of the energy shell for the
total system. Therefore, the canonical density matrix of the
system is modified to be a noncanonical one. This modified
distribution obviously implies that corrections are necessary
for the finite-system thermodynamic quantities in canonical
statistics, such as average internal energy and its fluctuation.

The rest of the paper is organized as follows. In Sec. II
we derive an effective Hamiltonian of the total system by
perturbation theory; via this Hamiltonian the noncanonical
statistical distribution without referring to any specific model
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is presented. To further illustrate the novel thermodynamic
properties of the finite system by noncanonical statistics, a
model of coupled harmonic oscillators is introduced in Sec. III,
and the statistical quantities such as internal energy, fluctua-
tion, and the mutual information between two subsystems are
calculated. We conclude in Sec. IV.

II. FINITE SYSTEM-BATH COUPLING

We generally consider a composite coupled system, which
can be divided into a system S with Hamiltonian HS and a
heat bath B with Hamiltonian HB . The coupling between the
system and the bath can be generally described by HI . Then we
have the total Hamiltonian H = HS + HB + HI . The system
and the bath have the following spectrum decompositions:

HS =
∑

n

En|n〉〈n|, (1)

HB =
N∑

j=1

∑
kj

εkj
|kj 〉〈kj | ⊗

N∏
i �=j

Ii . (2)

Here |n〉 is the eigenstate of the system with the corresponding
eigenenergy En. The heat bath is composed of N noninteract-
ing particles, the eigenstate of the j th particle is |kj 〉 with the
corresponding eigenenergy εkj

, and Ii is the identity operator
of the Hilbert space of the ith particle. In the following, we
will use the notation |�k〉 = ∏N

j=1 |kj 〉, �k = (k1,k2, . . . ,kN ), to

present the eigenstate of HB and denote ε(�k) = ∑N
j=1 εkj

as
its eigenenergy. Usually, the energy spectrum of the system is
much sparser than the heat bath, i.e.,

min |En − Em| � max |ε(�k) − ε(�l)|, (3)

which holds for the neighboring energy levels n and m (�k and
�l) of the system (bath) (see Fig. 1).

The system-bath interaction HI is weak compared to H0,
which reads

HI =
N∑

j=1

∑
n,n′,kj ,k

′
j

gnkj ,n′k′
j
|n,kj 〉〈n′,k′

j | ⊗
N∏

i �=j

Ii (4)
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FIG. 1. (Color online) The energy spectra of the system and the
heat bath. The spectral density of the heat bath should be much larger
than the system.

with |n,kj 〉 ≡ |n〉 ⊗ |kj 〉. To obtain the canonical density
matrix ρS of the system, we usually start with a microcanonical
density matrix of the system and its heat bath,

ρmic = PV (E,δ)

dim V (E,δ)
, (5)

without considering HI , and then trace over the heat bath,
i.e., ρS = TrBρmic. The density of matrix ρmic describes a
microcanonical ensemble which is assumed in an energy shell
[E,E + δ] with δ a small energy scale, δ 
 E, and

V (E,δ) = Span{|n,�k〉 : E � En + ε(�k) � E + δ} (6)

is the subspace of HS + HB associated with this energy shell,
and PV (E,δ) is the projection operator to V (E,δ). Then the
probability of finding the state |n〉 in this canonical ensemble is

Pn(E) = 〈n|ρS |n〉 = �(E − En,δ)

dim V (E,δ)
, (7)

where �(E − En,δ) = dim Vn(E − En,δ) and

Vn(E − En,δ) = Span{|n,�k〉 : E − En � ε(�k)

� E − En + δ} (8)

represents the subspace of HS + HB associated with the
subenergy shell [E − En,E − En + δ] when the system state
is fixed at |n〉, obviously, V (E,δ) = ∑

n

⊕
Vn(E − En,δ).

In certain cases that the heat bath is no longer infinitely
large, and the system-bath interaction energy is small but
should not be complete neglected, the reduced density matrix
of the system can be obtained by perturbatively considering
HI . The first-order perturbation effect of these off-diagonal
terms with n �= n′ can be ignored under the condition∣∣∣∣

gnkj ,n′k′
j

En′ − En + εk′
j
− εkj

∣∣∣∣ 
 1. (9)

However, for the terms with n = n′, the above condition
|gnkj ,nk′

j
(εk′

j
− εkj

)−1| 
 1 will be violated due to the prop-
erties of the energy spectra given in Eq. (3). Thus the diagonal
terms can contribute to the system behaviors and should be
kept in the interaction Hamiltonian [16], which yields

HI ≈
N∑

j=1

∑
n,kj ,k

′
j

gnkj ,nk′
j
|nkj 〉〈nk′

j | ⊗
N∏

i �=j

Ii . (10)

FIG. 2. (Color online) The subenergy shell without and with the
consideration of the system-bath coupling are schematically shown
in a manner analogous to classical phase space.

Then the total effective Hamiltonian has the diagonal form
with respect to the eigenstates of the system, i.e.,

Heff =
∑

n

[En + h(n)]|n〉〈n| (11)

with

h(n) =
N∑

j=1

∑
kj ,k

′
j

(εkj
δkj ,k

′
j
+ gnkj ,nk′

j
)|kj 〉〈k′

j | ⊗
N∏

i �=j

Ii . (12)

Here h(n) describes the heat-bath Hamiltonian corresponding
to the system state |n〉. It can be further diagonalized as
h(n) = ∑N

j=1

∑
αj

εαj
(n)|αj 〉〈αj | ⊗ ∏N

i �=j Ii , with the eigen-

state |�α〉 = ∏N
j=1 |αj 〉 and the corresponding eigenenergy

ε(�α,n) = ∑N
j=1 εαj

(n). The new energy spectrum of the heat
bath ε(�α,n) is changed compared with the original energy
spectrum ε(�k) due to the system-bath coupling.

This system-bath coupling is usually negligible when we
study the thermalized state of the system in a large heat bath.
However, in the situation of finite system statistics, it is crucial
to consider the system-bath interaction energy for the relatively
small heat bath. The effective Hamiltonian Eq. (11) is already
diagonalized with diagonal elements E(n,�α) = En + ε(�α,n).
Then it is straightforward to define the new subspace

Ṽ (E,δ) = Span{|n,�α(n)〉 : E � En + ε(�α,n) � E + δ},
(13)

corresponding to V (E,δ), by substituting |n,�k〉 with |n,�α(n)〉
and ε(�k) with ε(�α,n). In the same way, we define

Ṽn(E − En,δ) = Span{|n,�α(n)〉 : E − En � ε(�α,n)

� E − En + δ} (14)

and �̃(E − En,δ) = dim Ṽn(E − En,δ). We schematically il-
lustrated the deformation of the subenergy shell in Fig. 2. The
diagonal term of the system reduced density matrix ρ̃S is

P̃n(E) = �̃(E − En,δ)

dim Ṽ (E,δ)
, (15)

which considers the correction of the canonical density matrix
ρS due to the system-bath interaction; thus we name ρ̃S the
noncanonical density matrix of the system and P̃n(E) the
noncanonical distribution.

To further obtain an explicit expression of P̃n(E), we
introduce the entropy defined by S(E) = kB ln �(E,δ), where
kB is the Boltzmann constant. We note that, the function form
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of �(E,δ) is dependent on the Hamiltonian H ; thus with or
without the considering of HI , the deformation of energy
shell yields �(E,δ) and �̃(E,δ) have different expressions.
Therefore, we should keep in mind that S(E) is actually
a functional of V (E,δ), i.e., S(E) ≡ S[V (E,δ)]. When the
system is in the state |n〉, the entropy can be expanded as [18]

S̃(E − En) = S(E − En) + δnS(E − En)

≈ S(E) − ∂S(E)

∂E
En + φn, (16)

where

φn = δnS(E) − ∂[δnS(E)]

∂E
En. (17)

The term δnS(E − En) is the functional variation of S(E −
En), where the subscript n means that the functional variation
also depends on the state of system. In the above derivation,
we actually assume a small deformation of the energy shell,
i.e., when N is large, there is a small difference between
�(E − En,δ) and �̃(E − En,δ). This difference vanishes in
the thermodynamic limit as shown in Ref. [4] for a concrete
example. As En is still small compared with E, then we
can expand S(E − En) to the first order, and φn represents
the first-order approximation of δnS(E − En). The derivative
terms of S(E) can be evaluated by the idea from classical phase
space: Since �(E) is the dimension of the subspace V (E,δ), it
is proportional to the volume of the energy shell in the phase
space. In a N -dimensional space, the volume confined in an
isoenergic surface of energy E can be considered as the volume
of a N -dimensional polyhedron with effective radius E, which
is proportional to EζN , where ζ is a dimensionless real number
independent of N and is usually related to the degeneracy of
the system. Therefore, the volume of the energy shell is given
by

�(E) ∝ (E + δ)ζN − EζN, (18)

which leads to

β(E) = ∂S(E)

∂E
= kB(ζN − 1)

E
. (19)

With the thermodynamic relations, β = (kBT )−1 and T is
the temperature of the system in equilibrium. Obviously,
Eq. (19) recovers the equipartition theorem E ≈ ζNkBT , i.e.,
each degree of freedom contributes ζkBT to the total energy.
Therefore, the noncanonical distribution reads

P̃n(E) = 1

Z̃
e−βEn+φn/kB , (20)

where Z̃ = ∑
exp(−βEn + φn/kB) is the partition function.

If the interaction energy could be neglected compared with
the total energy E, the variation terms φn containing δnS(E)
in Eq. (20) can be dropped and thus naturally lead to the usual
canonical form,

Pn(E) = 1

Z e−βEn . (21)

Otherwise, the deformation of energy shell which leads to
φn will shift the system energy level and thus modify Pn(E).
Usually φn cannot be calculated easily; however, for some
special models (one of which will be introduced in the next
section), we can find a simple expression for φn.

III. ILLUSTRATION WITH HARMONIC
OSCILLATORS SYSTEM

Now we consider a coupled harmonic oscillators system
as an example to illustrate the statistical thermodynamic
properties of a finite system. The system S is a single harmonic
oscillator with eigenfrequency ω and a†(a) as its creation
(annihilation) operator. The heat bath is generally modeled
as a collection of harmonic oscillators with Hamiltonian
HB = ∑N

j=1 ωjb
†
j bj . Here b

†
j (bj ) is the creation (annihilation)

operator of the oscillator with frequency ωj . In the weak-
coupling limit, we can assume the effective system-bath
interaction as

HI =
N∑

j=1

λja
†a(b†j + bj ). (22)

This Hamiltonian is usually used to describe the interaction
between a single mode light field and mechanical oscillators
in opticalmechanical system [19–21].

In this model, the eigenvalues of the total Hamiltonian are

E(n, �m(n)) = nω + �n +
∑
{mj }

mjωj , (23)

which corresponding to the eigenstates |n, �m(n)〉 = |n〉 ⊗∏N
j=1 |mj (n)〉. The eigenstate of the heat bath |mj (n)〉 is

defined as a displaced Fock state |mj (n)〉 = D(−λjn/ωj )|mj 〉,
with the displacement operator D(αj ) = exp(αa

†
j − α∗aj ).

Here the deformation of the energy shell is described by an
n-dependent factor,

�n = −
N∑

j=1

λ2
jn

2

ωj

≡ −κn2. (24)

Therefore, in this model the deformation of each subenergy
shell is only related to �n, which is independent of the specific
state of the heat bath. Then the deformed energy shell is simply
related with the original energy shell without considering HI

by

Ṽn(E − En,δ) = Vn(E − �n − En,δ). (25)

Further, the function form of S̃(E − En) is the same as S(E −
En) by only substituting E with E − �n:

S̃(E − En) = S(E − �n − En). (26)

Then the functional variation δnS(E) can be calculated by the
usual differential to the first order,

δnS(E) ≈ ∂S(E)

∂E
�n. (27)

Together with the results in Eq. (20), the noncanonical
distribution is given by

P̃n(E) = 1

Z̃
e−β(nω−n2κ)−ξωκn3

, (28)

where

ξ = ∂2S(E)

∂E2
= −kB(ζN − 1)

E2
. (29)

The square and cubic terms of n in the exponent of P̃n(E)
greatly change the statistical distribution from the canonical
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FIG. 3. (Color online) The noncanonical (blue solid line) and
canonical (pink dashed line) distribution functions for coupled
oscillators system. We choose ω = 1, E = 100, β = 0.5, and κ =
0.00235. The highest energy level is nmax = 160. The noncanonical
and canonical distributions are similar for low energy levels while
they differ greatly for high energy levels.

distribution Pn(E) = Z−1 exp(−βnω), especially for large n.
However, Eq. (28) does not apply to very large N for the
following reason: The total energy E of the system and
the heat bath is conserved, and the heat bath energy should
always be non-negative

∑
{mj } mjωj > 0. Thus, the energy

shell of Vn(E − �n − En,δ) constrains the system energy
level by E � En, which implies n < (ω − √

ω2 − 4κE)/(2κ).
Therefore, for such coupled system, the maximum energy level
for the system is

nmax =
⌊

ω − √
ω2 − 4κE

2κ

⌋
, (30)

where �x� represents the maximum integer below x.
Usually κ is much smaller than ω, thus the noncanonical

statistics distribution P̃n(E) for low energy levels does not
differ much from the canonical one, as shown in Fig. 3.
However, as |�n| grows with n2, the high energy levels have
more populations than those in the canonical distribution,
which can be seen from the inset of Fig. 3. We choose
the system eigenfrequency as unit ω = 1, the total energy
E = 100, and κ = 0.00235. According to Eq. (30), the highest
energy level is nmax = 160 in this situation. The canonical
distribution is plotted by set κ = 0 in P̃n(E). A numerical
research also gave the similar noncanonical distribution for
coupled spin systems [22].

Because the high-energy states have relatively larger pop-
ulations, the internal energy of the system

U =
nmax∑
n=0

nωP̃n(E) (31)

under the noncanonical statistics is larger than that under the
canonical one. This fact is illustrated in Fig. 4, where the
internal energy U is plotted with respect to β. The distinction
between the noncanonical and canonical statistics for U

evidently appears when the inverse temperature β decreases
and the interaction energy strength κ grows. As β approaches

0 0.1 0.2 0.3 0.4 0.5

20

40

60

80

U

β

 

 

κ= 0.002
κ= 0.0015
κ= 0.001
canonical

FIG. 4. (Color online) The internal energy U of the system with
respect to β for noncanonical and canonical statistics. We plot the
cases of κ = 0.002, nmax = 138 (blue solid line); κ = 0.0015, nmax =
122 (orange dotted-dash line); κ = 0.001, nmax = 112 (pink dashed
line); and the canonical case for κ = 0, nmax = 112. For small β, the
internal energy U is explicitly larger than that given by canonical
statistics.

zero, the high-temperature limit of the internal energy U

arrives at nmaxω/2, which is finite as the total energy is
up-bounded by E for small heat bath. This differs substantially
from the case in the thermodynamic limit: The average energy
of a harmonic oscillator which contacts with an infinite heat
bath will diverge when β decreases to zero.

Another feature reflecting the nonmonotony of the non-
canonical distribution is the relative fluctuation of the system
internal energy

(�U )2 = 1

U 2

nmax∑
n=0

(nω − U )2P̃n(E). (32)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

2.5

3

(Δ
U

)2

β

κ= 0.002
κ= 0.0015
κ= 0.001
canonical

FIG. 5. (Color online) The internal energy relative fluctuation
(�U )2 of the system with respect to β for noncanonical and canonical
statistics. The parameters are chosen the same as Fig. 4. A local
maximum appears in the energy fluctuation for small β which results
of the noncanonical statistics.
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As shown in Fig. 5, at both the low- and high-temperature
limits, the noncanonical and canonical statistics of the system
present similar fluctuation behavior. To characterize these
two limits, we consider the system as a harmonic oscillator
with truncated energy levels (the highest energy level is
labeled by nmax) under canonical statistics (κ = 0), whose
energy fluctuation is denoted as (�UC)2. It is analytically
calculated that in the low-temperature limits, the fluctuation
(�UC)2 ≈ exp(βω) is exactly the same as the result when
nmax → ∞. Because the populations of the high-energy levels
decrease significantly in the low temperature, only the several
low-energy levels determine the thermodynamic behavior. In
the high-temperature limit, the energy fluctuation behaves as

(�UC)2 ≈ 1

3
+ 2

3nmax
+ nmax

9
β, (33)

which is a linear function of β. We remark here that the high-
temperature limit and thermodynamic limit cannot commute
with each other, as

lim
nmax→∞ lim

β→0
(�UC)2 = 1

3 , (34)

while

lim
β→0

lim
nmax→∞(�UC)2 = 1. (35)

However, in the intermediate range of β, a local max-
imum in energy fluctuation distinguishes the noncanonical
distribution from the canonical one, especially for strong
system-bath interaction κ . This maximum can be qualitatively
understood as follows: we can rewrite the noncanonical
distribution as P̃n(E) = Z−1 exp(−βηnnω), where ηn = 1 −
κn/ω − κn2/E is a positive factor for n � nmax. As ηn � 1,
the reverse temperature β can be considered as effectively
reduced by ηn, thus the linear region for small β is enlarged in
the noncanonical statistics. Based on the above observations,
we know that the noncanonical statistics exhibits obviously
novel effects when the interaction energy strength κ is large
and the temperature is high.

Besides the high distribution tail for a single system, the
noncanonical statistics provides other new characters when
the system is a composite of two independent subsystems l1
and l2. Even if these two subsystems do not directly interact
with each other, the deformation of the energy shell can
effectively result in a correlation between them. Here we
still use harmonic oscillator (HO) systems for illustration. The
system consists of two single-mode HOs with the Hamiltonian
HS = ∑

k=1,2 ωka
†
kak . The system interacts with a common

small heat bath, which can be modeled by the Hamiltonian
HB = ∑N

j=1 ωjb
†
j bj . The interaction term reads

HI =
∑
k=1,2

N∑
j=1

λkja
†
kak(b†j + bj ). (36)

Following the same discussion about the energy shell defor-
mation for a single system, we can straightforwardly obtain
the joint distribution of the composite system as

P̃
(
E,E(1)

n ,E(2)
m

) = 1

Zt

e−β(Enm+�nm)+ξ�nmEnm, (37)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

S
(s

1
:s

2
)

β

κ= 0.002
κ= 0.0015
κ= 0.001
canonical

FIG. 6. (Color online) The mutual entropy of two identical har-
monic oscillators (HOs) by noncanonical and canonical statistics. The
eigenfrequency of two identical HOs is ω = 1, and κ = 0.002, nmax =
138 (blue solid line); κ = 0.0015, nmax = 122 (orange dotted-dash
line); κ = 0.001, nmax = 112 (pink dashed line); and the canonical
case for κ = 0, nmax = 112.

where Enm = nω1 + mω2 and

�nm = −
N∑

j=1

(λ1jn + λ2jm)2

ωj

Zt =
∑
n,m

′
e−β(Enm+�nm)+ξ�nmEnm .

Here
∑′

n,m means the summation of the system energy levels
should satisfy the constrain 0 � Enm + �nm � E. It can be
seen from Eq. (37) that the statistics of two subsystems are not
independent with each other due to the cross-term in �nm. This
statistical correlation can be described by mutual information
defined as

S(l1 : l2) = S(l1) + S(l2) − S(l1 + l2), (38)

where the entropy

S(lk) = −
nmax∑
n=0

P̃
(
E,E(k)

n

)
ln P̃

(
E,E(k)

n

)
(39)

and

S(l1 + l2) = −
∑
n,m

′
P̃

(
E,E(1)

n ,E(2)
m

)
ln P̃

(
E,E(1)

n ,E(2)
m

)
. (40)

For simplicity, we assume the two HOs are identical with
ω1 = ω2 ≡ ω, λ1j = λ2j ≡ λj , and κ is defined the same as
Eq. (24). As shown in Fig. 6, there appears to be a nonzero
mutual entropy if we use noncanonical statistics to describe the
composite system in a common small heat bath. In contrast, if
the interaction energy is too small to be considered compared
with the total energy, we can use the canonical distribution
to calculate the mutual entropy, which naturally gives S(l1 :
l2) = 0, i.e., the two subsystems are not correlated with each
other.
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IV. CONCLUSION

We study the statistical thermodynamics of an open system
whose interaction with the heat bath cannot be neglected. The
interaction modifies the system energy shell and leads to the
noncanonical density matrix for such a system. It is shown
in a model that noncanonical distribution has a big “tail” for
higher energy levels, which is the most significant difference
from the canonical distribution. This noncanonical feature
results in higher internal energy and energy fluctuation of the
system. Moreover, different parts of the composite system
are naturally correlated with each other, which is described

by mutual entropy. We note that the noncanonical form of
distribution may be related to the explanation of the black hole
information paradox [23].
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