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For a two-level quantum mechanical system, we derive microscopically the exact expression for the fluc-
tuation of microscopic work in a multistep nonequilibrium process, and we rigorously prove that in an iso-
thermal process, the fluctuation is vanishingly small and the most probabilistic work is just equal to the
difference of the free energy. Our study demonstrates that the convergence of the microscopic work in the
isothermal process is due to the nature of the isothermal process rather than the usual thermodynamic limit
condition. Our investigation justifies the validity of a “minimum work principle” formulation of the second law
even for a small system far from the thermodynamic limit.

DOI: 10.1103/PhysRevE.78.021116 PACS number�s�: 05.70.Ln, 05.40.�a

I. INTRODUCTION

Thermodynamics usually deals with the systems of an in-
finite number of degrees of freedoms, in which relative fluc-
tuations of the observable—e.g., energy, particle number—
are inversely proportional to the square root of the numbers
of the particles of the system �1�. Hence, for a macroscopic
system consisting of an infinite number of particles, the fluc-
tuations are vanishingly small and the ensemble average can
describe thermodynamic phenomena completely. However,
concerning small systems, usually the fluctuations of the mi-
croscopic values of thermodynamic observable will become
appreciable and the ensemble average alone can no longer
give a complete description �2�. In recent years, increasing
interest has been drawn to the study of the thermodynamics
of small systems and the emphasis has been put on fluctua-
tions of the microscopic value of the observable, instead of
their ensemble average. Some notable progress has been
made, examples including the Jarzynski equality �3,4� and
the fluctuation theorem �5�. The former connects the free-
energy difference of two equilibrium states with an ensemble
average of microscopic work in nonequilibrium processes,
while the latter illustrates the probabilistic “entropy de-
crease” of a closed system within a short time, or transient
“violation” of the second law. These studies shed new light
on the understanding of nonequilibrium thermodynamical
processes of biological motors in cells and promise impor-
tant applications to the design of small-size machines. In all
these studies, for small systems, although fluctuations of
most observables are appreciable, there exists an exception—
the work done during a slowest reversible equilibrium pro-
cess �we use isothermal processes to replace the slowest re-
versible processes hereafter�. It has been pointed out that the
fluctuation of microscopic work done by or on a small sys-
tem during a slowest reversible process is vanishingly small
�3,6�. Nevertheless, although the fluctuations of the micro-
scopic work of small systems in finite-time irreversible pro-
cesses have been extensively studied �7� and the vanishing
fluctuations of the microscopic work of classical small sys-
tems especially concerning the thermodynamic isothermal
process have been pointed out, to our best knowledge, a
rigorous proof of the above result from the microscopic point

of view is still lacking, and its quantum mechanical gener-
alization has not been studied yet.

In this paper, we will investigate this problem by simulat-
ing a quantum isothermal process with an infinite number of
infinitesimal quantum adiabatic processes �QAPs� and quan-
tum isochoric processes �QIPs� �8–10�. We prove rigorously
from a microscopic point of view the above result that, for a
two-level system, the fluctuations of the microscopic work
during an quantum isothermal process �10� is vanishingly
small. We emphasize that, different from most cases in con-
ventional statistical mechanics, where fluctuations vanish in
the thermodynamic limit, the vanishing work fluctuations for
a small system in an isothermal process are due to the intrin-
sic nature of the isothermal process. Our study also verifies
the universal validity of the “minimum work principle” for-
mulation of the second law: it holds even for a small system.

II. THERMODYNAMIC PROCESS IN
PARAMETER SPACE

We consider a two-level quantum mechanical system with
excited �ground� states �e� ��g�� with instantaneous eigenen-
ergy Ee�t� �Eg�t�� depending on time t. This two-level system
can be modeled as a spin-1 /2 in an external magnetic field. It
interacts with a heat bath of inverse temperature �, which
can be universally modeled as a collection of many bosons
with creation �annihilation� operators aq

† �aq� �11�. The model
Hamiltonian reads �12,13�.

H = ��t��z + �
q

�qaq
†aq + �

q

��q�−aq
† + H.c.� , �1�

where �−= �g��e�= ��x− i�y� /2 and �z= ��e��e�− �g��g�� /2. Ini-
tially, let the two-level system be thermalized to equilibrium.
Then we alter the magnetic field slowly so that the energy
level spacing ��t� slowly changes from �A to �B. During the

controlling process illustrated by the smooth curve AB̂ in
Fig. 1, the work is done on the system. In the infinitely slow
process, which can be alternatively regarded as a quantum
isothermal process �10�, the two-level system is in the ther-
mal equilibrium at every instant, which is described by the
diagonal reduced density matrix �S�t�= Pe�t��e��e�+ �1
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− Pe�t���g��g�, where Pe�t�=exp�−��t�� / 	1+exp�−���t��

satisfies the Gibbs distribution. It should be pointed out that,
during the isothermal process, there is a heat exchange be-
tween the two-level system and the heat bath.

For such an isothermal process, it is difficult to calculate
the microscopic work distribution directly. According to
Refs. �8–10�, however, this process can be simulated by a
series of QAPs and QIPs. In QAP �QIC� processes, there is
only work done �heat exchange�. Hence, using the changes
of eigenenergies of the microscopic state at instant t
=A ,C ,D, we can indirectly calculate the microscopic work
done �heat exchange� �3,4�, �W=E��C�−E��A� ��Q
=E��D�−E��C��, for � ,�=e ,g. In the parameter space,
these QAP and QIP series processes are represented by the
“stair” path �A→C→D→¯→B� in Fig. 1. When every
step of the stair path becomes infinitesimal, the stair path

becomes equivalent to the isothermal process AB̂. In this way
we simulate the quantum isothermal process with N equal-
height steps �see Fig. 1� with small height �= ��B−�A� /N,
where �A and �B are the level spacings at points A and B,
respectively. The level spacings of the two-level system after
the �j−1�th QIC is

� j = �A + �j − 1�� , �2�

for j=1,2 , . . . ,N+1. The initial and final points A and B
correspond to j=1 and j=N+1, respectively. When we fix
the initial point A and the final point B, the jump � in every
step decreases with the increase of the step number N and �
approaches zero when N becomes infinity. Obviously, when
N→	, the stair path approaches its asymptotic behavior—
the isothermal path �see Fig. 1�. When the system reaches

thermal equilibrium, the occupation probabilities obey the
Gibbs distribution defined by

Pe
j = e−��j�1 + e−��j�−1, Pg

j = Pe
je��j . �3�

We remark that there are three time scales in our process:

a, the time of the quantum adiabatic approximation; 
c, the
control time of changing the magnetic field, hence the level
spacing; and 
r, the relaxation of the two-level system. Ac-
cording to Ref. �13�, 
r is determined by the coupling
strength �q, Eq. �1�. We consider the case that 
a�
c�
r for
a quantum adiabatic process where we can define the micro-
scopic work in every realization of the process.

III. MICROSCOPIC WORK DISTRIBUTION

Having defined the “path” in the parameter space ��
− Pe� space, we can further introduce the microscopic work
and its corresponding probabilities for a given path. Actually,
the definition of microscopic work is very similar to that in
Ref. �4�. In the above path divided into many “steps,” the
first step A→C→D consists of a QAP A→C and a QIP C
→D. At the beginning �point A of Fig. 1�, the system is
initially in a thermal equilibrium state �S�A�, which implies
that the system is either in its microscopic state �g� or �e�
with probabilities Pg

1 and Pe
1, respectively. We choose the

ground state in the energy reference point so that the micro-
scopic energy E�A� of the system at initial pint A can take
Ee�A�=�A or Eg�A�=0, with probability Pe

1 and 1− Pe
1, re-

spectively. In the first QAP A→C, the system remains in its
microscopic state �g� ��e�� if the system is initially in its
microscopic state �g� ��e��. As there is no heat exchange in
the QAP, the work done by an external controller is just the
change of the microscopic energy W�=E��C�−E��A� for �
=e ,g. Correspondingly the work done during A→C can be
either �C−�A or 0 with probabilities Pe

1 or 1− Pe
1, respec-

tively. This also agrees with the definition of work in quan-
tum mechanical systems: work is associated with the change
of the level spacing �9,10,14�.

After the QAP, a quantum isochoric process C→D �see
Fig. 1� follows. Here, there is no work done according to the
definition of work in quantum mechanical systems �9,10,14�,
because there is no change in the eigenergies. Nevertheless,
there is heat exchange between the system and bath. The
QIPs last long enough ��
r� so that the system can reach
thermal equilibrium with the heat bath. After a thermaliza-
tion for a long time, the two-level system reaches thermal
equilibrium with the heat bath again, Eqs. �3�, at instant D
indicated in Fig. 1. Then a second step D→E→F begins.
Similarly, the microscopic work 0 or �3−�2 is done in this
step with probabilities 1− Pe

2 or Pe
2. The microscopic work

done and their probabilities for the remaining steps can be
obtained through a similar analysis. Because in every QIP
the system is independently thermalized by the heat bath,
then there should be no correlations of the probabilities dis-
tributions in every two neighbor steps, or alternatively, this
process is a Markovian process. Hence, the total microscopic
work done after N steps is a sum of microscopic work done
in all steps and the joint probabilities for N steps as a whole
is the product of that of all steps.

FIG. 1. �Color online� Schematic illustration of a quantum iso-

thermal process �10� AB̂. Here the horizontal axis Pe is the occupa-
tion probability in the excited state of the two-level system and the
vertical axis indicates the level spacing of the two-level system. The

smooth curve AB̂ represents the isothermal process, whose “equa-
tion of state” can be expressed as ��t�=−�−1 ln�Pe

−1−1�. The hori-
zontal and vertical lines represent QICs and QAPs �10�. We can use
many small QAPs and QIPs to model the quantum isothermal pro-
cess. For example, we use a “five-step stair” path �green� A→C

→D→¯→B to simulate the smooth curve AB̂. The “one-step”
path �blue� and “20-step” path �orange� are also illustrated.
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For a special example that the microscopic work done
during the whole process is W=N�, where � is that for each
QIP step, the joint probabilities for the system keeping in �e�
in every QIP are P�N��= Pe

1Pe
2
¯Pe

N. The more general case
with microscopic work W= �N−k�� corresponds to a micro-
scopic process, in which k out of N QIPs ends with the
system in its microscopic state �g�. The probability P�k�
ªP��N−k��� with the microscopic work W= �N−k�� in the
N-step path is given by the following equation:

P�k� = ��
j=1

N

Pe
j��

l=0

k−1
e��B − e���A+l��

e��l+1�� − 1
 . �4�

To prove the above result, we first consider the case with
k=1. For this case, there is one and only one out of N QIPs,
in which the system ends up in the microscopic state �g�.
Then the corresponding probability can be calculated
as P�1�= �1− Pe

1�Pe
2
¯Pe

N+ Pe
1�1− Pe

2�¯Pe
N+ ¯ + Pe

1Pe
2
¯ �1

− Pe
N�= �� j=1

N Pe
j�e��B�x1=1

N e−��x1 or

P�1� = ��
j=1

N

Pe
j �e��B − e��A�

e�� − 1
. �5�

That means that Eq. �4� holds for k=1. Similarly we can
check the case with k=2. For this case, there are two out of
N QIPs, in which the system ends up in the microscopic state
�g�. Hence its probability can be expressed as

P�2� = �1 − Pe
1��1 − Pe

2�Pe
3
¯ Pe

N + �1 − Pe
1�Pe

2�1 − Pe
3� ¯ Pe

N

+ ¯ + Pe
1Pe

2
¯ �1 − Pe

N−1��1 − Pe
N�

= ��
j=1

N

Pe
je2��B�x1=1

N �x2=1
x1−1e−���x1+x2�

or

P�2� = ��
j=1

N

Pe
j �e��B − e��A��e��B − e���A+���

�e�� − 1��e2�� − 1�
. �6�

Hence Eq. �4� also holds for the k=2 case. In general, for an
arbitrary k, the corresponding probability can be expressed as

P�k� = ��
j=1

N

Pe
jek��B�k� , �7�

where �k�=�x1=1
N �x2=1

x1−1
¯�xk=1

xk−1−1e−���x1+¯+xk�. As �k� �k
=1,2 , . . . ,N� satisfy

�k� = �
i=1

k−1 ���
j=1

i
− 1

1 − e−j��− e−i���k − i�� + ��
j=1

k
− 1

1 − e−j�
��e−k�N+1�� − e−k�� , �8�

we can use the complete induction method to prove that the
�k� can be generally expressed as

�k� = �
l=0

k−1
e−�N��e�N� − e�l��

e��l+1�� − 1
. �9�

Substituting Eq. �9� into Eq. �7�, we obtain Eq. �4�. Hence,
by now we prove the general result given by Eq. �4�.

IV. MOST PROBABILISTIC DISTRIBUTION
AND FLUCTUATION

The above equation �4� can result in the main conclusion
in this paper. From the above microscopic work distribution
function �4�, we obtain the ratio R�k�= P�k+1� / P�k� of dis-
tributions for two close microscopic works—i.e.,

R�k� =
e��B − e��A+k��

e��k+1�� − 1
. �10�

Let k̃ maximize the probability distribution P�k� for the mi-

croscopic work �N− �k̃+1���. Then P�k̃�� P�k̃�1�, or

R�k̃��1 and R�k̃−1��1. For very large N , R�k̃��1 such
that

k̃� =
1

�
ln� 1 + exp���B�

exp����B − �A�/N� + exp���A�� . �11�

In the large-N limit, the above equation determines the mi-

croscopic work W̃= �N− k̃�� with most probabilistic distribu-
tion

W̃ =
1

�
ln�1 + e��B

1 + e��A
 , �12�

which is just the free-energy difference �FAB=FB−FA,
where Fj =ln�1+exp��� j�� /� for j=A ,B.

Next let us give a heuristic analysis of the dispersion of
the work distribution �4�. Because all steps in the stair path
are independent of each other, thus the whole process can be
regarded as Markovian. So the variance of the total micro-
scopic work done during the whole process is equal to the
sum of the variance of the local microscopic work in every
step—i.e., �WAB

2 �− �WAB�2=� j=1
N ��Wj

2�− �Wj�2�, where Wj is
the microscopic work done during the jth QAP and the local
fluctuations

�Wj
2� − �Wj�2 = �2�Pe

j − �Pe
j�2� �13�

for different j are similar. Here � is inversely proportional to
N, and �WAB� being independent of N, the relative variance
of WAB is inversely proportional to

��WAB
2 � − �WAB�2

�WAB�
�

1
�N

. �14�

We numerically plot the work distribution function �see
Fig. 2� based on the above analytical result �4� to test the
above analysis. Here we choose the step number N from 1 to
10 000. For N=1, the stair path becomes a “one-step” path
consisting of an QAP and an QIP �see Fig. 1�. The micro-
scopic work corresponding to the one-step path is either
�B−�A or 0 with the probability P�W=�B−�A�= Pe

1 or
P�W=0�=1− Pe

1. In the above figures, we choose
exp�−��A�=1 /2, �Pe

1=1 /3�, and the numerical result agrees
well with our analysis. For N=5 �see Fig. 1�, the possible
microscopic work can be W= i��B−�A� /5, i=0,1 ,2 , . . . ,5.
The numerical result indicates vanishing probability for W
=�B−�A. For N=20 �see Fig. 1�, the numerical result shows
even more vanishing probabilities of the microscopic work.
That is, the dispersion �fluctuation� of microscopic work de-
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crease with the increase of N. Actually, from the above nu-
merical figures, it is not difficult to find that the dispersion of
the microscopic work distribution is inversely proportional to
the square root of N. For example, the dispersion for N
=100 is 10 times that for the N=10 000 case �see Fig. 2�.
Hence, numerical results agree well with our heuristic analy-
sis and both verify our main result: when N→	, the fluctua-
tions of microscopic work vanish.

V. MINIMUM WORK PRINCIPLE FOR A
TWO-LEVEL SYSTEM

As we have mentioned before, for small systems and
within a short time, the formulation “entropy never decreases

for a closed system” of the second law may be transiently
“violated” probabilistically due to appreciable fluctuations
�5�. A straightforward question is, will the other formulations
of the second law—e.g., the minimum work principle
�6,15�—also be transiently violated probabilistically for
small systems? The minimum work principle states that
“when varying the speed of a given process for an initially
equilibrium system, the work is minimal for the slowest re-
alization of the process” �6,15�. In the following we will test
the validity of the minimum work principle for a two-level
system by utilizing formula �4� derived above. The average
work over all possible realizations for a given N-step path
can be expressed as

W
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FIG. 2. �Color online� Microscopic work distribution of an N-step stair process. The horizontal axis indicates the possible microscopic
work ranging from 0 to �B−�A, and the vertical axis is their probabilities. Here, exp�−��A�=1 /2, and exp�−��B�=1 /3. The steps are
chosen to be N=1, 5, 20, 100, 1000, and 10000, respectively. The paths corresponding to N=1,5,20 are given in Fig. 1. From these figures
it can be inferred that when N is small the process is irreversible, and the fluctuation is appreciable. The relative fluctuation of the
microscopic work vanishes when N→	, or the fluctuation of an isothermal process approaches zero. Besides, the most probabilistic work

from the �numerical� figures W̃=0.29�ln 3−ln 2�kBT agrees well with the �analytical� free energy difference �FAB= �ln�1+1 /2�−ln�1
+1 /3��kBT.
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�W�N = �
k=0

N ��
j=1

N

Pe
j��

l=0

k−1
e��B − e���A+l��

e��l+1�� − 1
�N − k�� .

�15�

In Fig. 3 we plot the averaged work �W�N as a function of
N, Eq. �15�. It can be seen that for the two-level system,
�W�N is a monotonically decreasing function of N �time t�,
and when N→	 �t→	�, the averaged work �W�N ap-
proaches an asymptotic value and its minimum value—the
difference of the free energy. Thus, from the numerical result
it can be inferred that the minimum work principle still holds
for a two-level system.

The above proof of the minimum work principle can be
alternatively understood in the following way. From the
above analytical and numerical result, we observed that the
fluctuation of microscopic work in an isothermal process
vanishes, and then the work of the most probabilistic distri-

bution is equal to the difference of the free energy, W̃=�F.
According to Ref. �3�, �Wirre���F, where �Wirre� is the av-
erage work done during an irreversible process. Combining

the two results, we have �Wirre��W̃. Thus we proved the
minimum work principle for small systems.

VI. DISCUSSION AND CONCLUSION

Before concluding this paper, we would like to emphasize
the following points: First, the technique of simulating iso-
thermal processes with adiabatic processes and isochoric
processes is important to our proof, which enables us to es-
tablish the connection between the large-time limit and
large-N limit. Second, the calculation of the exact expression
of microscopic work in our paper is nontrivial because the
work contributions in the different steps are not identically

distributed. Hence, it is different from the law of large num-
bers, with time as the large number �6�. Third, we proved
that the minimum work principle formulation of the second
law stands for even small systems, though other formulations
may be transiently violated probabilistically �5�. This is not
surprising because the minimum work principle is concerned
with infinite-long-time processes, which has no contradiction
with the transient violation of the second law for small sys-
tems predicted by the fluctuation theorem. Actually, the fluc-
tuation theorem does not constitute a real violation of the
second law, which is a statistical law and holds when aver-
aged over different realization of the process. Fourth, the
isothermal process is reversible, but the finite-N step path is
irreversible, due to the QIP �thermalization� being irrevers-
ible. We can thus expect that the work dissipation �7,6� for
the finite-N step path will be finite and will decrease with the
increase of N and finally vanish when N approaches infinity.

In summary, by simulating a quantum isothermal process
with infinitely many infinitesimal QAPs and QIPs, we obtain
the analytical expressions of microscopic work distribution
in an isothermal process. Through both analytical and nu-
merical analyses, we rigorously verify that the fluctuations of
the microscopic work distribution vanish even for a small
system in an isothermal process. This result is different from
the usual fluctuations in statistical mechanics—e.g., the en-
ergy fluctuation and particle number fluctuation in canonical
ensembles and grand canonical ensembles, where the fluc-
tuations of energy and particle numbers approach zero when
the system approaches the thermodynamic limit �particle
number approaches infinity NP→	�. Here, however, even
for a single-particle system, we microscopically demonstrate
the vanishing of microscopic work fluctuations. Because N
→	 is necessary to simulate an isothermal process, we con-
clude that the vanishing of microscopic work fluctuations is
due to the intrinsic nature of isothermal processes, rather
than the thermodynamic limit of the system size. We also
prove that for a small system, the minimum work principle
formulation of the second law holds though other formula-
tions maybe transiently violated probabilistically. Finally we
would like to point out that our result is universal and does
not depend on the specific model used here, because the
technique of simulating the isothermal process with the iso-
choric process and the adiabatic process can be applied to
any systems. Generalizations of our current discussion to
other models will be given in the future.
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FIG. 3. �Color online� Averaged work �W�N as a function of N,
Eq. �15�. The steps N chosen here are 50=1, 51=5, 52=25, 53

=125, 54=625, 55=3125, and 56=15625. It can be seen that the
averaged work is a monotonically deceasing function of N. In the
one-step path �N=1�, the averaged work is equal to �W�1= �ln 3
−ln 2� /3�0.135155kBT. In the 15625-step path, the averaged
work is equal to �W�56 �0.11784kBT, which is very close
to its asymptotic value �FAB= �ln�1+1 /2�−ln�1+1 /3��kBT
�0.117783kBT. Thus, it can be inferred that the minimum work
principle still holds for a two-level system.
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