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By reformulating the first law of thermodynamics in the fashion of quantum-mechanical operators on the
parameter manifold, we propose a universal class of quantum heat engines �QHE� using the multilevel quan-
tum system as the working substance. We obtain a general expression of work for the thermodynamic cycle
with two thermodynamic adiabatic processes, which are implied in quantum adiabatic processes. We also
classify the conditions for a 3-level QHE to extract positive work, which is proved to be looser than that for a
2-level system under certain conditions. As a realistic illustration, a 3-level atom system with dark state
configuration manipulated by a classical radiation field is used to demonstrate our central idea.
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I. INTRODUCTION

A usual heat engine operates between two heat baths, the
temperature difference between which completely deter-
mines the maximum efficiency of the heat engine. Corre-
spondingly, it is inferred that no power can be extracted if the
two baths have the same temperature. But things become
different when we use quantum matter as the working sub-
stance. Quantum effects can highlight the thermodynamic
differences between classical and quantum working sub-
stance of a heat engine. Recently, great efforts �1� has been
devoted to the investigation of the quantum effect of the
working substance. Some exotic phenomena were discov-
ered, most of which concerns the following three aspects:
The first aspect is whether we can improve the efficiency of
the QHE to a level beyond the classical limit. For example,
Scully et al. �2–4� proposed a quantum-electrodynamic heat
engine that can exceed the maximum limit by using the pho-
ton gas as working substance. The second aspect is how we
can better the work extraction during a Carnot cycle. Kieu
presents a new type of QHE �5,6�, in which the contact time
is precisely controlled �without reaching thermal equilib-
rium� and the two heat baths are specifically modified. This
QHE can extract more work than the other model in thermal
equilibrium case. The third aspect is about the constraints of
the temperatures of the two heat baths, under which positive
work can be extracted. It is clear that a classical heat engine
can extract positive work when and only when Th�Tl. Here,
Th and Tl are the temperatures of the source and the sink. But
for a QHE, some exotic phenomena may occur. One example
is given in Ref. �2�, in which positive work can be extracted
even from a single heat bath, i.e., Th=Tl. Another example is
the simplest 2-level QHE model in Refs. �6,7�, in which
positive work can be extracted only when Th is greater than
Tl to a certain extent.

We consider the third aspect in detail. In Refs. �6,7�, the
QHE works between the source and sink at temperatures Th
and Tl respectively. Within a cycle, the level spacing �

changes between �h and �l. For such a QHE, the system
couples to the bath for a sufficiently long time until they
reach the thermal equilibrium state. Then positive work can
be performed when and only when Th�Tl��h /�l� �condition
I�. This result implies a broad validity of the second law and
shows by how much Th should be greater than Tl such that
the positive work can be extracted. This constraints about
temperatures is obviously counterintuitively different from
that of a classical heat engine. Now we wonder whether it is
a universal condition for all multilevel QHE. Actually Kieu
has considered two special cases, the simple harmonic oscil-
lator and the infinite square well, in �the appendices of� Ref.
�6�. As to the two special cases, because all the level spac-
ings change in the same ratio, the constraints of the two
temperatures, or the positive work condition �PWC� has the
same form as that for a 2-level case �8�. In this article, we
will prove that the PWC for a 3-level QHE can be looser
compared to a 2-level case under our criterion when the level
spacings change properly in the thermodynamic cycle.

This paper is organized as follows: In Sec. II, we formu-
late a quantum version of the first law of thermodynamics for
a multilevel quantum system. In Sec. III, we discuss the re-
lationship between the quantum adiabatic process and the
thermodynamic adiabatic process. In Sec. IV we analyze the
quantum thermodynamic cycle of a universal QHE. The ob-
tained results are more universal than those obtained from
the 2-level system �9–11�. In Sec. V, we classify the 3-level
QHE according to the changes of level spacings. We find
under certain condition the PWC for a 3-level QHE can be
looser than its counterpart for a 2-level case. A realistic
model—a 3-level atomic system with dark state structure
manipulated by a classical radiation field—is given to dem-
onstrate our central idea in Sec. VI.

II. QUANTUM VERSION OF THE FIRST LAW OF
THERMODYNAMICS

We consider the QHE with a N-level system as its work-
ing substance. The system eigenenergies vary adiabatically
with the parameters R= �R1 ,R2 , . . . ,RM , � in an
M-dimensional manifold M. One can manipulate the param-
eters to implement the quantum adiabatic process, which
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does not excite the transitions among the instantaneous

eigenstates �n���n�R�� of the Hamiltonian Ĥ= Ĥ�R� with the
instantaneous eigenvalues En��En�R��. Usually the density
operator �̂ is a function of both the external parameters R
and the thermodynamic parameter, i.e., the temperature T. So
we need to extend the manifold M to include T. For ex-
ample, the heat transfer can be also caused by the change of
the temperature. In this sense, we define the differential one-
form on the �M +1�-dimensional “manifold” MT : �X
= �R ,T�	 by dF=�RFdR+dTF for any function F. We em-
phasize that dT may be a discrete variation �T in the time
domain. Then in this sense MT is no longer a generic mani-
fold.

During a thermodynamic cycle, work is done by or on the
system when the mechanical parameters R vary slowly.
While heat is transferred when the quantum state or density
operator changes as the temperature varies discretely. At two
different instants t=0 and �2, the system contacts with the
source and sink at temperature Th and Tl respectively to
reach thermodynamic equilibrium. The couplings of the sys-
tem to such different heat baths yield the discrete change of
the probabilities distribution in every eigenstate. We consider
the infinitesimal variation

dU = Tr��̂dRĤ� + Tr�Ĥd�̂� �1�

of the expectation value U=Tr��̂Ĥ� of the Hamiltonian,
where we have introduced the density operator of the state �̂.
dU contains two parts corresponding to the changes of the
Hamiltonian and the density operator respectively. Here, the
operator 1-form, on the submanifold M, can be written as

dRĤ = dRQ̂ + dRŴ , �2�

which is the infinitesimal variation of Ĥ. Here, the off-
diagonal part

dRQ̂ = 

m�n

�m�dRĤ�n��m��n� = 

n

EndR��n��n�� �3�

is the heat operator and the diagonal part

dRŴ = 

m

�m�dRĤ�m��m��m� = 

m

�dREm��m��m� �4�

is the work operator. To derive the above equations we have

used the Feynman-Hellman theorem �m�dĤ�m�=dEm and the

formula �m�dĤ�n�= �En−Em��m�d�n�.
Upon a first glance, the above definitions of the work

operator dRŴ and the heat operator dRQ̂ are reasonable. In-
tuitively speaking, the work can be done only when the
R-dependent eigenenergy of inner states change. This pro-

cess is just described by dRŴ. The off-diagonal elements of

the infinitesimal variation of Ĥ indicates the transitions
among the inner energy levels and thus results in the heat
transfer. The term dR��n��n�� interprets the heat transferred to
or from a quantum system along with the change of the
projections to the instantaneous eigenstate. Physically it
means the changing of the occupation probabilities rather
than the R-dependent eigenvalues themselves. In addition,

when the quantum state �̂ itself changes due to the varying of
both the control parameters R and the thermodynamic pa-
rameter T, the heat is also transfered. This kind of heat tans-
fer is described by the second term on the left-hand side of
the Eq. �1�.

In comparison with the existing studies about QHE �6�,
we write down the infinitesimal energy dU= d–Q+ d–W, where

the infinitesimal heat transferred d–Q and work done d–W are
identified respectively as two path dependent differentials

d–Q = Tr�Ĥd�̂� + Tr��̂dRQ̂� = 

m

Emdpm, �5�

d–W = Tr��̂dRŴ� = 

m

pmdEm. �6�

Here pm= �m��̂�m� are the corresponding occupation prob-
abilities in the instantaneous states �m�.

We would like to emphasize that the above two equations
were even obtained in many previous references �6,10,12�.
But here we present a general derivation, the process of
which shows the differences between work and heat in the
view of quantum mechanics. Substantially, we give the mi-
croscopic definitions of work and heat based on the non-
adiabatic transitions among the instantaneous eigenstates of
the time-dependent Hamiltonian.

III. FROM QUANTUM ADIABATIC EVOLUTION TO
THERMODYNAMIC ADIABATIC PROCESS

The term “adiabatic process” is usually used in both quan-
tum mechanics and thermodynamics, and seemingly has dif-
ferent meanings for these two cases. Actually, a quantum
adiabatic process implies a thermodynamic adiabatic pro-
cess. But not all thermodynamic adiabatic processes is
caused by quantum adiabatic processes �6,13�. This under-
standing is crucial for the following analysis about the ther-
modynamic cycle of the QHE.

In quantum mechanics, the adiabatic process is described
by the time evolution of a quantum system with slowly
changing parameters. When these parameters vary slow
enough, the transitions among the instantaneous eigenstates
�n�R����n�t�� are forbidden, i.e., the system will keep in the
n-th instantaneous eigenstate �n�t�� if the system is initially
in the eigenstate �n�0�� at time t=0. Generally speaking,
starting with the initial state ���0��=
ncn�n�0��, the system
will evolve into

���t�� = 

n

cn exp�− i
0

t

En�t��dt + i	n��n�t�� , �7�

where

	n = 
0

t

�n�t���
d

dt�
�n�t���dt�

is the so-called Berry’s phase. This conclusion implies that
the occupation probability ��n�t� ���t���2 in an instantaneous
eigenstate �n�t�� is adiabatically invariant. This result is also
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valid for the initial mixed state, e.g., the thermal equilibrium
state

�̂�0� = 

n

�nn�n�0���n�0�� , �8�

where �nn are Gibbs probability distributions.
We illustrate a quantum adiabatic process and its corre-

sponding thermodynamic adiabatic process in Fig. 1. An
amount of ideal gas is constrained in a cylinder. The piston
moves so slow that the gas is always kept in thermal equi-
librium state. Usually no heat is gained or lost in a thermo-
dynamic adiabatic process. Thus any isotropic process im-
plies its adiabatic property. But all adiabatic process are not
isentropic. For example, an adiabatic-free expansion is not
isentropic. Now we prove a quantum adiabatic process illus-
trated in Fig. 1�b� microscopically leads to an isentropic pro-
cess and thus a thermodynamic adiabatic process.

In quantum mechanics, we describe the motion of these
structureless gas atoms or molecules with an infinite poten-
tial well with one moving boundary �Fig. 1�b��. The piston or
boundary moves so slow that the quantum adiabatic condi-
tion are satisfied �14,15�. Now we consider the microscopic
definition of the thermodynamic entropy

S = − k Tr��̂�R�ln �̂�R�� . �9�

The variation of the entropy due to the changes of the me-
chanical parameters R can be calculated as

dRS�R� = − k

n

��nn ln �nn + 1�dR�nn. �10�

According to the quantum adiabatic theorem, the particle dis-
tributions in the instantaneous energy levesls are invariant
during a quantum adiabatic process. Then, from Eq. �10�, the
entropy keeps unchanged. Therefore, it is concluded that the
quantum adiabatic process of the microscopic particles just
results in the thermodynamic adiabatic process of the mac-
roscopic system.

The above arguments shows that the quantum adiabatic
process in quantum mechanics can result in a thermody-
namic adiabatic process. But we have to point out that not all
thermodynamic adiabatic process are caused by the quantum
mechanical adiabatic process. For example, in the thermody-
namic adiabatic process of Fig. 1�a� a single molecule may
experience nonadiabatic transitions due to its interaction with
other molecules.

IV. POSITIVE WORK DONE BY MULTILEVEL QHE IN A
THERMODYNAMIC CYCLE

Like the classical heat engine, a universal QHE also bases
on a thermodynamic cycle. Mathematically, it can be under-
stood as a close path l : �X= �R ,T� �X�0�=X��4�	 on the �M
+1�-dimensional “manifold” MT. The efficiency of a univer-
sal QHE is 
q=�W /Q corresponding to the ratio of the work
done to the heat absorbed during a cycle,

�W = � d–W , �11�

Q = 
0

�1

d–Q , �12�

where �1 is the ending point of step 1. A typical four-stroke
QHE, consists of two quantum adiabatic and two isothermal
processes, is a quantum analogue of the classical Otto en-
gine, as illustrated in Fig. 2.

Step 1 and step 3 are two isothermal processes. During
step 1, i.e., from time t=0 to t=�1, the system couples to the
source �bath 1� at temperature Th and the level spacings keep
unchanged. After absorbing energy from the heat source, the
system reaches thermodynamic equilibrium state, which can
be described by the density operator �̂��1�. The heat absorbed

FIG. 1. �Color online� Illustration of classical adiabatic process
�a� and its quantum-mechanical counterpart �b�. At time t=0, the
piston �wall� locates at L�0�, and after a long time t=�, the piston
�wall� moves slowly to L���. No change happens in the energy level
populations during the adiabatic process.

FIG. 2. �Color online�The graphic sketch of a universal QHE
model. From time t=0 to t=�1, the system absorbs heat from the
source �bath 1�. From time t=�1 to t=�2, work is done by the
system when the piston is pushed by the working substance. Step 3
�from time t=�2 to t=�3� and step 4 �from time t=�3 to t=�4� are
reversed processes of step 1 and step 2 with modification.
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during step 1 is

Q = 
0

�1



m

Em�m��T�̂�m� . �13�

Step 3 is almost an inverse process of step 1. From time �2 to
�3, the system is brought to couple to the sink at temperature
Tl. The density matrix changes into �̂��3� after releasing en-
ergy into the bath. In the above operations, the absorption
and the release of energy during step 1 and step 3 happen in
quantum ways. Namely, they can only happen probabilisti-
cally. The corresponding probability depends on the details
of the interactions and some intrinsic properties, e.g., the
temperatures of the heat baths.

Step 2 and step 4 are two adiabatic processes. During step
2 the QHE performs positive work when the energy spacings
decrease. Meanwhile the parameters R adiabatically change
from R��1�=R�0� to R��2�. But the atomic probability dis-
tribution remains unchanged in this process. Step 4 is almost
an inverse process of step 2, during which the system is
removed from the sink and its energy gaps increase as an
amount of work is done on the system. The net work done by
the system during a cycle is

�W = �
�1

�2

+ 
�3

�4 �

m

pmdEm. �14�

The above results can give the known results in �6,10,12� for
a 2-level system.

We assume the thermal equilibrium Gibbs distributions
for the heat bath. The system will eventually reach Gibbs
distribtution

�̂��� = Z−1e−�sĤ = 

m

pm
s �m��m� �15�

after coupling to the heat bath for a time much longer than
the relaxation time 	−1 of the considered system. The occu-
pation probability in the instantaneous eigenstate �m� is

pm
s �t� =

e−�sEm�Ts�

Zs , �16�

which depends on the spectral structure and the temperature
Ts �s=h,l� of the relevant heat baths. Here �s=1/ �KTs�, and
K is the Boltzmann constant.The partition function is defined
by

Zs = 

m

e−�sEm�Ts�. �17�

For the cyclic nature of QHE, the energy level spacings re-
turn at different instants. Then the net work done during a
cycle can be calculated as

�W = 

m

�pm
h ��1� − pm

l ��3���Em, �18�

where

�Em = Em�Th� − Em�Tl� . �19�

Therefore, the PWC can be explicitly expressed as

�W = 

m

�pm
h ��1� − pm

l ��3���Em � 0. �20�

V. CLASSIFICATION OF POSITIVE WORK CYCLES FOR
3-LEVEL QHE

It is also known from Refs. �6,12� that the PWC for the
2-level QHE working between the source and sink at tem-
perature Th and Tl can be written as

Th � Tl
�h

�l . �21�

Only when this PWC is satisfied can the positive work be
extracted. This condition is counter-intuitively different from
that Th�Tl for a classical heat engine. Now, we naturally ask
a question: Is this condition �21� universal for a multilevel
QHE? In this section we will prove that, if the energy levels
change properly, the PWC for a 3-level system can be looser
than that for a 2-level system �21�.

Our model considered here is a 3-level system with the
adjustable level spacings �1

s and �2
s �s=h , l�, as illustrated in

Fig. 3. Here, we denote the ground state, the first excited
state and the second excited state with subscripts 0, 1, and 2
respectively. We also introduce the dependent parameters
�s=�1

s +�2
s , �s=h , l�. For this kind of 3-level systems, if the

PWC �20� can be reduced to

Th � Tl��h/�l�� ,

Th � Tl��1
h/�1

l ���, �22�

meanwhile both �l /�h�1 and �1
l /�1

h��1 are satis-
fied, then we say the PWC is looser than that for a 2-level
case since the PWCs for both the two substructures are
looser than that for a 2-level system �21�. The two substruc-
tures are formed by combining level 0 with level 1 and level
2, respectively. We will prove in the following there indeed
exist such cases for a 3-level system. This means that the
PWC for a 3-level system can be improved in comparison
with that for a 2-level case when the levels change properly.

For the 3-level case we rewrite the expression �18� of �W
in a more explicit form

FIG. 3. �Color online� A sketch of an adiabatic evolution of the
level spacings of a 3-level system during step 2. �i

h and �i
l �i

=1,2� are the two level spacings when coupling to the source and
the sink. �h��l� is the maximum level spacing, i.e., �s=�1

s +�2
s ,

�s=h , l�.
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�W =
G��,�1� + G��1,��

Zh�Th�Zl�Tl�
, �23�

where Zs�Ts� is the partition function for the three level case,

G��,�1� = ���,�1���h − �l� , �24�

���,�1� = e−�h�h
− e−�l�

l
+ e−�h�h−�l�1

l
− e−�h�1

h−�l�
l
.

�25�

Obviously �W is completely determined by Ts, �1
s and

�2
s �s=h , l�, which is independent of the details of the chang-

ing of the level spacings. Thus, we only care about the initial
level spacing �i

h and the final level spacing �i
l in considering

the thermodynamic cycle.
However, at arbitrary finite temperature, the PWC �20� is

too complicated to be understood directly, so we switch to
considering its high temperature limit. In this limit the PWC
�20� can be simplified as

L�F��,
� −
Tl

Th

�h

�l F��,�����1
h − �1

l � � 0, �26�

where we have introduced

F��,
� = ��2� − 1� + �2 − ��
� ,

L =
�l

kTlZ
h�Th�Zl�Tl�

�27�

in terms of an independent set of parameters

� � 1 +
�2

h − �2
l

�1
h − �1

l ,


 �
�1

l

�l , � �
�1

h

�h . �28�

According to the requirement of the quantum adiabatic evo-
lution, the level spacings �1

s and �2
s are always kept positive

during the two quantum adiabatic process. Therefore, the pa-
rameters 
 and � range in the interval �0, 1�, i.e., 0
, �
1.

In principle, we can classify the multilevel QHE accord-
ing to the changes of the level spacings in the thermody-
namic cycles. As to the 3-level QHE, there are altogether
four sorts of operations corresponding to the following four
cases:

�I� �1
h − �1

l � 0, �2
h − �2

l � 0,

�II� �1
h − �1

l � 0, �2
h − �2

l  0,

�III� �1
h − �1

l  0, �2
h − �2

l � 0,

�IV� �1
h − �1

l  0, �2
h − �2

l  0, �29�

as schematized in Fig. 4.
Before analyzing the four cases in detail, we intuitively

consider the physical mechanism that a 3-level QHE may

better the work done. Namely, the PWC can be relaxed com-
pared to that for a 2-level case. For instance, if the lower
level spacing does not change during step 2 �see Fig. 5�a��,
�1

h=�1
l �dashed line�, the 3-level QHE reduced to a 2-level

case, then the PWC cannot be bettered. However, when it
comes to �1

h��1
l �solid line�, the lowering of energy level 1

produces extra work to better the PWC. On the contrary, if
the level spacings changes as that in Fig. 5�b�, �1

h�1
l �solid

line�, the raising of the energy level 1 makes the PWC be-
come worse. These two cases are corresponding to case �I�
and case �III� in Fig. 4. We expect that the 3-level QHE of
case �I� can better the work extraction but case �III� cannot.
We will try to prove this result and determine the physical
parameters that can better the work extraction in the follow-
ing detailed analysis. First we consider case �I�.

Case (I). Physically, �1
h−�1

l �0 and �2
h−�2

l �0 mean
both of the two level spacings decrease adiabatically during
step 2. Since �1

h−�1
l �0, the PWC �26� can be simplified as

F��,
�Th � TlF��,��
�h

�l . �30�

By noticing that ��1, F�� ,
��1 and F�� ,���1 in case �I�,
the above PWC �30� can be further simplified as

FIG. 4. �Color online� Sketch map of four sorts of 3-level QHE.
There are altogether four kinds of 3-level QHE, as illustrated above,
according to the changes of the level spacings during step 2. Here
�I�, �II�, �III�, and �IV� are corresponding to case �I� to case �IV� in
Eq. �29�, respectively.

FIG. 5. �Color online� A 3-level QHE built up by adding a third
level to the 2-level QHE. Intuitively speaking, it can make the PWC
looser �better the work extraction� when the new level helps to
produce positive work �a�, but makes the PWC worse when it cost
energy �b�.
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Th � Tl
�h

�l � . �31�

Here, the dimensionless parameter � is defined by

� =
F��,��
F��,
�

. �32�

Aiming to construct a 3-level QHE with a relaxed con-
straints �22� on temperatures, we need to analyze in what
conditions �1 is satisfied. Obviously, as to �1, i.e., �2
−��� �2−��
, there are two solutions. Solution I:

� � 2 and � � 
 , �33�

and solution II:

1  �  2 and �  
 . �34�

For simplicity, we define a set of independent physical pa-
rameters in terms of the ratios of three level spacings to �1

h,

r1
l =

�1
l

�1
h , r2

l =
�2

l

�1
h , r2

h =
�2

h

�1
h . �35�

Then it is easy to see that

r1
l  1, r2

h � r2
l �36�

are implied in our presupposition of case �I�.
Based on the above analysis, solution I can be explicitly

obtained to be

r2
h + r1

l − r2
l � 1,

r2
l � r1

l r2
h. �37�

We combine Eqs. �36� and �37� and plot them in a
3-dimensional figure in coordinates of r1

l , r2
l , and r2

h. The
solution is a 3-dimensional domain enveloped by a curved
surface, r2

l =r1
l r2

h �denoted by A� and two planes r2
h=1−r1

l

+r2
l �denoted by B� and r1

l =0. Any representative point in
this domain can determine a 3-level QHE, which can extract
positive work under the conditions Th�Tl��h /�l�� and
�l /�h�1. �See Fig. 6.�

We further consider whether solution I is consistent with
the second inequality of Eq. �22�. Fortunately we can easily
find such �� smaller than unity for �1

h /�1
l ��h /�l in solution

I. Thus, according to the the definition �22�, it is proved that
the PWC for 3-level system can be looser than that for a
2-level case if the level spacings change properly.

Similarly we rewrite solution II �34� in terms of r1
l , r2

l , and
r2

h,

r2
h + r1

l − r2
l  1,

r2
l  r1

l r2
h. �38�

Together with �36�, we illustrate the result in Fig. 7. The
physical meaning is the same as that of solution I. But solu-
tion II is not an ideal solution like solution I, for we cannot
find such solution that satisfy the second inequality.

In order to make our result clear, we illustrate the above
results in comparison with that for a classical heat engine

and a 2-level QHE in Fig. 8 and Fig. 9. As to a classical heat
engine, e.g., a Carnot engine, the PWC is Th�Tl, and the net
work �W is a linear function of Th for a given Tl. But for a
2-level QHE, the PWC is Eq. �21�, and the net work is not a
linear function of Th, as illustrated in Fig. 8.

As to solution I of case I of the 3-level QHE, the PWC is
looser than that for a 2-level case, because the PWC for both
the two substructures are looser than that for the 2-level sys-
tem, as illustrated in Fig. 9�a�. However, as to solution II, the
PWC is not looser than that for a 2-level case, for the PWC
for one substructure is looser than that for the 2-level system,
but the other is not, as illustrated in Fig. 9�b�.

Case (II). In this case �1
h−�1

l �0 and �2
h−�2

l 0. Physi-
cally, this means that the upper level spacing increases while
the lower level spacing decreases during step 2. We will
prove in the following in this case there exist no such solu-
tion about �i

h and �i
l that can better the work extraction

compared to a 2-level case.
To prove this conclusion we need to distinguish the fol-

lowing four situations:

�a� F��,
� � 0, F��,�� � 0,

�b� F��,
� � 0, F��,��  0,

FIG. 6. �Color online� Diagram of solution I of case I. For a
given �1

h, when �1
l , �2

l , and �2
h are properly chosen such that the

point �r1
l ,r2

l ,r2
h� is in the enveloped range, positive work can be

extracted under a looser condition.

FIG. 7. �Color online� Diagram of solution II of case I. The
representative points in the enclosed range are the results of in-
equalities �38�, and the physical meaning is similar to that of Fig. 6.
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�c� F��,
�  0, F��,��  0,

�d� F��,
�  0, F��,�� � 0. �39�

�a� The PWC �26� can be reduced to Eq. �31�. Similar to
above analysis, if we want to find a looser PWC, � should be
smaller than unity, i.e., �1. By noticing �1 in case �II�,
�1 can be further simplified as �
, i.e.,

�1
l

�1
h �

�2
l

�2
h . �40�

However, this inequality is incompatible with the two con-
straints of case �II�: �1

h−�1
l �0 and �2

h−�2
l 0. Thus, in this

situation, the PWC is no looser than that for a 2-level QHE
for ��1.

�b� The two inequalities F�� ,
��0 and F�� ,��0 can be
reduced to

1 − 2


2 − 

 � 

1 − 2�

2 − �
. �41�

Thus we can obtain the inequality 
��, i.e.,

�1
l

�1
h �

�2
l

�2
h .

Similarly, this inequality is incompatible with �1
h−�1

l �0
and �2

h−�2
l 0. Thus, in case �II� F�� ,
��0 and F�� ,��

0 cannot be satisfied simultaneously. Therefore, there does
not exist the PWC looser than that for a 2-level QHE in this
situation.

�c� The PWC can now be reduced to be

Th  Tl
�h

�l � . �42�

By noting that we have assumed beforehand Th�Tl. Only
when ��h /�l���1, the QHE is probable to extract positive
work. From Eq. �39�, F�� ,
�0 is always satisfied in con-
dition �c�. Then ��h /�l���1 can be reduced to

�2 − � + 1 = �� −
1

2
�2

+
3

4
 0. �43�

Obviously this inequality has no solution to the real param-
eter �. Therefore the positive work cannot be extracted in this
situation.

�d� The PWC can now be reduced to ThTl��h /�l��. The
left hand side in the inequality is positive while the right
hand side is negative �for �0�. It is obvious that, there does
not exist a PWC looser than that for a 2-level QHE in this
situation, either.

In summary, we cannot find a PWC looser than that for a
2-level case in case �II�. After similar analysis about case
�III� and case �IV�, we find there is no desired solution in
case �III� and case �IV� either. In conclusion, only in case �I�
can we find such desired solutions that the 3-level QHE can
better the work extraction compared to the 2-level case. This
conclusion agrees with the result obtained from our forego-
ing intuitional consideration.

We also would like to mention that under the criterion
�22� we find the PWC for a 3-level QHE can be looser than
that for a 2-level case. If we use other criterions, the result
may be different. For example, if we use �2 instead of � in
the first inequality of �22�, we cannot find such 3-level QHE
that whose PWC is looser than that for a 2-level case. Actu-
ally, for case �I�, the PWC �22� can always be simplified to
inequality �31� Th�Tl��h /�l��. It can be proved that the
coefficient ��h /�l�� satisfies

FIG. 8. �Color online� Sketch map of the network �W as a
function of Th for a given Tl. Part �a� illustrates a classical Carnot
engine, while part �b� illustrates a 2-level QHE.

FIG. 9. �Color online� Similar to Fig. 8. Part �a� illustrates so-
lution I of case I of the 3-level QHE, and part �b� illustrates solution
II of case I of the 3-level QHE.
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min��1
h

�1
l ,

�2
h

�2
l ��h

�l � max��1
h

�1
l ,

�2
h

�2
l � . �44�

This conclusion is also true for n-level QHE. Namely, if the
PWC for a n-level QHE can be expressed as Th�Tl�, then it
can be proved that the coefficient � satisfies

min��1
h

�1
l , ¯ ,

�n
h

�n
l � � � � max��1

h

�1
l , ¯ ,

�n
h

�n
l � . �45�

Here �i
h and �i

l are the energy gaps between the ith and the
�i−1�th energy level in step 1 and step 3. Specifically, when
all the level spacings change in the same ratio, i.e., �1

h /�1
l

=�2
h /�2

l = ¯ =�n
h /�n

l , no matter how the spectral structure is,
the PWC for such a system has the same form as that for a
2-level case Th�Tl��h /�l�. The harmonic oscillator and the
infinite well potential are two good examples �6,8�.

VI. ILLUSTRATION: THREE-LEVEL ATOM WITH DARK
STATE

In the preceding section, we found in proper conditions
the PWC for the 3-level QHE can be looser than that for a
2-level QHE �condition I �. In this section, we will use a
concrete example to demonstrate our results. We consider a
toy model with 3-level system couples to a classical single-
mode external field. The levels are adjusted by the external
light field, which plays a similar role to an ideal piston in
classical heat engine. In this ideal case we need not to con-
sider the work for the controlling field to adjust the level
during the adiabatic process. Just through this external field
the work �either positive or negative� done on the 3-level
system means the change of energy of the 3-level system.
Namely, in our theoretical studies, no extra work is required
for the controlling field since we regarded the field as a part
of the external entries.

The model Hamiltonian �16� reads

Ĥ = ���e��e� + ���e��1� + �e��2� + H.c., �46�

where � is the common detuning �see Fig. 10�. We have set
the eigenenergy of the two degenerate ground states �1� and
�2� as zero, and that of the excited state �e� as ��e. � is the

complex Rabi frequency frequency � to the atomic transition
�e�→ �1� ��e�→ �2��. The detuning of � is �,

� = �e − � . �47�

We solve the eigenequation, and obtain the eigenvalues

E0 = 0,

E+ =
1

2
��� + �����2 + 8���2� ,

E− =
1

2
��� − �����2 + 8���2� . �48�

Then this QHE has two level spacings:

�1 = E0 − E− =
1

2
������2 + 8���2 − ��� ,

�2 = E+ − E0 =
1

2
������2 + 8���2 + ��� . �49�

The two level spacings are functions of two independent
parameters � and ���. During step 2 the level spacings
change adiabatically from �h��1

h� to �l��1
l � when the two

parameters change slowly from ��h , ��h�� to ��l , ��l��. Ac-
cording to the systematical analysis in last section, this
model can indeed serve as an improved 3-level QHE if the
two parameters change properly. We plot the energy levels
��� , ���� and �1�� , ���� in Fig. 11.

In a thermodynamic cycle, the level spacing changes adia-
batically between �i

h and �i
l during the two adiabatic pro-

cesses. For convenience, we define

Ks = ����s�2 + 8��s�2. �50�

The two constraints of case �I� in Eq. �29� can also be ex-
pressed in terms of Ks and �s:

FIG. 10. �Color online� The sketch of a 3-level QHE model. A
�-type 3-level system interacting with a single classical radiation
field. �e� is the exited state, while �1� and �2� are the two degenerate
ground states.

FIG. 11. �Color online� The two level spacings as functions of
�� and ���. The upper curved surface represents �s while the lower
one represents �1

s .
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Kl − ��l

Kh − ��h  1,
Kl + ��l

Kh + ��h  1. �51�

Substituting Eq. �49� into Eq. �37�, we get the Solution I in
terms of Ks and �s,

�lKh � �hKl,

�h � �l. �52�

Combine Eqs. �51� and �52�, we find the inequalities hold
only when �h��l�0. Thus the solution �52� can be reduced
into a more compact form

�h � �l � 0,

��l/�l�  ��h/�h� . �53�

During step 2 of a thermodynamic cycle, we assume the
initial level spacings are �h and �1

h corresponding to two
positive parameters �h and ��h�. Then the level spacings
change adiabatically to �l and �1

l when the two parameters
change slowly to ��l , ��l��. The above result �53� shows that,
only when the final point ��l , ��l�� locates in the shaded tri-
angle in Fig. 12 can we make the PWC looser compared to
condition I for a 2-level case.

Similarly, we substitute Eq. �49� into Eq. �38� and then
obtain solution II in terms of Ks and �s.

�h  �l  0,

��l/�l�  ��h/�h� . �54�

The physical meaning is almost the same as that of Fig. 12.
For the initial parameters �h and ��h�, only when the final
point ��l , ��l�� locates in the shaded triangle in Fig. 13 can
the first inequality of �22� be satisfied, but the second is still
not. Thus solution II is not a desired solution.

Before concluding this section, we would like to address a
crucial problems in the physical implementation of the above
“dark state model.” It is obvious that we do work on the
system when varying the parameters � and ��� in step 4. But
how is the work extracted out of the system cannot be imag-
ined directly. Here, what we discussed in this section is only
a toy mode to illustrate the basic spirit of physics in the
quantum thermodynamic cycles. The work done by the sys-
tem in step 2 can be indirectly understood as the conse-

quence of the decrease of the system energy, which can be
explicitly calculated from our foregoing analysis �see Eq.
�6�� in Sec. II.

VII. CONCLUSION AND REMARKS

We have quantum-mechanically formulated the work
done and the heat transferred in the thermodynamic pro-
cesses in association with the microscopic quantum transi-
tions. A class of QHE were universally proposed by using a
multilevel quantum system as the working substance and by
deriving the thermodynamic adiabatic process from the
quantum adiabatic process. We classified a 3-level QHE
based on the changes of the level spacings, and found when
the parameters �and thus the level spacings� change properly,
a 3-level QHE can better the work extraction compared to a
2-level case.

Before concluding this paper we would like to point out
that the two-parameter QHE proposed in the last section is
only a toy model and one cannot overestimate it. We have to
say that the Hamiltonian for such an atomic system in the
laboratory frame of reference is time dependent and changes
fast. Therefore one can roughly regarded it as something
relevant to the system energy. It is still an open question to
find a multilevel system with level spacings changing inde-
pendently in practice.

We also remark that the discussion about QHE is essen-
tially semiclassical because we quantize neither the heat bath
nor the controllable external fields. To build a totally-
quantum theory for QHE, one need to use the generalized
master equations with and without memories. There are
some interesting results in Refs. �17,18�. How to develop our
present studies within this theoretical framework is to be
considered in our forthcoming investigations.
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FIG. 12. �Color online� Illustration of Eq. �53�. In this solution
the QHE can extract positive work while the PWC is looser com-
paring with that for 2-level QHE. FIG. 13. �Color online� Illustration of Eq. �54�. The physical

meaning is similar to that of Fig. 12. But this is not an ideal
solution.
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