PHYSICAL REVIEW D

VOLUME 38, NUMBER 9

1 NOVEMBER 1988

Analytic treatment of high-order adiabatic approximations of two-neutrino oscillations in matter

Chang-Pu Sun
Physics Department, Northeast Normal University, Changchun, Jilin Province, The People’s Republic of China
(Received 31 March 1988)

In this paper the high-order adiabatic approximation method proposed by the author is used to
approach the nonadiabatic effects of two-neutrino oscillations in matter. We not only obtain the an-
alytic expressions for high-order approximate solutions of the neutrino-oscillations equation but
also give nonadiabatic corrections to the probability of the adiabatic transition between two neutri-

nos in matter with arbitrarily varying density.

About three years ago, the Mikheyev-Smirnov-
Wolfenstein (MSW) mechanism for the enhancement of
neutrino oscillations in matter was suggested to solve the
solar-neutrino puzzle.! In the MSW mechanism, there is
an effective potential visible only to electron neutrinos,
which is proportional to the electron density in matter
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in the charge-current basis |v,), lv#), where G is the
weak coupling constant, N(z) the electron density in
matter, E the energy of a neutrino, and 6 the vacuum
mixing angle.

Under the adiabatic condition that the variation of
N (t) over an oscillation length is very small, a number of
authors have performed analytic treatments of Eq. (1)
(Refs. 4—8). In particular, the exact solutions of (1) were
obtained (i) in the case of linearly varying density by Hax-
ton’ and Petcov!® and (ii) in the case of exponentially
varying density by Kaneko,!! Pizzochero,® Toshev,!? and
Petcov.’

However, we will pay attention to the nonadiabatic
case with arbitrarily varying density. Because (1) is a
Schrddinger-type equation, the high-order adiabatic ap-
proximation method'>'* suggested in studying Berry’s
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and substituting it into (1), we obtain
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and gives an additional contribution to the mass-squared
value. It results in a resonance oscillation of electron
neutrinos to muon neutrinos.

All the discussions about this mechanism working in
practice depend on the solutions of the neutrino-
oscillation equation'—3
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phase by the author is naturally used to approach it.

Following the discussion in Refs. 13 and 14 we first
solve the eigenequation of the matrix in (1), obtaining the
eigenvalues
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respectively, where 6(¢) is determined by
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Cu(=(—D*C;(6(Dexp[(—1)2ia(n)] ,
jk=12; js*k, (6

where

a(t)=%fot[)»z(t')—)»l(t’)]dt'za(N(t)) .
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Integrating (6) by parts, we have
Ci(t)—C,(0)=R;(1)—R,(0),
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where A(1)=21[A,(t)—A,(1)]. By introducing a continu-

ous real parameter A for each term ~0(2)/A(¢), Eq. (7)

can be rewritten as
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At the end of the calculation, we will take A=1. This ap-
proach is similar to that in time-dependent perturbation
theory of quantum mechanics. We express C,(t) as a
power series in A,
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and substitute it into (8), obtaining an equality between
two power series in A. For this equality to be satisfied, we
have
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Then, we successively obtain each order adiabatic ap-
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proximate solution of the neutrino-oscillation equation
(1). In practice, if the conditions
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are satisfied, then we can neglect all the terms CJ?’)
(P’ > P) and the p-order adiabatic approximations of the
solution of (1) are valid for the problem.

Because of (5), the probability for observing an electron
neutrino after traveling a distance L in matter is

Pv,—v,)=| <Ve | d’(L)) |2
=|C, |%os?8(L)+ | C, | %sin*6(L)
+Re[C¥(L)C,(L)sin26(L)e ~2P] . (12)

Under the adiabatic condition 6(t)/A(r) <<1, the first-
order approximate solution C;(¢)=C;(0) (i =1,2) ob-
tained from (10) gives

P.y(v,—v,)=cos’[6(0)+6(L
+cos?[6(0)—

)]sin%a(L)
6(L)]cos’a(L) , (13)

which was also obtained in Ref. 2.

For the electron neutrino starting at very high electron
density [6(0)=m/2 because of N (t =0)— oo ] in the Sun,
the initial conditions for (1) are

cllo)=0, cP0)=1, cl"0)=0
m=1,23,...). (14)

According to (10), we obtain

c®m=0, cPl=1,

Ccl(r)=exp[ —2ia(1)16(2) /a(t) , CL(1)=0,
CPl(t)=exp[ —2ia(1)][6(2) /a(t)? —d(1)6(2) /a(t)®] ,

ClH(t)=—6(1)2/a(1)?

Under the conditions

NOP/[ADP «<1, (16)

the probability of seeing an electron neutrino after traveling a distance L in matter of the Sun is

PPy, >v,)=sin?0(L)+ {6 2(L)[1+sin26(

D]+[AL)E(L) /A

—6(L)]sin®6(L)} /[4A(1)?] . (17

The last term of (14) shows a nonadiabatic effect on two-neutrino oscillations, which comes from the third-order ap-

proximate solution of (1).

In order to compare the above result with the results that have been obtained by others, we obviously calculate in two

cases N (t)=Ny+kt and N,(t)

. 1
PBl(v,—>wv,)=sin%@, ,(L)+
HJ - 1.2 8(1{2([4)

=Nyexp(—t/T,) by making use of (4) and (14), obtaining

—tanZZGI,Z(L){ 1 +Sin291,2(L)[ 1 —Cot291,2(L)+tan261,2(L)]} 5 (18)

where 0, ,(1)=0(N, ,(t)) and a ,()=a(N ,(1)), respectively.
The method used in this paper will be used to study the nonadiabatic corrections to the adiabatic transition of three-

neutrino oscillations in matter. !
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