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Universal scaling of work statistics in conformal field theory models
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We systematically study the work statistics for quantum phase transition. For a quantum system approached
by an anisotropic conformal field theory near the critical point, the driving protocol is divided into three different
regimes for different quench rates, which reflects the competition between the frozen time and the quench
timescale. In each regime, we find universal scaling behaviors in work statistics (after renormalization). It is
shown that the critical exponents are determined by the space-time dimension d , the dynamical critical exponent
z, the correlation-length exponent ν, and the power-law protocols. These universal scalings in nonequilibrium
processes may be found in quantum phase transition by measuring the Loschmidt echo or the Ramsey interfer-
ometry.
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I. INTRODUCTION

In the past decades, quantum quench across the critical
point of quantum phase transition attracted much attention
both in theories and experiments [1–9], since universal scal-
ing behavior may arise during nonequilibrium processes.
Surprisingly, the recent studies have provided a panoramic
view of the process: from extremely slow to extremely fast
quench (FQ) rates [10–12]. Basically, the driving protocol
is divided into three different regimes according to differ-
ent quench rates. In the slow quench regime, the creation
of excitations (topological defects) is usually described by
the Kibble-Zurek (KZ) mechanism [13,14] which uncovers
the nonadiabatic effect near the critical point. In the fast
regime, recent holographic studies [15] also revealed scaling
behavior of the renormalized quantities, which is later shown
to be universal for quantum field theories flowing from an
ultraviolet (UV) fixed point (described by the conformal field
theory) [16–18]. In the instantaneous regime, the universal
relaxation process to a critical Hamiltonian from a noncritical
one was argued [19]. Importantly, it was explicitly shown in
Refs. [10,11] that scaling behavior of (renormalized) quanti-
ties smoothly interpolates between different regimes with one
quench protocol in free scalar and fermion field theories.

The above studies mainly focused on the scaling behavior
of the expectation of observables. Nevertheless, due to quan-
tum uncertainty, quantum fluctuations characterized by the
cumulants of the excitations [5] and the trajectory work [6,7]
also exhibit universal scaling behaviors. In the two-point mea-
surement scheme, the trajectory work is defined as the energy
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difference between the initial and final projective measure-
ments [20–23]. As a result, the characteristic function of work
[the Fourier transform of the work distribution P(w)] χ (u)
reads

χ (u) =
∫

dwP(w)eiuw = Tr[eiuĤH(t f )e−iuĤ (ti )ρ̂], (1)

where ρ̂ denotes the initial state, Ĥ (ti ) and ĤH(t f ) denote
Hamiltonians in the Heisenberg picture corresponding to
the initial time ti and final time t f of the quench. Then,
the nth cumulant of work κn is defined as the nth-order
derivative of ln χ (u), κn = ∂n ln χ (u)/∂ (iu)n. In analog to
the partition function encoding essential information about
an equilibrium state, the work statistics encodes essential
information about the fluctuations in the nonequilibrium
process. It allows us to understand the emergence of irre-
versibility in stochastic thermodynamics (via the fluctuation
relations [23–27]). Meanwhile, it is related to other quantities
employed to study the nonequilibrium process for quan-
tum many-body systems like the Loschmidt echo [28,29],
the Ramsey interferometry [30], and the dynamical quantum
phase transition [6,31,32].

However, the close link between the two seemingly irrele-
vant research fields (stochastic thermodynamics and quantum
phase transition) is uncovered through the discovery of
the universal scaling of work statistics. The conclusions in
Ref. [6] are far from satisfactory because they are based on the
quasiparticle picture and only applicable for the slow-quench
case. In this paper, we resolve these problems by presenting
a panoramic description of the universal scaling behavior of
the work cumulants in all three regimes, which implies the
competition between the frozen time (KZ mechanism) and
the quench timescale. The symmetries of the anisotropic con-
formal field theory near the critical point make sure of the
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FIG. 1. Two cases for quenches in quantum phase transi-
tion. (a) E0 � �. Instantaneous quench (IQ) regime, fast quench
(FQ) regime, and Kibble-Zurek (KZ) regime. tKZ ∝ E−1

0 (E0δ)1/(zνr).
(b) E0 > �. Instantaneous quench (IQ) regime, nonuniversal (NU)
regime, and Kibble-Zurek (KZ) regime.

universality of the scaling behaviors. Compared with previous
results [6] in the quasiparticle picture, our results are obtained
by using the dimensional analysis and are thus universal.
Moreover, we give a clear description of the renormalization
procedure in nonequilibrium processes. Actually, similar to
the minimal subtraction scheme, the divergent part of quan-
tities is renormalized by subtracting its value in the adiabatic
limit (sudden quench limit) for the UV renormalization [in-
frared (IR) renormalization]. The higher order corrections
(cutoff dependent) may arise in some cases. Finally, our ob-
servations are explicitly verified in an exactly solvable model:
a scalar field with changing mass.

II. QUANTUM QUENCH IN QUANTUM PHASE
TRANSITION

In a (second-order) quantum phase transition, the energy
gap Eg, the relaxation time τ , and the correlation length ξ [2,3]
scale as

Eg ∼ |λ|zν, τ ∼ |λ|−zν, ξ ∼ |λ|−ν, (2)

where λ measures the distance from the critical point. If λ

is controlled according to a time-dependent protocol which
starts from t = ti and ends at t = t f and changes over a
timescale δ [see Eqs. (3) and (4)], we call this quantum quench
when the initial state is the vacuum, regardless of the rate of
change [12]. We only consider global quench which keeps
the space-translation symmetry in the following. Also, we
assume the quench process passes through or approaches a
critical point at t = 0 and the protocol exhibits the power-law
behavior near the critical point:

λ(t ) ∼ (t/δ)r . (3)

Without loss of generality, it follows from Eqs. (2) and (3) that
the time-dependent energy-gap protocol Eg(t ) reads

Eg(t ) = E0 f (t/δ), (4)

where E0 denotes the energy scale, f (x) → |x|zνr when |x| →
0. We also assume f (x) is up to O(1) all the time.

Let � denote the UV cutoff scale. Then, according to
different quench rates, the protocols can be divided into three
different regimes in two cases: E0 � � or E0 > � (Fig. 1).
We only discuss the case E0 � � in the following (for the
case E0 > �, see [33]).

FIG. 2. The competition between the frozen time tKZ and the
quench timescale δ in the adiabatic-impulse-adiabatic stages. The
black solid line denotes the energy gap Eg. (a) the Kibble-Zurek
regime. A part of the protocol is inside the impulse stage (tKZ < δ).
(b) The fast quench regime. The whole protocol is inside the impulse
stage (tKZ > δ).

A. Kibble-Zurek regime

When the quench rate is slow compared to the initial gap
(E0δ � 1), many systems show KZ scaling [3,4,13,14,34,35].
The quench process can be approximated by the adiabatic-
impulse-adiabatic stages [see Fig. 2(a)]. Because the quench
rate is slow, the quench process is adiabatic unless the adia-
batic condition

1

Eg(t )2

dEg(t )

dt
� 1 (5)

is broken near the critical point (i.e., in the impulse stage)
due to the zero-energy gap. The boundaries of the impulse
stage are at times t = ±tKZ (frozen time), which follows from
Eqs. (4) and (5), and reads

tKZ ∝ E−1
0 (E0δ)

zνr
1+zνr . (6)

Then, the corresponding correlation length ξKZ and energy gap
EKZ read

ξKZ ∼ |λ(tKZ)|−ν ∼ δ
νr

1+zνr , (7)

EKZ = Eg(tKZ) ∼ δ− zνr
1+zνr . (8)

If the unique length scale in the impulse stage is ξKZ, the ex-
pectation value of a given operator Ô� (which are independent
of λ) scales as powers of ξKZ [12],

〈O�〉re ∼ ξ−�
KZ , (9)

where the subscript re denote quantities after renormalization
(see the next section) and � is the scaling dimension of the
operator Ô�(t ). In other words:

〈O�〉re ∼ δ− �νr
1+zνr . (10)
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The energy of the final state 〈H (t )〉r should be proportional
to the final energy gap. When the process ends in the adiabatic
stage, Eg(t ) ∼ E0, we have

〈H (t )〉re ∝ Vd−1E0ξ
−(d−1)
KZ ∼ δ− (d−1)νr

1+zνr (11)

by using the dimensional analysis, where d is the space-time
dimension, Vd−1 is the volume of the system. Similarly for
work statistics [6], the nth-order cumulant work moment κn is
obtained as

(κn)re ∝ Vd−1En
0 ξ

−(d−1)
KZ ∼ δ− (d−1)νr

1+zνr . (12)

When the process ends in the impulse stage, Eg(t ) ∼ EKZ, we
have

(κn)re ∝ Vd−1En
KZξ

−(d−1)
KZ ∼ δ− (d−1+nz)νr

1+zνr . (13)

It is emphasized that Eqs. (12) and (13) are obtained by using
the dimensional analysis regardless of the independent quasi-
particle picture in Ref. [6]. Moreover, the KZ scaling is closely
related to the conformal field theory where the exponents
z, ν, δ imply the scale symmetry of the field.

B. Fast quench

As the quench timescale δ increases, both EKZ and the
range of the impulse stage increase. When the whole driv-
ing protocol is included in the impulse stage (tKZ > δ), the
timescale for the nonadiabatic effect changes from tKZ to δ

and the KZ scaling is invalid [see Fig. 2(b)]. Here, this regime
is called the FQ regime, E0δ � 1 � �δ, and we show new
scaling behavior in the following.

Because the system is always near the critical point in
the FQ regime, we evaluate quantities by using perturbation
expansion. In particular, consider a generic action near the
critical point:

S[φ̂, Ô�] = SCFT[φ̂, Ô�] −
∫

dt
∫

dd−1xλ(t )Ô�(x, t ).

(14)
Here λ(t ) = λ0h(t/δ) is the protocol which starts from λi =
λ0h(ti/δ) and ends at λ f = λ0h(t f /δ), Ô�(x, t ) is in the
Heisenberg picture, SCFT is the anisotropic conformal field
theory action (which has scale, translation, and spatial rotation
symmetries) [36] describing the UV fixed point, and Ô� is a
relevant operator (� < d) with the scaling dimension �. We
assume g(x) is up to O(1) all the time for simplicity. Then,
according to Refs. [16,17], 〈O�(t )〉 is calculated by using
linear response theory (h̄ = 1) as

〈O�(x, t )〉 = 〈O�(x)〉λi − iλ0

∫ t

ti

dt ′
∫

dd−1x′h(t ′/δ)

× 〈[ÔI
�(x, t ), ÔI

�(x′, t ′)]〉λi + · · · , (15)

where ÔI
�(x, t ) = exp[iĤ (t0)(t − t0)]Ô�(x) exp[−iĤ (t0)(t −

t0)] and the expectation values on the right-hand side are eval-
uated in the initial ground state λi. Due to the symmetries of
the action, the two-point function behaves as (for the detailed
calculation, see Appendix A)

〈[ÔI
�(x, t ), ÔI

�(x′, t ′)]〉λi

= 1

|x − x′|2�
g

( |x − x′|z
t − t ′ , λi|x − x′|d−1−�+z

)
. (16)

Since the quench process is inside the impulse stage, the
characteristic time should be δ. Then according to Eqs. (2)
and (4), the characteristic length and energy read ξQ ∼ δ1/z,
EQ ∼ δ−1. It follows from Eq. (16) that

g

( |x − x′|z
t − t ′ , λi|x − x′|d−1−�+z

)

= g

( |x − x′|z
t − t ′ , 0

)
+ O

(
λ0ξ

d−1−�+z
Q

)
(17)

and

〈O�〉re ∼ λ0δξ
d−1−2�
Q ∼ δ

d−1−2�+z
z . (18)

Thus, the results in Refs. [16,17] are a special case (z = 1) of
ours. Finally, for work statistics, following the similar proce-
dure, we have (see Appendix B)

(κn)re ∼ δ
d−1−2�+2z−nz

z . (19)

We would like to emphasize that this approximation is invalid
when λ0δ

(d−1+z−�)/z > 1, which is consistent with the con-
dition E0δ > 1 since E0 ∼ |λ0|zν and ν(d − 1 + z − �) = 1
(see Appendix A).

C. Instantaneous quench

The fast quench scaling is applicable when only the low-
energy modes are excited, i.e., � � E0. When � � E0, the
quench rate is fast compared to all physical scales. The evo-
lution of the system can be approximated by its short-time
solution and we call this the instantaneous quench regime
(IQ). Then, under some conditions, we have (Appendix C)

〈O�〉 − 〈O�〉su ∼ δ2, (20)

κn − (κn)su ∼ δ2, (21)

where the subscript su denotes quantities in the sudden quench
limit.

In short, our above analysis shows universal scaling be-
haviors of work statistics [Eqs. (12), (13), (19), (21)] in three
different regimes (KZ, FQ, and IQ regimes). This is illustrated
in Fig. 3 by the exact solution of the scalar field with chang-
ing mass, which is also studied analytically in the following.
In the KZ regime, the frozen time determined the universal
scaling behavior and work statistics exhibits different scal-
ing behaviors in the two cases (quantum quench ends in the
impulse stage or the adiabatic stage), while Ô� exhibits the
same scaling behavior. The reason is that the energy gap
is λ dependent while Ô� is not. The change from the KZ
regime to the FQ regime is due to the competition between
the frozen time and the quench time [see Fig. 1(a)]. In the
FQ regime, as a result of the symmetries of the anisotropic
conformal field, the universal scaling behavior is determined
by the scaling dimension of the physical quantities. The above
scaling behaviors are applicable when only the low-energy
modes are excited, i.e., � � E0, which is broken in the IQ
regime.
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TABLE I. The first and second cumulants of work for a free field with changing mass in the KZ and FQ regimes.

Kibble-Zurek regime Fast quench regime

d = 5 d = 4 d = 3 d = 5 d = 4 d = 3

D−1(κ1)re, t f = 0 0.014m5/2/δ5/2 0.017m2/δ2 0.030m3/2/δ3/2 0.052m4/δ −m4[0.063 ln(�δ) + 0.025] −0.13m4δ

D−1(κ2)re, t f = 0 0.032m3/δ3 0.030m5/2/δ5/2 0.039m2/δ2 0.064m4/δ2 0.10m4/δ −m4[0.13 ln(�δ) + 0.050]
D−1(κ1)re, t f → ∞ 0.051m3/δ2 0.080m5/2/δ3/2 0.16m2/δ 0.010m4/δ 0.18m4 0.52m4δ

D−1(κ2)re, t f → ∞ 0.13m4/δ2 0.22m7/2/δ3/2 0.48m3/δ 0.016m4/δ2 0.21m4/δ 0.37m4

III. RENORMALIZATION

Due to the divergence (UV or IR) of the field theory,
the physical quantities should be renormalized [37]. In this
section, we discuss the renormalization of 〈O�〉 as an exam-
ple. For other quantities, the procedure of renormalization is
applied straightforwardly. When E0 � �, in the KZ and FQ
regimes, 〈O�〉 is divided into the sum of four parts:

〈O�〉 = 〈O�〉ad + 〈O�〉hi + 〈O�〉re + 〈O�〉ig, (22)

where 〈O�〉ad denotes the zeroth-order adiabatic contribution,
〈O�〉hi denotes the higher-order adiabatic contribution which
is UV divergent, 〈Ô�〉re is independent of � (called renormal-
ized quantity), and 〈O�〉ig vanishes when � → ∞.

Due to the adiabatic perturbation theory [35,38,39], when
λ(t ) − λ(ti ) ∼ (t − ti )r/δr and λ(t ) − λ(t f ) ∼ (t − t f )r/δr ,
the leading order of 〈O�〉hi is δ−2r (δ−r) if Ô� commutes
with Ĥ (t f ) (or not). For consistency with the last section,
〈O�〉hi only appears when its order is lower than the order
of 〈O�〉re, i.e., �rν/(1 + zνr) > r (�rν/(1 + zνr) > 2r) in
the KZ regime and (2� − d + 1 − z)/z > r ((2� − d + 1 −
z)/z > 2r) in the FQ regime [4,6,35,40]. The independence of

FIG. 3. The first and second cumulants of the work (absolute
value) as a function of the quenching rate for a scalar field with
time-dependent mass. The parameters are E0 = m = 0.1, � = 10.
(a), (c) t f = 0. (b), (d) t f → ∞. The solid lines denote (κn)re in
the Kibble-Zurek regime and fast-quench regime and (κn)su − κn in
the instantaneous quench regime. The dashed lines denote the fitting
curves.

〈O�〉re on �/E0 reflects the anisotropic conformal symmetries
under translation, spatial rotation, and dilation, which enables
us to obtain the universal scaling of renormalized quantities.

The above observation is valid when d − 1 − 2� + z < 0.
When d − 1 − 2� + z � 0, in the FQ regime, the systems ex-
hibits IR divergence [11,17,18]. Hence, in contrast to Eq. (22),
we choose another type of renormalization,

〈O�〉 = 〈O�〉su + 〈O�〉in + 〈O�〉re + 〈O�〉ig, (23)

where 〈O�〉in ∼ δ2 corresponds to the scaling behavior in the
instantaneous regime. Also, for consistency with the results
in the last section, 〈O�〉in ∼ δ2 only appears when its order
is lower than the order of 〈O�〉re, i.e., (d − 1 − 2� + z)/z >

2 [40].
It is concluded that the divergent part of the quantities is

renormalized by subtracting its value in the adiabatic limit
(sudden quench limit) for the UV renormalization (IR renor-
malization).

IV. EXAMPLE

A lot of insight into this problem can in fact be obtained
by looking at field theories with time-dependent parameters
whose time evolution is exactly solvable, e.g., a free scalar
field with changing mass in the momentum space and the
Schrödinger picture

Ĥ (t ) = Vd−1

2(2π )d−1

∫
k<�

dd−1k
[
P̂2

k + ωk (t )2Q̂2
k

]
(24)

with the canonical quantization [Q̂k, P̂k′] = iδd−1(k − k′),
where the relativistic dispersion relation reads ωk (t ) =√

k2 + m(t )2 (speed of light c = 1), k2 = k2
1 + k2

2 + · · · +
k2

d−1, and m(t ) denotes the changing mass. Hence, the energy-
gap protocol is Eg(t ) = ωk=0 = m(t ) and the critical point is
at m(t ) = 0.

The characteristic function χ (u) of this system with the
initial ground state is analytically solved and results can be
found in Refs. [41–43] (for detailed calculation, see Appendix
D). Here, for a specific protocol,

m(t )2 = m2[1 − cosh−2(t/δ)], (25)

we obtain an exact solution for arbitrary quench rates (λ(t ) =
m(t )2/m2, z = 1, ν = 1/2, r = 2,� = d − 2). And for sim-
plicity, we discuss two cases: (1) ti → −∞, t f → ∞ and (2)
ti → −∞, t f = 0.

We list the analytical results of the first and second work
cumulants (renormalized) in KZ and FQ regimes for d =
5, 4, 3 in Table I. Here, D ≡ Vd−1�d−2/(2π )d−1, �d−2 ≡
2(2π )(d−1)/2/�[(d − 1)/2] is the solid angle in d − 1 spatial
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dimensions, and �(s) is the gamma function. Moreover, in
the IQ regime, the scaling behavior κn − (κn)re ∼ δ2 is also
obtained (see Appendix D). In Fig. 3, we show the exact
results (solid lines) and the fitting curves (dashed lines) in
different cases. These results all verify our predictions in
Eqs. (12), (13), (19), and (21).
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APPENDIX A: ANISOTROPIC CONFORMAL
FIELD THEORY

In our paper, the anisotropic conformal field theory means
the field action is invariant under anisotropic scale transfor-
mation, translation, spatial rotation which form a closed Lie
algebra [36]. For the anisotropic scale symmetry, the field
action SCFT[φ, O�] is invariant under the following transfor-
mation:

x → cx, t → czt, φ → c�φ φ, O� → c�O�, (A1)

where z is the dynamical exponent, �φ,� are the scaling di-
mensions of the fields φ, O�, respectively [36,44]. In addition,
for Eq. (14), the total action S[φ, O�] is invariant if we also
transform λ as

λ → c�−d+1−zλ. (A2)

If the functional integration measure also has these symme-
tries, we have the following transformation of the correlation
function [44,45]:

〈ÔI
�(cx1, czt1)ÔI

�(cx2, czt2) · · · ÔI
�(cxn, cztn)〉c�−d+1−zλ

= c−n�〈ÔI
�(x1, t1)ÔI

�(x2, t2) · · · ÔI
�(xn, tn)〉λ. (A3)

Since the total action S[φ, O�] (for fixed λ) is also invariant
under translation and spatial rotation, we have [36,44,45]

〈[ÔI
�(x, t ), ÔI

�(x′, t ′)]〉λ

= 1

|x − x′|2�
g

( |x − x′|z
t − t ′ , λ|x − x′|d−1−�+z

)
. (A4)

Thus, both the higher order corrections in Eqs. (15) [16]
and (17) are up to the order O(λ0δ

(d−1−�+z)/z ). Moreover,
from Eq. (A1), the correlation length behaves as

ξ → cξ . (A5)

Comparing Eqs. (A2) and (A5) with Eq. (2), we have c =
c−ν(�−d+1−z), i.e., ν(d − 1 + z − �) = 1 which is also found
in Refs. [4,7,46,47].

APPENDIX B: WORK STATISTICS IN THE FAST QUENCH
REGIME

In the FQ regime, by using the perturbation theory, from
Eq. (14), we have [48]

ln χ (u) = iu(λ f − λi)Vd−1〈O�〉c + iu
(
λ2

f − λ2
i

)
Vd−1

×
∫ ∞

−∞

dω

2π

G>
c (ω)

ω
+ Vd−1

×
∫ ∞

−∞

dω

2π

1 − eiuω

ω2
A(ω)G>

c (ω) + O(λ3), (B1)

where the subscript c denotes that the quantities are evaluated
in the ground state λ = 0 (critical point) and only connected
diagrams are included,

A(ω) =
∣∣∣∣
∫ t f

ti

dt λ̇(t )eiωt

∣∣∣∣
2

, (B2)

and

G>
c (ω) =

∫ ∞

−∞
dsG>

c (s)eiωs, G>
c (s)

= (−i)2
∫

dd−1x〈ÔI(x, t )ÔI(0, 0)〉c. (B3)

Then, from Eq. (B2), it is straightforward to obtain that

A(ω) = A0(ω) ≡
{

(λ f − λi )21{0}(ω) adiabatic limit
(λ f − λi )2 sudden quench limit,

(B4)
where

1{0}(ω)

{
1 ω = 0
0 ω �= 0 (B5)

is the indicator function. According to Eqs. (22), (23), (B1),
and (B4), we have

(ln χ (u))re ≈ Vd−1

∫ ∞

−∞

dω

2π

1 − eiuω

ω2
[A(ω) − A0(ω)]G>

c (ω).

(B6)
Finally, because G>

c (ω) ∼ δξ d−1−2�
Q [Eqs. (16), (17),

and (B3)], ω ∼ δ−1, and A(ω) ∼ O(1) [Eq. (B2)], we
have

(ln χ (u))re ∼ δ
d−1−2�+2z

z (B7)

and

(κn)re ∝ Vd−1En−1
Q λ2

0δξ
d−1−2�
Q ∼ δ

d−1−2�+2z−nz
z . (B8)

For a scalar field with changing mass [Eq. (24)], from
Eqs. (25), (B2), and (B3), we have

A(ω) =
∣∣∣∣
∫ t f

−∞
dt λ̇(t )eiωt

∣∣∣∣
2

= 16

∣∣∣∣∣
∞∑

l=1

l2

l + iωδ/2
(−η)l

∣∣∣∣∣
2

,

(B9)

where η = e2t f /δ and

G>
c (ω) = −Dm4

8

∫ �

0
dkkd−42πδ(ω − 2k). (B10)

144204-5



ZHAOYU FEI AND C. P. SUN PHYSICAL REVIEW B 103, 144204 (2021)

The series converges when t f < 0, but our following results
[except Eq. (B14)] are still valid when t f > 0 by using ana-
lytic continuation. Then, we obtain

(ln χ (u))re

= Dm4

2

∫ �

0
dkkd−6(e2iuk − 1)

×
{∑

l,l ′
l2l ′2(ll ′+k2δ2 )

(l2+k2δ2 )(l ′2+k2δ2 ) (−η)l+l ′ d � 5∑
l,l ′

[ l2l ′2(ll ′+k2δ2 )
(l2+k2δ2 )(l ′2+k2δ2 ) − ll ′](−η)l+l ′ d < 5.

(B11)

Let �/m → ∞, from Eq. (B11), we have

(κ1)re = Dm4 ×

⎧⎪⎪⎨
⎪⎪⎩

πη2(η3+5η2−5η+15)
30(η+1)5 δ−1 d = 5

−η2

(η+1)4 ln(�δ) + C1 d = 4
πη2(η−3)
6(η+1)3 δ d = 3

(B12)

and

(κ2)re = 2Dm4 ×

⎧⎪⎨
⎪⎩

[
η2(η−1)2

(η+1)6 ln(�δ) + C2
]
δ−2 d = 5

πη2(η3+5η2−5η+15)
30(η+1)5 δ−1 d = 4

−η2

(η+1)4 ln(�δ) + C1 d = 3,

(B13)
where

C1 =
∑
l,l ′

ll ′(l ln l ′ + l ′ ln l )

l + l ′ (−η)l+l ′ ,

C2 = −
∑
l,l ′

l2l ′2(l ln l + l ′ ln l ′)
l + l ′ (−η)l+l ′ . (B14)

When t f = 0, numerical calculation of Eq. (B14) shows C1 =
−0.025 and C2 = 0.032. When t f → ∞, from Eq. (B13), we
have

(κ2)re = 2Dm4 ×
⎧⎨
⎩

C2δ
−2 d = 5

π
30δ−1 d = 4
C1 d = 3.

(B15)

Here, because

A(ω) = π2ω4δ4

sinh2(πωδ/2)
, (B16)

in this case [Eq. (B2)], the calculation of (κ2)re shows C1 =
3ζ (3)/(2π2) and C2 = 15ζ (5)/(2π4).

APPENDIX C: SHORT-TIME EVOLUTION

In the IQ regime, the evolution of the system can
be approximated by its short-time solution. When δ →
0, t1 = s1δ, t0 = 0, the time evolution operator Û (t1, t0) =
T e−i

∫ t1
0 dt[Ĥ0+λ(t )Ĥ1] is approximated as

Û (t1, t0) = 1 − iδ
∫ s1

0
ds[Ĥ0 + λ(sδ)Ĥ1]

− δ2
∫ s1

0
ds

∫ s

0
ds′[Ĥ0 + λ(sδ)Ĥ1]

× [Ĥ0 + λ(s′δ)Ĥ1] + O(δ3), (C1)

where T denotes the time-ordered operator. For further
discussion, let |En(t )〉 denote the instantaneous eigenstate
of the time-dependent Hamiltonian, [Ĥ0 + λ(t )Ĥ1]|En(t )〉 =
En(t )|En(t )〉, |E0(t )〉 denote the ground state. Then, we have

〈En(t1)|Ĥ1|E0(t0)〉 = En(t1) − E0(t0)

λ f − λi
〈En(t1)|E0(t0)〉. (C2)

Thus, let αn = 〈En(t1)|Û (t1, t0)|E0(t0)〉 and α0
n =

〈En(t1)|E0(t0)〉 denote the transition probability amplitude for
the IQ and sudden quench; it follows from Eqs. (C1) and (C2)
that

αn = α0
n

{
1 − iδs1E0(t0) − iδ

En(t1) − E0(t0)

λ f − λi

×
∫ s1

0
ds[λ(sδ) − λi]

}

− δ2
∫ s1

0
ds

∫ s

0
ds′〈En(t1)|[Ĥ0 + λ(sδ)Ĥ1]

× [Ĥ0 + λ(s′δ)Ĥ1]|E0(t0)〉 + O(δ3). (C3)

Thus, it is easy to check that if an operator Â satisfies
〈Em(t1)|Â|En(t1)〉(α0

m)∗α0
n = 〈En(t1)|Â|Em(t1)〉(α0

n )∗α0
m (∗ de-

notes the complex conjugate), we have

〈A〉 − 〈A〉su ∼ δ2, (C4)

where 〈A〉su = 〈E0(t0)|Â|E0(t0)〉.

APPENDIX D: THE CHARACTERISTIC FUNCTION OF
WORK FOR A FREE SCALAR FIELD WITH CHANGING

MASS

Because the Hamiltonian of the field [Eq. (24)] is a
quadratic form of P̂k and Q̂k, we obtain the cumulant char-
acteristic function of work ln χ (u) by using the representation
of the Lie group [43] as

ln χ (u) = D

2

∫ �

0
dkkd−2{iu[ωk (t f ) − ωk (ti )]

− ln[1 + nk − nke2iuωk (t f )]}, (D1)

where D ≡ Vd−1�d−2/(2π )d−1, �d−2 ≡
2(2π )(d−1)/2/�[(d − 1)/2] is the solid angle in d − 1 spatial
dimensions, �(s) is the Gamma function,

nk = ωk (t f )

4ωk (ti )

[
yk (t f )2 + ȳk (t f )2 + ẏk (t f )2 + ˙̄yk (t f )2

ωk (t f )2

]
− 1

2
,

(D2)
the overhead dot denotes the time derivative, and yk (t ), ȳk (t )
are the general solutions of the following equation:

ÿ(t ) + ωk (t )y(t ) = 0, (D3)

with the initial condition {yk (ti ), ẏk (ti ), ȳk (ti), ˙̄yk (ti )} =
{1, 0, 0, ωk (ti )}. Then, we have

κ1 = μ + D
∫ �

0
dkkd−2ωk (t f )nk,

κ2 = D
∫ �

0
dkkd−22ωk (t f )2nk (1 + nk ), (D4)
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where

μ = D

2

∫ �

0
dkkd−2[ωk (t f ) − ωk (ti )]. (D5)

It follows from Eq. (D4) that nk denotes the average number of
the excited bosons in mode k after quench and μ denotes the
work done without any excitation (i.e., zeroth-order adiabatic
contribution).

For the specific protocol [Eq. (25) with ti → −∞], we
obtain the following results:

(1) KZ regime (mδ � 1). In this regime, the characteristic
momentum is kc ∼ √

m/δ � m [10]. Hence, from the exact
solution of Eq. (D3) (Appendix E), when t f = 0, we have

nk ≈
√

mδe−3πq2
k /4(eπq2

k + 1)

4πqk

√
q2

k + mδ

[∣∣∣∣�
(

3

4
+ iq2

k

4

)∣∣∣∣
2

+q2
k

4

∣∣∣∣�
(

1

4
+ iq2

k

4

)∣∣∣∣
2
]
, (D6)

where qk = k
√

δ/m. From Eqs. (D6) and letting �
√

δ/m →
∞ (only low-energy modes can be excited), we have

(κ1)re = D
(m

δ

)d/2
×

⎧⎨
⎩

0.014 d = 5
0.017 d = 4
0.030 d = 3

(D7)

and

(κ2)re = D
(m

δ

)(d+1)/2
×

⎧⎨
⎩

0.032 d = 5
0.030 d = 4
0.039 d = 3.

(D8)

Moreover, due to the power-law decay of Eq. (D6) (nk →
1/(64q8

k ) when qk → ∞), we cannot let �
√

δ/m → ∞ when
(d − 1 + n)/2 � 4, which results in that (κn)hi ∼ δ−4 ln(�δ)
when (d − 1 + n)/2 = 4 and (κn)hi ∼ δ−4 when (d − 1 +
n)/2 > 4.

Similarly, when t f → ∞, according to Appendix E and
Eq. (D1), we have

nk ≈ e−πq2
k , (D9)

and

ln χ (u) = iuμ + D�[(d − 1)/2]

4π (d−1)/2

×
(m

δ

)(d−1)/2
Li(d+1)/2(e2ium − 1), (D10)

where Lin(s) = ∑∞
l=1 sl/ln is the polylogarithm function.

Hence, we have (κn)re ∼ (m/δ)(d−1)/2 for any n. Moreover,
due to the exponential decay of nk when k → ∞, we can let
�

√
δ/m → ∞ all the time, i.e., (κn)hi = 0, which is consis-

tent with the fact that dnλ(t )/dt n = 0 for any n when t →
±∞.

(2) Fast quench regime (mδ � 1 � �δ). Here, the
characteristic momentum is kc ∼ m � √

m/δ [10]. For
convenience of calculation, we use perturbation theory
to calculate ln χ (u) (see Appendix B). Then we have,

when t f = 0,

(κ1)re = Dm4 ×
⎧⎨
⎩

π
60δ−1 d = 5

− 1
16 ln(�δ) − 0.025 d = 4

− π
24δ d = 3

(D11)

and

(κ2)re = 2Dm4 ×
⎧⎨
⎩

0.032δ−2 d = 5
π
60δ−1 d = 4

− 1
16 ln(�δ) − 0.025 d = 3

(D12)

when t f → ∞,

(κ1)re = Dm4 ×
⎧⎨
⎩

π
30δ−1 d = 5
3ζ (3)
2π2 d = 4
π
6 δ d = 3

(D13)

and

(κ2)re = 2Dm4 ×

⎧⎪⎨
⎪⎩

15ζ (5)
2π4 δ−2 d = 5

π
30δ−1 d = 4
3ζ (3)
2π2 d = 3,

(D14)

where ζ (s) is the Riemann zeta function. Also, (κn)hi ∼
δ−4 ln(�δ) appears when d − 3 − n = 4 and (κn)hi ∼ δ−4 ap-
pears when d − 3 − n > 4. This is due to the fact that when
t f = 0 and ω → ∞, A(ω) → ω−4 [Eq. (B9)].

(3) Instantaneous quench regime (�δ � 1). In this
regime, according to Appendix E, we have, when t f → ∞,

nk ≈ m4δ2

k2 + m2
; (D15)

when t f = 0,

nk ≈ (k − √
k2 + m2)2 + (1 − 2 ln 2)m4δ2

4k
√

k2 + m2
. (D16)

Hence, from Eqs. (D15) and (D16), we have ln χ (u) −
(ln χ (u))su ∼ δ2 and κn − (κn)su ∼ δ2.

APPENDIX E: EXACT SOLUTIONS OF EQ. (D3)

According to Ref. [10,17], the general solutions of
Eq. (D3) [with the protocol Eq. (25)], uk (t ) and u∗

k (t ), read
(when ti → −∞)

uk (t ) = 2iωk (ti )δ[cosh(t/δ)]2α

B′
1B2 − B1B′

2

[
B2 2F1

(
a, b;

1

2
; − sinh2(t/δ)

)

+ B1 sinh(t/δ) 2F1

(
a+ 1

2
, b + 1

2
;

3

2
; − sinh2(t/δ)

)]
,

(E1)

with the initial conditions when t → −∞, {uk (t ), u∗
k (t )} →

{e−iωk (ti )t , eiωk (ti )t }, where

B1 = �(1/2)�(b − a)

�(b)�(1/2 − a)
, B′

1 = �(1/2)�(a − b)

�(a)�(1/2 − b)
,

B2 = �(3/2)�(b − a)

�(b + 1/2)�(1 − a)
, B′

2 = �(3/2)�(a − b)

�(a + 1/2)�(1 − b)
,

a = α + iωk (ti )δ/2, b = α − iωk (ti )δ/2,

α = 1 − √
1 − 4m2δ

4
, (E2)
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and

2F1(a, b, c; s) =
∞∑

n=0

(a)n(b)n

(c)n

sn

n!
(E3)

denotes the usual hypergeometric function, and (x)n = x(x +
1) · · · (x + n − 1) ((x)0 = 1). Thus, when t → 0, we have

uk (t ) → 2iωk (ti )δ

B′
1B2 − B1B′

2

(
B2 + B1

δ

)
. (E4)

And when t → ∞, we have

uk (t ) → 2iωk (ti )δ+1B1B2

B′
1B2 − B1B′

2

e−iωk (ti )δ + B′
1B2 + B1B′

2

B′
1B2 − B1B′

2

e−iωk (ti )δ.

(E5)
Moreover from Eq. (D2), we have

nk = ωk (t f )

4ωk (ti)

[
|uk (t f )|2 + |u̇k (t f )|2

ωk (t f )2

]
− 1

2
. (E6)
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