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Probing zero modes of a defect in a Kitaev quantum wire
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The Kitaev quantum wire (KQW) model with open boundary possesses two Majorana edge modes. When the
local chemical potential on a defect site is much higher than that on other sites and than the hopping energy, the
electron hopping is blocked at this site. We show that the existence of such a defect on a closed KQW also gives
rise to two low-energy modes, which can simulate the edge modes. The energies of the defect modes vanish to
zero as the local chemical potential of the defect increase to infinity. We develop a quantum Langevin equation to
study the transport of KQW for both open and closed cases. We find that when the lead is contacted with the site
beside the defect, we can observe two splitted peaks around the zero-bias voltage in the differential conductance
spectrum, whereas if the lead is contacted with the bulk of the quantum wire far from the the defect or the open
edges, we cannot observe any zero-bias peak.
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I. INTRODUCTION

The emergent Majorana fermion in condensed matter
system has attracted much attention for its novel non-Abelian
statistical property and potential application in topological
quantum computation [1–3]. The Kitaev quantum wire (KQW)
model with open boundary possesses two localized Majorana
edge modes at the two ends [4]. The realization of this
quantum wire model was also reported with the help of strong
spin-orbit coupling and Zeeman field in proximity to an s-wave
superconductor [5–9].

To detect the existence of the Majorana fermion in the quan-
tum wire, people can measure the differential conductance in
transport experiments [10–13]. It was predicted that there is a
zero-bias peak (ZBP) in the dI/dV profile in the topological
phase when the quantum wire is contacted with a normal
lead, and the height of the peak is 2e2/h at zero temperature.
Moreover, if there exists finite coupling between the Majorana
fermions at the two ends, this ZBP would split into two peaks
[12]. However, it was recognized that such feature of a single
ZBP is not an unambiguous evidence, because similar ZBP
may be also induced by different mechanisms, such as the
Kondo effect [14–18].

When the local chemical potential μp on a defect site is
much higher than that on other sites and the hopping energy,
the electron hopping is blocked at this site. Thus, the existence
of such a defect on a closed wire is similar to cutting off the
wire at this position and generating new boundaries. Such
a “cutoff” for a closed KQW also gives rise to a pair of
low-energy modes (we call them the defect modes) [19–21].
These defect modes have many similar properties to the
Majorana edge modes as follows:

(1) when the defect becomes “strong,” i.e., the chemical
potential μp of the defect becomes quite large, the energies of
the defect modes approach zero;

(2) the energies of the defect modes are gapped from the
bulk band of the quantum wire;

(3) the defect modes are superpositions of both electron
and hole modes with equal weight, localized around the defect
site.

If μp approaches infinity, electron hopping is fully blocked
and the quantum wire can be regarded as completely cut off,
thus the defect modes become Majorana edge modes. In this
sense, a close quantum wire with a defect is equivalent to a
homogenous open wire.

However, in practice, the strength of the defect is finite,
thus there remains a small energy splitting between the two
defect modes. In contrast, the energy splitting of Majorana
edge modes in an open wire is practically too small to be
observed even for a short chain [22]. Throughout this paper,
we call both the edge and defect modes the zero modes.

With the above understanding, in this paper, we study the
transport measurement in KQW for two kinds of configura-
tions, i.e., a homogenous open wire and a closed wire with a
defect. The detection of such zero modes induced by defect
also helps test the existence of Majorana fermions [23,24].
We derive a quantum Langevin equation to describe the
electrical current transport of the quantum wire contacted with
two normal leads, which could give exact numerical results
[22,25–28]. We obtain the differential conductance when one
of the leads is contacted with different sites of the quantum wire
[29]. We find that if the lead is contacted beside the defect, we
can observe two splitted ZBPs in the dI/dV profile. Moreover,
if the lead is contacted with other sites in the bulk of the chain
far from the defect or the open edges, we cannot observe any
ZBP, because the zero modes, both the edge and defect modes,
are localized.

We arrange our paper as follows. In Sec. II we give a
brief review of KQW. We give a demonstration of the energy
spectrum and spatial distribution of the edge and defect modes.
In Sec. III we derive a quantum Langevin equation for the
two contacts measurement setup and obtain the steady current
formula. In Sec. IV, we show the dI/dV profiles for different
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measurement configurations. Finally, we draw conclusions in
Sec. V. We leave some mathematical tricks and details of
derivation for the appendices.

II. ZERO MODES OF KQW

In this section, we present a brief review on KQW [4],
mainly in terms of fermion operators with respect to the normal
modes [30]. We present a basic analysis on the spectrum of the
energy modes of the quantum wire system. We show that the
existence of a defect also gives rise to localized zero modes,
which are similar to the Majorana edge modes under open
boundary condition.

The KQW is a one-dimensional tight-binding model plus a
nearest pairing term [4]. The Hamiltonian of the quantum wire
can be written as

Ĥw =
∑

i

J (d̂†
i d̂i+1 + d̂

†
i+1d̂i) − μd̂

†
i d̂i

− (�d̂
†
i d̂

†
i+1 + �∗d̂i+1d̂i). (1)

We denote d = (d̂1, . . . ,d̂N ,d̂
†
1, . . . ,d̂

†
N )T , where N is the

total number of the sites, and then we can rewrite Ĥw in a
compact matrix form,

Ĥw = 1

2
d† · H · d, H =

[
h p

p† −h

]
, (2)

where h and p are N × N matrices, and we omit a constant
energy shift here. For an open wire, we have

h =

⎡
⎢⎢⎢⎢⎢⎣

−μ J

J −μ
. . .

. . .
. . . J

J −μ

⎤
⎥⎥⎥⎥⎥⎦

,

p =

⎡
⎢⎢⎢⎢⎢⎣

0 −�

� 0
. . .

. . .
. . . −�

� 0

⎤
⎥⎥⎥⎥⎥⎦

. (3)

For the periodic boundary condition, we should add h1,N =
hN,1 = J and p1,N = −pN,1 = −� to the above matrices.

The eigenmodes of Ĥw can be obtained by diagonalizing
the matrix H. From p† = −p∗, h† = h, we can find that H has
the following property [31]:

Proposition. If ε is one eigenvalue of H with �V =
(v1, . . . ,vN ,w1, . . . ,wN )T as the eigenvector, then −ε is also
an eigenvalue, and the corresponding eigenvector is �V ′ =
(v∗

1 , . . . ,v
∗
N,w∗

1, . . . w
∗
N )T .

We also present a simple proof in Appendix A. This
property roots from the particle-hole symmetry and guarantees
that the eigenmodes of Ĥw appear as particle-hole pairs,

ψ̂μ =
∑

i

ϕμ
i d̂i + φμ

id̂
†
i ,

(4)
ψ̂†

μ =
∑

i

(φμ
i)

∗d̂i + (ϕμ
i)

∗d̂†
i := ψ̂ ′

μ,

where ψ̂ ′
μ := ψ̂†

μ can be regarded as the modes for holes.
But keep in mind that {ψ̂ ′

μ, ψ̂μ} �= 0 thus ψ̂ ′
μ and ψ̂μ are

not independent fermion modes. Therefore we can always
diagonalize the Hamiltonian into the following form:

Ĥw = 1

2
d† · H · d = 1

2

N∑
μ=1

εμψ̂†
μψ̂μ − εμψ̂μψ̂†

μ. (5)

A homogeneous open wire possesses two localized edge
modes with zero energy in the topological phase area |μ| <

2 |J |, but a homogeneous closed wire does not have such zero
modes [4]. If the local chemical potential μp on a defect site
(site-p) is much larger than that on other sites and than the
hopping energy J , the electron hopping is blocked at this site.
Thus a closed wire with a defect is similar to an open wire.

We demonstrate the energy spectrum of the quantum wire
for both closed and open configurations in Fig. 1. The existence
of a defect in a closed wire gives rise to two defect modes
in the superconducting gap separated from the bulk band. We
also see that there are two high-energy modes with εμ � ±μp

as the by-product which we do not concern in this paper.
Moreover, the energies of the defect modes approach to zero
when μp tends to infinity (Fig. 2).

We also show the spatial distributions of the edge and defect
modes in Figs. 3(a)–3(d) [namely, the coefficients ϕμ

i and φμ
i

in Eq. (4)]. If we regard the defect site as a new “boundary”

(a () b)

FIG. 1. (Color online) Demonstration of the energy spectrum of electrons and holes for (a) homogenous open quantum wire (b) closed
quantum wire with a defect (μp = 10). The existence of a defect gives rise to zero modes similar to open quantum wire. The chain has 30 sites,
and other parameters are � = 0.5, μ = 0.1.
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FIG. 2. (Color online) Mode energy of the defect mode in a
closed wire (N = 30). We set J = 1, � = 0.6, μ = 0.1. The energy
of defect mode decreases when μp increases.

of the quantum wire [dashed line in Figs. 3(c) and 3(d)], we
see that the spatial distribution shapes of the defect modes in
a closed quantum wire are almost the same with that of the
Majorana edge modes in an open wire shown in Figs. 3(a) and
3(b). Therefore, in this sense, a close quantum wire with a
strong defect is equivalent to a homogenous open wire.

FIG. 3. (Color online) Spatial profile [ϕμ
i and φμ

i in Eq. (4)] of
[(a) and (b)] edge mode in homogenous open wire and [(c) and (d)]
defect mode in closed wire. Panels (e) and (f) show the spatial profile
of the Majorana operator γ̂μ,± [gμ

i and hμ
i in Eq. (6)]. The chain has

30 sites, and we set J = 1, � = 0.5, μ = 0.1. There is a defect with
μp = 10 at the 10-th site (represented by the green vertical line).

For these localized zero modes induced by defect, we can
also represent them by the Majorana operators [4],

γ̂μ,+ := ψ̂μ + ψ̂†
μ =

∑
i

[
gμ

i d̂i + (
gμ

i

)∗
d̂
†
i

]
,

(6)
γ̂μ,− := −i(ψ̂μ − ψ̂†

μ) = −i
∑

i

[
hμ

id̂i − (hμ
i)

∗d̂†
i

]
.

We show the spatial distributions of γ̂μ,± for the defect
modes in Figs. 3(e) and 3(f) [gμ

i and hμ
i in Eq. (6)]. They

are also Majorana fermions, which are the antiparticles of
themselves, i.e., γ̂μ,± = [γ̂μ,±]†. With these notations, the
effective Hamiltonian for the low-energy modes can be written
as

Ĥlow = i

2

∑
μ

εμγ̂μ,+γ̂μ,−, (7)

where the summation includes the low-energy edge or defect
modes. For an open wire with finite length, or when |μp/J | is
not too large, εμ does not equal to zero exactly, and Eq. (7) is
often regarded as the coupling between the Majorana fermions
[4,12].

Practically, for a homogenous open wire, the energy
splitting of two edge modes decays so fast with the length
of the wire that we cannot observe this splitting even for a
quite short chain [22]. For the defect modes, μp must be quite
large (|μp/J | � 100) to make εμ � 0 (Fig. 2). This property
can be utilized to observe the splitting of the ZBP in the dI/dV

spectrum.

III. QUANTUM LANGEVIN EQUATION
AND STEADY CURRENT

In this section, we derive a quantum Langevin equation
to study the transport behavior of KQW contacted with two
electron leads and we obtain the formula for the steady current.

A. Quantum Langevin equation

We derive a quantum Langevin equation to study the
transport of this quantum wire [22,25,28]. The transport
measurement setup of the quantum wire is demonstrated in
Fig. 4. Our derivation here is valid for both the open and
closed quantum wire cases. We consider the quantum wire of
N sites coupled with two normal leads via electron tunneling
at site x,y (1 � x,y � N ), respectively. The total Hamiltonian
of the quantum wire and the leads can be written as

H = Ĥw + ĤB + ĤT , (8)

(a () b)

FIG. 4. (Color online) Two contacts transport measurement
setup for (a) a homogenous open wire (b) a closed wire with a defect.
The leads can be contacted with different sites.
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where Ĥw is shown in Eq. (1). ĤB is the Hamiltonian for the
two electron leads contacting with site x,y,

ĤB =
∑
kx

ωkx
ĉ
†
kx

ĉkx
+

∑
ky

ωky
ĉ
†
ky

ĉky
. (9)

HT describes the tunneling between the quantum wire and the
leads,

ĤT = d̂†
x	̂x + 	̂†

x d̂x + d̂†
y	̂y + 	̂†

y d̂y, (10)

where 	̂x = ∑
kx

gkx
ĉkx

.
We assume that the system evolves from t = 0, i.e., d̂i(t) =


(t)d̂i(t) and ĉkx
(t) = 
(t)ĉkx

(t), and at the initial time,
each lead stays at a canonical state, ρx ∝ exp[−βx

∑
(ωkx

−
μx)ĉ†kx

ĉkx
], where μx is the chemical potential and β−1

x = Tx

is the temperature for lead x.
We start from the Heisenberg equation [27],

∂t [
(t)Ô(t)] = δ(t)Ô(0) − i
(t)[Ô(t),H], (11)

where Ô(t) may be the operator ĉkx
(t) or d̂i(t). The equations

of motion for ĉkx
(t) and d̂x(t) are

∂t ĉkx
(t) = δ(t)ĉkx

(0) − i(ωkx
ĉkx

+ g∗
kx

d̂x),
(12)

∂t d̂x(t) = δ(t)d̂x(0) − i[Ĥw,d̂x] − i
∑
kx

gkx
ĉkx

.

We integrate the equation of ĉkx
(t) and obtain

ĉkx
(t) = 
(t)ĉkx

(0)e−iωkx t

− ig∗
kx

∫ t

0
dτ e−iωkx (t−τ )d̂x(τ ). (13)

Inserting it into the equation of d̂x(t) above, we obtain a
differential-integral equation,

∂t d̂x = δ(t)d̂x(0) − i[Ĥw,d̂x]

− iη̂x(t) −
∫ t

0
dτ Dx(t − τ )d̂x(τ ), (14)

where

η̂x(t) := 
(t)
∑
kx

gkx
ĉkx

(0)e−iωkx t ,

Dx(t) := 
(t)
∑
kx

|gkx
|2e−iωkx t . (15)

Here η̂x(t) is the random force and Dx(t) is the damping kernel.
These dissipation terms do not appear in the equations of d̂i(t)
for i �= x,y.

We can write down the quantum Langevin equation for
d = (d̂1, . . . ,d̂N ,d̂

†
1, . . . ,d̂

†
N )T in a compact matrix form,

∂td = δ(t)d(0) − iH · d − iη(t) −
∫ t

0
dτ D(t − τ ) · d(τ ).

(16)

Here D(t) = Dx(t) + Dy(t) is a diagonalized 2N × 2N matrix,
while η(t) = ηx(t) + ηy(t) is a vector of 2N dimension. The

elements of the damping matrix Dx(t) are

[Dx(t)]ij =

⎧⎪⎨
⎪⎩

Dx(t), i = j = x,

D∗
x (t), i = j = N + x,

0, others.

(17)

The elements of the random force vector ηx(t) are

[ηx(t)]i =

⎧⎪⎨
⎪⎩

η̂x(t), i = x,

−η̂
†
x(t), i = N + x,

0, others.

(18)

We should also notice that the integral limit in Eq. (16) can be
extended to ±∞ since we have d(t) = 
(t)d(t) and D(t) =

(t)D(t). Our derivation here is valid for both the open and
closed wire cases. For different quantum wire configurations,
we just need to change the matrix H [Eq. (2)].

B. Steady current formula

Formally, the above quantum Langevin equation (16) can
be solved exactly by Fourier transform,

f̃ (ω) =
∫ ∞

−∞
dt f̂ (t)eiωt , f̂ (t) =

∫ ∞

−∞

dω

2π
f̃ (ω)e−iωt .

The Fourier transform of Eq. (16) gives

−iωd̃(ω) = d(0) − iH · d̃(ω) − iη̃(ω) − D̃(ω) · d̃(ω).

Thus we have

d̃(ω) = G̃(ω)[d(0) − iη̃(ω)],
(19)

G̃(ω) = i[ω − H + iD̃(ω)]−1,

where G̃(ω) is the propagator matrix.
Here we introduce the coupling spectrum �x(ω) :=

2π
∑

kx
|gkx

|2δ(ω − ωkx
), and then the damping kernel Dx(t)

can be rewritten as

Dx(t) = 
(t)
∫ ∞

−∞

dω

2π
�x(ω)e−iωt ,

(20)

D̃x(ω) = 1

2
�x(ω) + iP

∫
dν

2π

�x(ν)

ω − ν
.

The real part of D̃x(ω) describes the dissipation while the
imaginary part is the self-energy correction. We denote
�̃(ω) := D̃ + D̃† as the dissipation matrix, which is the real
part of 2D̃(ω). Once the coupling spectrums of the two leads are
given, in principle, we can obtain the propagator matrix G̃(ω)
and the dynamics of d(t) exactly. Here we take the spectrum
to be a Lorentzian function,

�x(ω) = �y(ω) = λ�2
c

ω2 + �2
c

, (21)

where �c is the cutoff frequency and λ describes the tunneling
strength with the quantum wire. With this spectrum, we omit
the self-energy correction.

Now we can derive the steady current when t → ∞. The
electrical current flowing out of the lead contacted with site x

can be defined from the changing rate of the electron number
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in this lead [12,23],

Îx(t) = − ie

�
[d̂†

x(t)	̂x(t) − 	̂†
x(t)d̂x(t)]. (22)

In this open quantum system, the current I (t) would
approach a steady state after a long time evolution. This steady
current can be obtained from the Fourier transform Ĩx(ω) of
〈Îx(t)〉 (see Appendix B),

I x(t → ∞) = −i lim
ω→0

[ωĨ (ω)],

(23)

Ĩx(ω) = − ie

�

∫
dν

2π
〈d̃†

x(ν)	̃x(ν + ω)〉

− 〈	̃†
x(ν + ω)d̃x(ν)〉.

Recall that 	̂x(t) = ∑
kx

gkx
ĉkx

(t), and, combining with
Eqs. (13) and (15), we have

	̃x(ω) = η̃x(ω) − iD̃x(ω)d̃x(ω). (24)

With the help of the solution of d̃x(ω) [Eq. (19)], all the
expectation in Ĩx(ω) [Eq. (23)] can be expressed by the
fluctuation of the random forces 〈η̃†

x(ν + ω)η̃y(ν)〉, which
relates to the coupling spectrum �x,y(ω) and the Fermi
distribution fx,y(ω − μx,y) of each lead. We obtain the
formula for the steady current below (see the derivation in
Appendix C),

I x(t → ∞) = e

�

∫
dω

2π
G̃†

yx�xG̃xy�y(fx − fy)

+ G̃†
y+N,x�yG̃x,y+N�x(fx − f y)

+ G̃†
x+N,x�xG̃x,x+N�x(fx − f x), (25)

where we denote fx := fx(ω − μx) and f x := fx(μx − ω) =
1 − fx . Here fx(ω − μx) := [exp βx(ω − μx) + 1]−1 is the
Fermi distribution.

If there is no pairing terms in the quantum wire Hamiltonian
Eq. (1), G̃ is block-diagonlized and the last two terms in
Eq. (25) do not appear. In this case this formula returns to
the result for a tight-binding chain [32,33]. On the other hand,
the last term is similar to the current formula derived in Ref.
[12], where only the Majorana subspace is considered.

We can regard G̃ij (ω) as the transition amplitude between
different modes, and this current formula can be understood
in an intuitive picture. The first term in Eq. (25) represents the
transition between the local modes d̂x and d̂y , i.e., an electron
emits from lead x, and then it is received as an electron by lead
y. Since there is superconducting pairing effect, the electron
emitted from lead x can be also received as a hole by lead y,
as represented by the second term. The last term represents the
transition between the electron and hole modes both at site x,
and indeed this term gives the main contribution to the ZBPs
that come from the zero modes.

IV. DIFFERENTIAL CONDUCTANCE FOR KQW

Now we have obtained the steady current. We set the
chemical potential of the left lead as μx = (−e)V , while
we keep μy = (−e)V0 as constant. At zero temperature,
fx(ω − μx) = 
(ω − μx), thus we obtain the differential

µL µR

(a) (b)

FIG. 5. (Color online) Differential conductance for a homoge-
nous tight-binding chain (N = 60). We set J = 1, μ = 0.3, � =
0, λ = 0.2, �c = 20. (a) The energy spectrum. (b) The differential
conductance dI/dV . The leads contact with the two ends.

conductance as

dI

dV
=e2

h
[G̃†

yx�xG̃xy�y + G̃†
y+N,x�yG̃x,y+N�x

+ 2G̃†
x+N,x�xG̃x,x+N�x](eV ). (26)

The above differential conductance formula is exact. We
can calculate G̃ij (ω) numerically to get the dI/dV spectrum.
When there is no superconducting pairing term, � = 0, the
system becomes a tight-binding chain. The last two terms in
Eq. (26) all vanish to zero. The energy spectrum for electron
modes (no hole modes) and dI/dV profile for an open tight-
binding chain is shown in Fig. 5. We see that for a homogenous
tight-binding chain contacted with two leads at each end, each
mode in the conducting band gives rise to a peak whose height
is one conductance quantum G0 = e2/h, and the positions of
the peaks correspond to the mode energies [33,34].

In Fig. 6, we show the dI/dV profile (from the left lead)
in the topological phase regime that affords zero modes for
different measurement configurations. We fix the position of
the right lead, while the left lead can be contacted with different
sites. The peaks on the two sides are contributed from the band
modes, corresponding to the band structure shown in Fig. 1.

For the homogenous open wire, when the lead is contacted
with the left edge [Fig. 6(a)], there is a single ZBP which is
contributed from the the edge modes. The energy gap of the two
edge modes can be neglected for a chain that is long enough
(N = 60 here). If the lead is contacted with a bulk site far from
the edges, we cannot observe any ZBP. Here our numerical
result gives a singular point at V = 0. Precisely speaking, the
width of this ZBP is zero, and, in practical terms, this peak is
“unobservable.” However, we still plot out this singular point
in the picture [dashed line in Fig. 6(b)].

For the closed wire with a defect, when the lead is contacted
with the nearest site beside the defect [Fig. 6(c)], we can
observe two split peaks, whose positions correspond to the
energies of the defect modes. Their heights are also 2e2/h.
The distance between the two peaks depends on the strength
of the defect, or, rather, the coupling between the Majorana
fermions. If the lead is contacted with a bulk site far from the
defect, again we cannot observe any ZBP [Fig. 6(d)].

Our results also indicate that whether a normal mode ψ̂μ

[Eq. (4)] can be observed in the dI/dV spectrum depends on
its overlap with the local mode d̂x contacted with the lead. The
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site-1 site-60 site-34 site-60

site-19 site-30 site-1 site-30

(a) (b)

(c) (d)

FIG. 6. (Color online) Differential conductance in topological
phase regime for [(a) and (b)] a homogenous open wire and [(c)
and (d)] a closed wire with a defect (μp = 15 at site 20). We set
J = 1, μ = 0.1, � = 0.4, λ = 0.3, �c = 20. The chain contains 60
sites. The position of the right lead is fixed, while the left lead is
contacted with different sites.

position and strength of the defect (the chemical potential μp)
can be controlled and tuned by applying specific gate voltage
bias [19,20], and a proper defect can be “planted” as we want.
Convincing evidence for Majorana fermions requires that all
the features shown in Fig. 6 can be observed.

V. CONCLUSION

In this paper, we studied the transport measurement in KQW
for two kinds of configurations, i.e., a homogenous open wire
and a closed wire with a defect. The existence of a defect
also gives rise to a pair of zero modes, which are localized
superpositions of both electron and hole modes. The behavior
of a defect is similar to two open edges.

We derived a quantum Langevin equation to study the two-
contact transport. We obtained the formulas for the steady
electrical current and differential conductance. We obtained
the exact numerical result for the dI/dV spectrum when one
of the leads is contacted with different site of the chain. When
the lead is contacted with the edge of the open quantum wire,
we can observe a single ZBP with height 2e2/h contributed
from the degenerated Majorana edge modes. If the lead is
contacted with the site beside the defect in the closed wire,
we can observe two splitted ZBPs contributed from the defect
modes. The heights of the two peaks are also 2e2/h. When
the lead is contacted with other sites in the bulk far from the
defect or the open edges, no ZBP can be observed.

Base on the above results, we would suggest that a group of
comparison experiments for different transport measurement

configurations, as we have shown above, may be helpful to test
the existence of Majorana fermions.
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APPENDIX A: PROPERTY OF THE QUANTUM WIRE
HAMILTONIAN MATRIX

Here we present the proof of the property of the Hamiltonian
matrix H [see Eq. (2)] mentioned in Sec. II.

Proposition. If ε is one eigenvalue of H with �V =
(v1, . . . ,vN ,w1, . . . ,wN )T as the eigenvector, then −ε is also
an eigenvalue, and the corresponding eigenvector is �V ′ =
(w∗

1, . . . ,w
∗
N,w∗

1, . . . w
∗
N )T .

Proof. The eigenequation of H �V = ε �V is

[
h p

p† −h

] (
v

w

)
= ε

(
v

w

)
.

Or we can write it as

hij vj + pijwj = εvi,

−p∗
ij vj − hijwj = εwi.

From the explicit form of h and p [see Eq. (3)] we should
notice that p† = −p∗, h† = h. Thus the negative conjugation
of the above two equations gives

hijw
∗
j + pij v

∗
j = −εw∗

i ,

−p∗
ijw

∗
j − hij v

∗
j = −εv∗

i .

Or we can write it as
[

h p

p† −h

](
w∗

v∗

)
= −ε

(
w∗

v∗

)
.

This is just the eigenequation H �V ′ = −ε �V ′. �

APPENDIX B: GENERAL STEADY FORMULA

We want to study the long-time behavior of some dynamical
observable, e.g., the electrical current I (t → ∞). Here we
have a method to evaluate the long-time behavior of I (t) from
the poles of its Fourier transform Ĩ (ω).

By Fourier transform, we have

I (t) =
∫

dω

2π
Ĩ (ω)e−iωt . (B1)

We should notice that if I (t) diverges when t → ∞, indeed
Ĩ (ω) does not exist. If Ĩ (|ω| → ∞) → 0, Eq. (B1) can be
integrated by the residue theorem. For t > 0, the contour
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integral takes the lower loop, and we have

I (t) = −i
∑
lower
plane

Res[Ĩ (ω)e−iωt ] − i

2

∑
real
axis

Res[Ĩ (ω)e−iωt ],

(B2)
where the summations contain all the poles in the lower plane
and on the real axis, respectively.

Consider the case that the pole at ωr is simple, we have

Resωr
[Ĩ (ω)e−iωt ] = lim

ω→ωr

[(ω − ωr )Ĩ (ω)e−iωt ]

= e−iωr tResωr
[Ĩ (ω)]. (B3)

We see that all the time dependence of I (t) is contained in
exp[−iωr t]. There are three types of poles here as follows:

(1) In the lower plane, ωr = ω0 − iγ and γ > 0. For these
poles, exp[−iωr t] gives rise to terms with exponential
decay behavior, and they vanish when t → +∞;

(2) On the real axis, or infinitely close to it in the
lower plane, ωr = ω0 − i0+, but ωr �= 0. These poles
contribute to terms that keep oscillating at frequency
ω0 when t → +∞;

(3) At the origin point ωr = 0. This pole contributes a
time-independent term.

Therefore, we can evaluate the long-time behavior of I (t)
from the poles of its Fourier transform Ĩ (ω). If Ĩ (ω) has no
other poles near the real axis in the lower plane, except the
simple pole ωr = 0 − iε+, we can write down the steady state
of I (t) from Eq. (B2) as

I (t → +∞) = −i lim
ω→0

[ωĨ (ω)]. (B4)

For example, we consider a current that decays exponen-
tially from t0 = 0,

I (t) = 
(t)I0(1 − e−iω0t−γ t ).

The Fourier transform of I (t) is

Ĩ (ω) = i

ω + iε+ + i

ω − ω0 + iγ
,

and we can check that Eq. (B4) holds.

APPENDIX C: STEADY CURRENT

First, we calculate the fluctuation relation of the random
forces 〈η̃†

x(ω)η̃y(ω′)〉. The random force acting on the x-th
contact site is

η̂x(t) = 
(t)
∑
kx

gkx
e−iωkx t ĉkx

(0),

(C1)

η̃x(ω) =
∑
kx

igkx
ĉkx

(0)

ω − ωkx
+ iε+ ,

where η̃x(ω) is the Fourier transform of η̂x(t).
We have assumed that initially each reservoir stays at a

canonical thermal state, which gives

〈ĉ†kx
(0)ĉqy

(0)〉 =δxyfx(ωkx
− μx),

fx(ω − μ) :=
[

exp
ω − μ

kTx

+ 1

]−1

. (C2)

Here fx(ω − μ) is the Fermi distribution, and μ is the chemical
potential. Thus, we have

〈η̃†
x(ω)η̃y(ω′)〉 =

∑
kx ,qy

g∗
kx

gqy
〈ĉ†kx

(0)ĉqy
(0)〉

(ω − ωkx
− iε+)(ω′ − ωqy

+ iε+)

=
∫

dν

2π

�x(ν)fx(ν − μx)δxy

(ω − ν − iε+)(ω′ − ν + iε+)

= i�x(ω′)fx(ω′ − μx)δxy

(ω′ − ω) + 2iε+ ,

(C3)

〈η̃x(ω)η̃†
y(ω′)〉 = i�x(ω′)fx(μx − ω′)δxy

(ω′ − ω) + 2iε+ ,

where we should notice that 1 − f (ω − μ) = f (μ − ω). The
above integrals are done by residue theorem.

From Appendix B and Eq. (23) we see that the calculation
of the steady current I (t → ∞) requires us to evaluate
expectation values of the following form:

〈: A(ω)B(ω + δω :〉 := −i lim
δω→0

[δω〈A(ω)B(ω + δω)〉].
(C4)

Here we introduce a notation 〈: AB :〉 for the simplicity of the
limitation above. With this notation, from Eq. (C3) we obtain
that the fluctuation of the above random forces gives

〈: η̃†
x(ω)η̃y(ω + δω) :〉 = �x(ω)fx(ω − μx)δxy,

(C5)
〈: η̃x(ω)η̃†

y(ω + δω) :〉 = �x(ω)fx(μx − ω)δxy.

Further, recall that

d̃(ω) = G̃(ω)[d(0) − iη̃(ω)],

	̃x(ω) = η̃x(ω) − iD̃x(ω)d̃x(ω),

and then we have

〈: d̃†
x	̃x :〉 =

〈
: i

∑
j

η̃
†
j G†

jx η̃x − i
∑
i,j

η̃
†
j G†

jxDxGxi η̃i

+
∑

j

d̂
†
j (0)G̃†

jx(η̃x − iDxd̃x)

+
∑
i,j

η̃
†
j G̃†

jxDxG̃xi d̂i(0) :

〉
.

The last two terms containing information from the initial
state vanish to zero after long-time evolution. This can be also
verified by calculating the limitation. Some straightforward
calculation shows that the steady current Eq. (23) becomes

I x(t → ∞) = − ie

�

∫
dν

2π
〈: d̃†

x	̃x − 	†
xdx :〉

= e

�

∫
dν

2π

〈
: η̃†

x[G̃†�̃G̃]xx η̃x

−
∑

i

η̃
†
i G̃

†
ix�xG̃xi η̃i :

〉
. (C6)
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Here we used the following relation:

G̃ + G̃† = G̃[i(ω − H − iD̃†) − i(ω − H + iD̃)]G̃†

= G̃�̃G̃† = G̃†�̃G̃, (C7)

where �̃ = D̃ + D̃† is the dissipation matrix. Finally,
we can write down I x in sum of the components

as

I x(t → ∞) = e

�

∫
dν

2π
G̃†

yx�xG̃xy�y(fx − fy)

+ G̃†
x+N,x�xG̃x,x+N�x(fx − f x)

+ G̃†
y+N,x�yG̃x,y+N�x(fx − f y), (C8)

where we denote fx := fx(ν − μx) and f x := fx(μx − ν) =
1 − fx .
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