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We present a quantum field theoretical approach based on the Lehmann-Symanzik-Zimmermann reduction
for the multiphoton scattering process in a nanoarchitecture consisting of the coupled-resonator arrays �CRA�,
which are also coupled to some artificial atoms as a controlling quantum node. By making use of this approach,
we find the bound states of a single photon for an elementary unit, the T-type CRA, and explicitly obtain its
multiphoton scattering S matrix in various situations. We also use this method to calculate the multiphoton S
matrices for the more complex quantum network constructed with main T-type CRAs, such as a H-type CRA
waveguide.
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I. INTRODUCTION

In order to realize all-optical quantum devices,1,2 it is very
crucial to explore the physical mechanism for the single-
photon generation, transport, one shot detection, etc. Thus,
we need a comprehensive understanding of the fundamental
processes of coherent photonic scattering in the solid-state
based confined systems, such as the photonic crystal with
artificial band gaps. Essentially, by coupling the system with
an extra two-level system �TLS� to form a hybrid system, for
controllable transport of photons, the basic element is a
quantum node or quantum switch.3 It was abstracted as the
so-called photon transistor recently.1,4 For quantum informa-
tion processing, such quantum node can coherently control
the quantum state transfer in some quantum network.5–7 Ac-
tually, to manipulate the coherent transport of photons, the
quantum node is tunable so that it can behave either as a
perfect mirror that is totally reflecting photons, or as an ideal
transparent medium allowing photons to pass through. Theo-
retically, the quantum node for single-photon in all-optical
architectures was extensively studied in one-dimensional
waveguide by making use of the standard scattering
approaches.2,8–13

The photonic quantum node is usually modeled as a lo-
calized TLS,14 which can be implemented as an artificial
atom, coupled to the photons transported in the coupled-
resonator arrays �CRA�.15 The atomic parameters, e.g., the
energy-level spacing, are tunable to control the propagation
of photons. Recently, based on this theoretical model and its
generalizations, the photon transport in the CRA systems has
been studied for different purposes.4,8,9,16 Here, we would
like to point out two remarkable issues: �a� if only one pho-
ton is allowed to transport in the CRA with the artificial atom
prepared at its ground state, the hybrid system can be de-
scribed by a simple model with a single state coupled to a
continuum, which is referred to the Anderson-Fano-Lee
model17–19 with single excitation; �b� the CRA can be re-
garded as the waveguide with nonlinear dispersion relation.
It can be linearized in the high-frequency regime in which
photon momentum k� �� /2a with lattice spacing a, ap-
proximating the linear dispersion relation for the conven-
tional waveguide.

In the recent study,4 the single-photon transmission and
reflection coefficients were calculated for the incident photon
with any energy in the T-type structure �a quantum node
coupled to a CRA, see Fig. 1�, which demonstrate the novel
line shapes beyond the Breit-Wigner20 and the Fano line
shapes.17 This kind of investigation was carried out only for
the case with single photon. Also, there are only quite a few
researches on the two-photon case, for which we mention an
elegant theoretical approach for two-photon scattering8,9

based on the Bethe ansatz.21–27 Moreover, we have to say
that it sounds very difficult to prepare the system only with
one photon or two photons exactly; thus these previous stud-
ies need to be improved for multiphoton processes oriented
by practical application.

Actually, the study for multiphoton transport is very im-
portant to realize practical all-optical devices. However,
these subtle approaches for single- and two-photon cases
mentioned above,4,8,9,16 such as the discrete coordinate scat-
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FIG. 1. �Color online� The schematic for the complex CRA: the
T-type structure with CRA coupled to impurity �maybe a two-level
scatterer� is the basic element to construct the more complicated
architecture of quantum network. The red circles denote the two-
level impurity while the blue dots denote the photonic coupled
resonators.
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tering theory and the Bethe-ansatz technique with fixed scat-
terers, are not feasibly generalized for the realistic multipho-
ton processes, even for two-photon or three-photon
processes. Therefore, our present systematical approach
based on quantum-field theory is significant since it is obvi-
ously feasible and intrinsically natural for the generalization
to multiphoton scattering processes.

In this paper, we utilize the Lehmann-Symanzik-
Zimmermann �LSZ� reduction28 in quantum-field theory to
investigate the multiphoton transport in the complex CRA
with some two-level scatterers. This method has been used to
study the single electron inelastic scattering in Anderson
model and Kondo model.29,30 Here, we deal with the multi-
photon scattering problem by studying the out state of the
scattered photons for an arbitrary state of incident photons.
In middle stages, we calculate the multiphoton scattering ma-
trix �S matrix� in detail. With the diagrammatic analysis, we
find that the basic element of the S matrix is a connected
transfer matrix �T matrix�, which can be obtained from the
well-known LSZ reduction formula about the photonic
Green’s function. From the explicitly achieved expressions
of photonic out states, we analyze in details quantum statis-
tical characters of photon transmission in the situation with
many photons. We find that, in the tight-binding CRA of T
type, there exist the single-photon bound states. As a test,
two-photon transport in the T-type waveguide is reconsid-
ered, and our obtained results are in accord with the recent
woks8,9 using the Bethe ansatz, which verifies that the results
based on the LSZ reduction approach are valid. As a devel-
opment, the three-photon scattering is studied, and the out-
going states of the three photons are given by this approach.
Our present investigation, mainly based on these results, can
be regarded as a substantial development for its particular
emphasis on the multiphoton scattering.

In practice, the T-type photonic element we mentioned
above is the basic block in constituting a complex quantum
network coherently transferring photons in a controllable
fashion. A slightly complicated illustration of such architec-
ture is the CRA waveguide of H type. In this paper, we also
study two-photon scattering processes in the H type in de-
tails.

The paper is organized as follows: in Secs. II and III, we
model our hybrid system for multiphoton transport and
present the scattering matrix based on the LSZ reduction
approach; in Sec. IV, we show that there exist the single-
photon bound states in the tight-binding T-type CRA; in Sec.
V, we study the multiphoton transport in the T-type wave-
guide; in Sec. VI, we discuss the two-photon transport in the
H-type waveguide; in Sec. VII, the results are summarized
with some remarks.

II. SCATTERING MODEL FOR THE HYBRID SYSTEM

A. Model setup

In this subsection, we model the T-type CRA by the two-
level atom coupled to photons inside CRA illustrated in Fig.
1. The model Hamiltonian reads

HT = ��e��e� + �
i

��0ai
†ai − J�ai

†ai+1 + H.c.�	

+ V�
i

�i0�ai
†�− + H.c.� , �1�

where the operator �−= �g��e� denotes the flip from the
atomic ground state �g� to the excited state �e� with the
energy-level spacing �. Here, J is the hopping constant char-
acterizing the intercavity coupling in the tight-binding ap-
proximation; ai�ai

†� is the annihilation �creation� operator for
the photonic single mode with eigenfrequency �0 in the ith
cavity; V is the hybridization constant of the localized atom-
photon in the zeroth site of CRA.

In the momentum space �k space�, Hamiltonian �1� is re-
expressed as

HT = ��e��e� + �
k

�kak
†ak +

V

L

�
k

�ak
†�− + H.c.� , �2�

with the photonic dispersion relation

�k = �0 − 2J cos k , �3�

in CRA of length L. Here, we choose the cavity spacing a
=1. In the high energy limits k� �� /2 and �0=�J, the
above dispersion relation is linearized as �k��k�, which is
the same as that in the conventional waveguide. Thus, we
can use CRA to simulate the conventional waveguide in the
high-frequency limits. As the basic element of the complex
quantum network as illustrated in Fig. 1, the two-level atom
plays the role of the photon transistor to control the photon
transmission.

It is obvious that, when confined within the single excita-
tion subspace, our model is the same as the models by
Anderson, Fano and Lee. This observation motivates us to
consider how to use various approaches developed previ-
ously for the models by Anderson, Fano and Lee to deal with
the coherent processes of our system, especially with mul-
tiphotons. To this end, we will compare our model �2� with
the Anderson-Fano-Lee model as follows.

B. Relation to Anderson model

By neglecting the Coulomb interaction, the Anderson
model is the same as the Fano model, so we discuss the
similarities and differences between model �2� and Anderson
model. The corresponding Hamiltonian reads

HA = �
k,�

�kck�
† ck� + �df�

† f� + HV + HU, �4�

where ck��ck�
† � is the annihilation �creation� operator of the

conductive electron with dispersion relation �k and spin �.
f��f�

†� is the annihilation �creation� operator of the impurity f
electron with energy �d and spin �. The Coulomb repulsive
interaction of the impurity f electrons is described by the
Hubbard term HU=Uf↑

†f↑f↓
†f↓. The hybridization of a conduc-

tive electron with the localized f electron is depicted by the
mixing term

HV = V�
k,�

�ck�
† f� + H.c.� . �5�
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Anderson even used this model �4� to investigate the lo-
calized magnetic state in the metal. By comparing Hamil-
tonian �4� with Hamiltonian �2�, we find that the atom and
the photon in model �2� can be considered as the impurity f
electron and the conductive electron in the Anderson model,
respectively. But there still exist some differences between
the two models. First, the Hilbert space of the atom in model
�2� is spanned by two basis states, �e� and �g�, but the Hilbert
space of the impurity f electron is spanned by four basis
states, �0�, f↑

†�0�, f↓
†�0�, and f↑

†f↓
†�0�. Second, in the Anderson

model the conductive electrons are fermions while in model
�2� photons are bosons. Third, there is no Hubbard term HU
in model �2� while in the Anderson model if there is only one
f electron the Coulomb interaction vanishes, i.e., the Hub-
bard interaction HU does not play any role. In conclusion, the
two models are equivalent only in the single excitation case,
i.e., one conductive electron with no f electron or one impu-
rity f electron with no conductive electron in the Anderson
model, and one photon with the atom prepared at the ground
state or no photon with the atom prepared at the excited state
in model �2�. Otherwise, in the multiexcitation case, two
models �2� and �4� are obviously not equivalent.

C. Relation to Lee model

The Lee model19 with the Hamiltonian

HL = mV	V
†	V + mN	N

† 	N + �
k

�kAk
†Ak

+ g�
k

1

2�kV

�	V
†	NAk + H.c.� , �6�

describes a reaction process

V � N + Ak, �7�

with two heavy fermions �V ,N� of masses mV and mN. Here,
the relativistic boson Ak with momentum k and rest mass 

possesses the dispersion relation �k=
k2+
2, and g is the
three body coupling constant for the scattering of the three
kinds of particles, V, N, and A. Lee19 used this exact solvable
model to study the necessity of renormalization in quantum-
field theory even without the perturbation expansion.

By comparing Lee model with model �2�, we find that the
heavy fermions V and N can be regarded as the excited and
ground states of the atom, respectively. Moreover the relativ-
istic boson Ak can be considered as the photon in model �2�.
There also exist some differences between Lee model and
model �2�. First, in Lee model, the renormalizations of the
V-fermion mass mV and coupling constant g should be taken
into account, and Hamiltonian �6� is non-Hermitian. Thus we
should investigate the unitarity of the S matrix carefully.31,32

Second, the Hilbert space of heavy fermion is spanned by
four basis states, i.e., �0�, 	V

† �0�, 	N
† �0�, and 	V

†	N
† �0�. We

conclude that two models �2� and �6� are equivalent only in
the single excitation case, i.e., one relativistic boson Ak with
one heavy fermion N or one heavy fermion V with no rela-
tivistic boson Ak in Lee model, and one photon with the atom
prepared at the ground state or no photon with the atom
prepared at the excited state in model �2�.

In fact, it turns out that the multiparticle scattering prob-
lems �such as N-�� scattering� in Anderson and Lee models
were both successfully studied by the LSZ reduction
approach.29,30,33,34 In the following, we start with model �2�
to investigate the S matrix of scattering photon in the hybrid
CRA systems. For further discussion, we first give a general
formalism to study the multiphoton S matrix in the complex
CRA by the LSZ reduction formalism.

III. LEHMANN-SYMANZIK-ZIMMERMANN REDUCTION
FOR PHOTON SCATTERING IN GENERAL

In this section, we first briefly summarize the main results
of the LSZ reduction approach in quantum-field theory, and
then we use them to give a general formula for multiphoton
S matrix in the T-type CRA. For investigating the multipho-
ton scattering, in the first subsection, we first define the
n-photon S matrix and 2n-point photonic Green’s function,
which are explicitly described by the Feynman diagrams
�Fig. 2�, and utilized the functional integral to obtain the
2n-point photonic Green’s function. In the second subsec-
tion, we use the LSZ reduction approach to obtain a general
form of the n-photon S-matrix element by reducing the ex-
ternal legs �red wavy lines in Fig. 2� of the Green’s function.

A. Main results of the LSZ reduction approach

Because the LSZ reduction approach relates to the photo-
nic Green’s function and S matrix, we need to give their
definitions for discussing the LSZ reduction explicitly. The
2n-point photonic Green’s function,

Gp1,. . .,pn;k1,. . .,kn
�t1�, . . . ,tn�;t1, . . . ,tn�

= ���Tap1
�t1�� . . . apn

�tn��ak1

† �t1� . . . akn

† �tn���� , �8�

is defined by the time-ordering product T of the photon cre-
ation �annihilation� operator ak

† �ak� in the Heisenberg pic-

1n −1n −

nn

other disconnected diagrams

nn

FIG. 2. �Color online� The Feynman diagrams for LSZ reduc-
tion: the red line denotes the free photon propagator. The gray �dark
gray� circles denote the S-matrix elements and the blue �light gray�
circles denote the T-matrix elements. The Feynman diagram of
S-matrix element is constructed by all kinds of disconnected dia-
grams. Moreover each of the disconnected diagrams contains some
connected diagrams.
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ture. Here, � denotes the ground state of the Hamiltonian H
of the system.

The S-matrix element,35,36

out�f �i�in = in�f �S�i�in, �9�

of photons is defined through the overlap of incoming state
�i�in and outgoing scattering state �f�out, which are asymptoti-
cally free, and may contain multiphoton excitation, i.e., they
are multiphoton states. In our case, the incoming state is

�i�in = ak1

† . . . akn

† �0� . �10�

In the present case, the S matrix is given by

S = T exp�− i�
−


+


dtHint�t�
 , �11�

with the atom-photon hybridization Hamiltonian

Hint = V�a0
†�− + H.c.� , �12�

in the interaction picture.
Using the diagrammatic analysis, we find that the Feyn-

man diagram of S-matrix element is constructed by summing
up the contributions from all kinds of disconnected diagrams
as shown in Fig. 2. Here, each of these disconnected dia-
grams is made up of some connected diagrams which de-
scribe the T-matrix elements. As special cases, we consider
the diagrammatic construction for the single photon and the
two-photon S-matrix elements by the connected T-matrix el-
ements below. For the single-photon case, the S-matrix ele-
ment,

Sp;k = �kp + iTp;k, �13�

is defined by the T-matrix element for single photon, where k
and p are the momenta of the incoming and outgoing pho-
tons. In this case, there exist two kinds of disconnected dia-
grams �a� and �b� as shown in Fig. 3.

For the two-photon case, the S-matrix element,

Sp1p2;k1k2
= Sp1k1

Sp2k2
+ Sp2k1

Sp1k2
+ iTp1p2;k1,k2

, �14�

is reduced by the T-matrix element of two photons, where kr
and pr �r=1,2� are the momenta of the incoming and outgo-
ing photons. In this case, there exist three kinds of discon-
nected diagrams �a�–�c� as shown in Fig. 4. Obviously, the

multiphoton S matrix is totally determined by the connected
T matrix so we only need to find the photonic T matrices.

Fortunately, the intrinsic relation

iT2n = G2n��
r=1

n

�2�G0
−1�kr�G0

−1�pr�	�
os

, �15�

between n-photon T-matrix element

T2n = Tp1,. . .,pn;k1,. . .,kn
, �16�

and photonic Green’s function

G2n = Gp1,. . .,pn;k1,. . .,kn
, �17�

is given by the LSZ reduction formula, where

G0�kr� =
i

�r − �kr
+ i0+ �18�

is the Green’s function of free photon and Gp1,. . .,pn;k1,. . .,kn
is

the Fourier transformation of Eq. �8�. Here, the subscript os
denotes the on-shell limit �→�k. Finally, the multiphoton
S-matrix elements are determined by the photonic Green’s
functions entirely. In this paper, we use an elegant method,
i.e., functional integrals, to establish desired relation �15�.
This method has been used to solve many quantum impurity
problem29,30 in the condensed-matter physics. Here, we show
how it works for the multiphoton transmission in this hybrid
system.

B. General formula for S-matrix in the T-type CRA

We utilize the generating functional Z to represent the full
time-ordering Green’s function as

k p

( )b

k

( )a

pk

p

FIG. 3. �Color online� The diagrammatic constructions of the
single-photon S-matrix element: there exist two kinds of discon-
nected diagrams �a� and �b�. The red line denotes the free photon
propagator. The gray �dark gray� circle denotes the S-matrix ele-
ments and the blue �light gray� circle denotes the single-photon
T-matrix elements.

1k

2k

1p

2p

1k 1p

2k 2p

1k 1p

2k 2p

2k 1p

1k 2p

( )a

( )b ( )c

FIG. 4. �Color online� The diagrammatic constructions of the
two-photon S-matrix element: there exist three kinds of discon-
nected diagrams �a�–�c�. The red line denotes the free photon propa-
gator. The gray �dark gray� circles denote the S-matrix elements and
the blue �light gray� circle denotes the two-photon T-matrix
elements.
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Gp1,. . .,pn;k1,. . .,kn
= � �− 1�n�2n ln Z��k,�k

�	
��p1

� . . . ��pn

� ��k1
. . . ��kn

�
�k=�k

�=0

,

�19�

where the generating functional,

Z��,��	 =� D�akak
†	D�f�f�

†	���
�

f�
† f� − 1�

�exp�i�S +� dt�
k

��k
�ak + �kak

†�
� , �20�

is defined by the action S=�dtL and the Lagrangian

L = ife
†�t fe + ifg

†�t fg + i�
k

ak
†�tak − HT. �21�

In Eq. �20�, we represent the two-level atom by the fermions
f� as

�e��e� = fe
†fe,

�e��g� = fe
†fg, �22�

with the constraint

�
�=e,g

f�
† f� = 1. �23�

This constraint arises from the fact that the physical space of
the atom spanned by �e� and �g� is two dimensions, while the
physical space of the fermions spanned by �0�, fe

†�0�, fg
†�0�,

and fe
†fg

†�0� is four dimensions. By integrating the photon
field and the fermionic fields f� in Eq. �20�, the generating
functional is obtained as

ln Z��,��	 = Tr ln M��,��	 − i� d�dk
��k����2

� − �k + i0+ ,

�24�

where the field variable is

���� = V� dk

2�

�k���
� − �k + i0+ , �25�

and the matrix,

M��,��	 = ��� − � + ����	���� ��� − ���

�†��� − �� �� − i0+�����
� ,

�26�

is defined by the self-energy,

���� = Re���� + i
�

2
���� , �27�

of the atom and �=V2. Here, the real part of the self-energy
is determined by the principal-value integral as

Re���� =� dk

2�
P

�

�k − �
, �28�

and the imaginary part is proportional to the density of state
�DOS�

���� = �
i

1

�Di����
, �29�

where Di���=�k�k �k=zi
and zi is the real root of the equation

�zi
=�. For the waveguide the self-energy ���� is a constant.

For the CRA the self-energy depends on the frequency � and
we have used Markov approximation to obtain Eq. �24�.

With the helps of Eqs. �15�, �19�, and �24�, we can
achieve the multiphoton S matrix by considering the Green’s
function G2n. In the following, we use the LSZ approach to
study the multiphoton transport in the complex CRA.

IV. BOUND STATES OF THE SINGLE PHOTON
TRANSPORT IN THE T-TYPE CRA

In this section, we consider the single-photon transport in
the T-type CRA. This problem has been considered in Ref. 4
but the photon bound states have not been taken into ac-
count. There are two interesting physical phenomena about
the photon bound states. �a� First, in the hybrid system the
single-photon bound states depict the states that the single
photon is almost localized in the cavity containing the two-
level atom. In this sense, the photon bound states can be used
as the quantum information storage of single photon. �b�
Second, as the basic element of single-photon transistor, the
T-type CRA is usually coupled with other CRAs through the
two-level atom. These CRAs can be regarded as the scatter-
ing channels. It is proved that16 the incident photon in an-
other CRA, whose energy is resonant on the bound-state en-
ergy in the T-type CRA, will be totally reflected. This
phenomenon can be considered as the one-dimensional pho-
tonic Feshbach resonance, which can be used to simulate the
Feshbach resonance in the atomic and condensed-matter
physics. The above reasons motivate us to study the photon
bound states in the T-type CRA by using the LSZ approach.

The T-type CRA is described by Hamiltonian �2�. Then
Eqs. �15�, �19�, and �24� immediately give the single-photon
S-matrix element

Sp;k = �1 + rk��kp + rk�−kp, �30�

with the reflection amplitude

rk =
− i�

2J sin k��k − �� + i�
. �31�

Here, we have utilized DOS ����=2 /
4J2− ��−�0�2 and
Re����=0 for the scattered photon in the T-type CRA. Re-
sult �30� is the same as that obtained in Ref. 4.

In the following, we study the single-photon bound states
in this system by considering the poles of S matrix �see Fig.
5�a�	. The poles of S matrix are the roots of the equation
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�Eb − �� + i
�

2
��Eb� = 0. �32�

Because the energies of bound states are not inside the pho-
tonic energy band of the CRA, i.e., �Eb−�0��2J, the self-
energy is

��Eb� = −
� sgn�Eb − �0�


�Eb − �0�2 − 4J2
. �33�

Then Eq. �32� becomes

Eb − � −
� sgn�Eb − �0�


�Eb − �0�2 − 4J2
= 0. �34�

The above equation possesses two solutions �Eb
�d� and Eb

�u��
for Eb: one solution Eb

�d� is below the bottom of energy band
while the other solution Eb

�u� is above the top of energy band.
The structure of the energy spectrum is shown in Fig. 5�b�.
The two bound states are

�B�� = ��
i

	��xi�ai
† + �+
�0� , �35�

with the wave functions16 in the spatial representation

	−�xi� =
�− ��x�V


�Eb
�u� − �0�2 − 4J2

e�x�ln �−�Eb
�u��, if Eb = Eb

�u�,

	+�xi� =
V

�Eb
�d� − �0�2 − 4J2e�x�ln �+�Eb

�d��, if Eb = Eb
�d�,

�36�

where

���E� = −
�E − �0

2J
�2

− 1 �
�0 − E

2J
. �37�

It is obvious that ln ���E��0 for the both cases E=Eb
�u� and

E=Eb
�d�; the wave functions exponentially decay as �x� in-

creases as shown in Eqs. �36�, which ensure that the photon
is indeed localized to form the bound states. The wave func-
tions 	��xi� are illustrated in Fig. 6.

By short summary for this section, we verify the existence
of photon bound states in the T-type CRA by considering the
poles of the S-matrix element. In the next section, using the
T-type CRA to simulate the T-type waveguide, we study the
multiphoton transport in the T-type waveguide.

V. SCATTERING MATRIX FOR PHOTONS IN THE
T-TYPE WAVEGUIDE

In this section, we focus on the photon transport in the
T-type waveguide. For the T-type waveguide, S-matrix ele-
ment is first calculated out by the LSZ reduction. Second, by
using the obtained S matrix, we give the out state for arbi-
trary incident state of photons. Finally, by analyzing the pho-
ton out state in the spatial representation, we can obtain the
quantum statistical properties of the scattered photons, such
as the photon bunching and antibunching.

As shown in Sec. II, the waveguide is simulated by CRA
in the limits k� �� /2 and �0=�J, in which the dispersion
relation of the photon is �k=vg�k�= �k�. Here, we let the group
velocity vg=1 for convenience. Then the Hamiltonian,

HT = ��e��e� + �
k

�k�ak
†ak +

V

L

�
k

�ak
†�− + H.c.� , �38�

describing the T-type waveguide becomes

HT
�w� = HT

e + HT
o , �39�

with two parts

HT
o = �

k�0
�kak,o

† ak,o, �40�

and

HT
e = ��e��e� + �

k�0
kak,e

† ak,e +
Ṽ

L

�
k�0

�ak,e
† �− + H.c.� ,

�41�

where the operators,

ak,e =
1

2

�ak + a−k� ,

( )u
bE

( )d
bE

ω 0

2 J

2 J

(b)(a)

S-matrix element
of the single photon

The exact Green function
of the two level atom

FIG. 5. �Color online� �a� The gray circle denotes the scattering
matrix element of the single photon, and it is also the Green’s
function of the two-level atom. The poles of the atom Green’s func-
tion determine the energies of the bound states. �b� The band struc-
ture of T-type CRA is shown in the right panel.

�40 �20 0 20 40
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Ψ�d��x�
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FIG. 6. �Color online� The wave functions of two photonic
bound state in the discrete coordinates. The norms of both wave
functions exponentially decay as �x� increases.

T. SHI AND C. P. SUN PHYSICAL REVIEW B 79, 205111 �2009�

205111-6



ak,o =
1

2

�ak − a−k� , �42�

describe annihilations of the e and o photons. Here, e photon
depicts the photon with even parity in the momentum space,
i.e., a−k,e=ak,e, and o photon depicts the photon with odd
parity in the momentum space, i.e., a−k,o=−ak,o. In Eq. �41�,
the effective coupling constant is Ṽ=
2V. For the o photon,
the HT

o is diagonalized in the bases �ak,o
† �0�� so we only need

to find out the S matrix for the scattered e photon. In the
following, we consider the S matrix for the e photon accord-
ing to the approach.

A. Single-photon scattering

For the single e-photon case, Eqs. �19� and �24� give the
single-photon Green’s function

G�p;k� = �G0�k� −
i

2�

�T

�k − �
G0

2�k�
�pk, �43�

where �=�− i�T /2 and �T= Ṽ2. Here, we used Re ����=0
and ����=1. Together with Eq. �15�, Eq. �43� gives the
single e-photon T matrix

iTp;k = �pk
− i�T

k − �
. �44�

Next, we achieve the single e-photon S-matrix element Sp;k
= tk�pk by considering Eq. �13�, where the transmission coef-
ficient is

tk =
k − ��

k − �
. �45�

This result �Eq. �45�	 is in accord with that of Refs. 8 and 9
based on the Lippmann-Schwinger formalism.

B. Two-photon scattering

For the two e-photon case, Eqs. �19� and �24� give the two
e-photon Green’s function as follows:

Gp1,p2;k1,k2
= i

2�T
2

�2��3

G0�k1�G0�k2�G0�p1�G0�p2�
��2� − ����1� − ��

�
��1 + �2 − 2����1+�2,�1�+�2�

��1 − ����2 − ��
. �46�

By taking the photon frequency �i and �i� on shell, we ob-
tain the T matrix

iTp1,p2;k1,k2
= i

�T
2

�

�k1 + k2 − 2��
�p2 − ���k1 − ��

�k1+k2,p1+p2

�p1 − ���k2 − ��
. �47�

From the above equation, the two e-photon S-matrix ele-
ment,

Sp1p2;k1k2
= iTp1p2;k1,k2

+ tk1
tk2

��p1k1
�p2k2

+ �p2k1
�p1k2

� ,

�48�

follows Eq. �14� immediately. If two incident photons are
prepared in the state �k1 ,k2�, the wave function,8,9

�xc,x�out� =
1

2 �
p1p2

Sp1p2;k1k2
�xc,x�p1,p2�

= eiExc
1

2�
�tk1

tk2
cos��kx�

−
4�T

2ei�E−2�+i�T��x�/2

4�k
2 − �E − 2� + i�T�2
 , �49�

of two outgoing photons in the spatial representation is ob-
tained in terms of the two e-photon center-of-mass coordi-
nate xc= �x1+x2� /2 and two-photon relative coordinate x
=x1−x2. Here, the total momentum �energy� is E=k1+k2 and
the relative momentum is �k= �k1−k2� /2. When the photon
momenta k1 and k2 both satisfy the resonance condition k1
=k2=�, envelop wave function �49� exponentially decays as
the relative coordinate x increases. This reflects that the out-
going two photons attract each other effectively and form a
two-photon bound state. If E−2� is kept to zero, the wave
function at x=0 decreases as ��k� increases, which implies
that the photons repulse against each other effectively
through interacting with the two-level atom. The above re-
sults about two-photon scattering are in accord with the re-
sults reported in Refs. 8 and 9.

C. Three-photon scattering

For the three-photon case, Eqs. �15� and �19� give the
connected T matrix as

iTp1p2p3;k1k2k3
= i

�T
3

3�2��2���
i

�ki − pi�
 �
a=1,2,3

Fki,pi

�a� , �50�

where the functions F
�i,�i�
�a� are defined as

F
�i,�i�
�1� = �

PQ

�i
���i − kPi

�

��1� − �1���3� − �3���1 − ��

�
�i

���i� − pQi
�

��3� − ����1 + �2 − �1� − ��
, �51�

F
�i,�i�
�2� = �

PQ

�i
���i − kPi

�

��2� − �2���3� − �3���2� − ��

�
�i

���i� − pQi
�

��3 − ����2� + �1� − �2 − ��
, �52�

and

F
�i,�i�
�3� = �

PQ

�i
���i − kPi

�

��2� − �2���1� − �1���1� − ��

�
�i

���i� − pQi
�

��2 − ����2 + �3 − �2� − ��
. �53�

Here, P= �P1 , P2 , P3� and Q= �Q1 ,Q2 ,Q3� are two different
permutations of �1,2,3�, and i=1,2 ,3. The three-photon
S-matrix element,
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Sp1,p2,p3;k1,k2,k3
= i �

i,j=1,2,3
�

�,��i
�

�,��j

Spj;ki
Tp�,p�;k�,k�

+ �
PQ

�
i=1,2,3

SpQi
;kPi

+ iTp1,p2,p3;k1,k2,k3
,

�54�

is constructed by summing up the contributions from all dis-
connected Feynman diagrams as shown in Fig. 7. Here,
� ,� ,� ,�� �1,2 ,3�. The similar discussions can be appli-
cable to deal with the N-photon scattering process.

Next, we consider the physical meaning of S matrix. To
this end, we first analyze the T matrices, which are �T2�2
= �Tp1p2;k1,k2

�2 and �T3�2= �Tp1,p2,p3;k1,k2,k3
�2. Here, �T2�2 de-

scribes the two-photon background fluorescence, which is
explicitly discussed in Refs. 8 and 9, and �T3�2 depicts the
three-photon background fluorescence, which is shown in
Fig. 8. It is shown that, when the three photons are all in
resonance with the atom, the three-photon background fluo-
rescence describing �T3�2 is enhanced largely.

The out-going state of three photons,

�out� = �
p1�p2�p3

Sp1,p2,p3;k1,k2,k3
�p1,p2,p3� , �55�

is determined by the three-photon S matrix, and its spatial
representation the wave-function reads as

�x1,x2,x3�out� = �
p1p2p3

Sp1,p2,p3;k1,k2,k3

6�2��3/2 ei�p1x1+p2x2+p3x3�.

�56�

The contour maps of the probability distributions
��x1 ,x2 ,x3 �out��2 are numerically shown in Fig. 9. It is illus-
trated in Fig. 9�a� that when the three photons are all in
resonance with the atom, the scattered photons prefer the
two-photon bound state rather than the three-photon bound
state. That is, if two photons form the bound state, it is dif-
ficult to form three-photon bound state, namely, the two
bounded photons repulse another one effectively. When the
three photons are not in resonance, the probability distribu-
tion ��x1 ,x2 ,x3 �out��2 is shown in Fig. 9�b�. It is illustrated in
Fig. 9�b� that it is also difficult to realize the three-photon
bound state. If the position of one photon is given, such as
x3=0, other two photons do not always attract or repulse
each other but attract each other at some points and repulse
each other at other points, which are determined by the dis-

( )a

( )b ( )c

FIG. 7. �Color online� Feynman diagrams for three-photon S
matrix: there exist three kinds of disconnected diagrams �a�–�c�.
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FIG. 8. �Color online� Three-photon background fluorescence
for the total energy of incident photons E=k1+k2+k3=3 and �T

=1, where the energy-level spacing � is taken as units: �a� the three
photon are both in resonance with the atom, i.e., k1=k2=k3=�; �b�
the energies of the three photons are k1=0.5, k2=0.3, and k3=2.2,
respectively.

0

0.16

0

0.07

FIG. 9. �Color online� The probability distribution of three pho-
ton with one photon at origin, where the total energy of incident
photons E=k1+k2+k3=3, the energy-level spacing � is taken as
units, and �T=1: �a� the three photon are both in resonance with the
atom, i.e., k1=k2=k3=�; �b� the energies of the three photons are
k1=0.5, k2=1.5, and k3=1, respectively.
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tance between the two photon and another photon localized
at x3=0. It follows the above discussion that, in the concep-
tual setup of the photon transistor, the two-level atom con-
trols the coherent transport behaviors of single photon, such
as the transmission and reflection. In the multiphoton trans-
port, the atom can induce the effective interaction of pho-
tons. We can control the effective interaction by adjusting the
energy-level spacing of the atom. Therefore, the coherent
manipulations of TLS can result in a transition from the re-
pulsive case to attraction of effective photon interactions.

In addition, we point that the recent Refs. 8 and 9 ob-
tained the same results for two photons transport but our
works are different from them: �1� Refs. 8 and 9 only give
the two-photon eigenstates by Bethe-ansatz method but we
find a general method,37,38 i.e., the scattering Bethe-ansatz
technique �see Appendix�, to derive the multiphoton eigen-
states; �2� although we can obtain the multiphoton eigen-
states by the subtle scattering Bethe-ansatz method, we still
need a lot of complicated calculations to achieve the S matrix
by using the Lippmann-Schwinger scattering theory. How-
ever, the LSZ approach can be generalized to study the mul-
tiphoton scattering in the waveguide, such as the three-
photon transport in the waveguide; �3� aside for these, the
LSZ approach is also used to deal with the multiphoton scat-
tering in the more complex CRA, such as the H-type CRA.
In the next section, by using the H-type CRA to simulate the
H-type waveguide, we investigate the multiphoton transport
in the H-type waveguide.

VI. TWO PHOTON SCATTERING PROCESS IN THE
H-TYPE WAVEGUIDE

In this section, we study the two-photon scattering pro-
cess in the H-type waveguide. The conventional H-type
waveguide is simulated by the H-type CRA �Fig. 10� in the
high energy limits. The model Hamiltonian,

HH = ��e��e� + �
i,s=1,2

�i0�Vsai,s
† �− + H.c.�

+ �
i,s=1,2

��0
�s�ai,s

† ai,s − Js�ai,s
† ai+1,s + H.c.�	 , �57�

of the H-type CRA is defined by the hopping constant Js and
the creation operator ai,s

† of the ith single mode cavity with
frequency �0

�s� in the CRA s, where Vs is the hybridization
constant of localized atom photon in the zeroth site of the
CRA s. Here, s denotes the CRA 1 or the CRA 2 as shown in
Fig. 10. In the k space, Hamiltonian �57� becomes

HH = ��e��e� + �
k,s=1,2

�k
�s�ak,s

† ak,s +
1

L

�
k,s=1,2

�Vsak,s
† �− + H.c.� ,

�58�

where the dispersion relation of photon is �k
�s�=�0

�s�

−2Js cos k.
In the high energy limits k→ �� /2 and �0

�s�=�Js, the
dispersion relation of the photon is �k

�s��vs�k� with the group
velocity vs=2Js. In the case, Hamiltonian �58� describes the
photon transport in the H-type waveguide. For convenience,
we use the operators,

ak,e
�s� =

1

2

�ak,s + a−k,s� ,

ak,o
�s� =

1

2

�ak,s − a−k,s� , �59�

to rewrite Hamiltonian �58� as HH=HH
�e�+HH

�o�, where

HH
�o� = �

k�0,s=1,2
�k

�s�ak,o
�s�†ak,o

�s� �60�

for the o photon and

HH
�e� = ��e��e� + �

k�0,s=1,2
�k

�s�ak,e
�s�†ak,e

�s�

+
1

L

�
k�0,s=1,2

�V̄sak,e
�s�†�− + H.c.� �61�

for the e photon with the effective coupling V̄s=
2Vs. Be-
cause Hamiltonian HH

�o� is diagonalized in the bases �ak,o
�s�†�0��

so we only need to find the S matrix for the e photon.

A. LSZ reduction for e-photon scattering in the H-type
waveguide

For calculating the multiphoton S matrix, we only con-
sider the Green’s function and the S matrix for the e photon
in the H-type waveguide. In this case, the 2n-point photonic
Green’s function reads

Gp1,. . .,pn;k1,. . .,kn

j1,. . .,jn;i1,. . .,in �t1�, . . . tn�;t1, . . . tn�

= �Tap1,e
�j1� �t1�� . . . apn,e

�jn� �tn��ak1,e
�i1�†�t1� . . . akn,e

�in�†�tn��H. �62�

The S-matrix element is the overlap,

H-Type CRA

e

g

two level atom

CRA-2

CRA-1

FIG. 10. �Color online� The schematic for the H-type CRA is
shown in this figure. The red circle denotes the two-level atom. The
blue dots denote the coupled resonators.
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out�f �i�in = in�f �S�i�in, �63�

of incoming wave �i�in=ak1,e
�i1�† . . .akn,e

�in�†�0� and outgoing wave
states �f�out. As shown in Sec. III, the basic part of the S
matrix is the T matrix. The relation

iT2n
�H� = G2n

�H���
r=1

n

�2�G0ir
−1�kr�G0jr

−1 �pr�	�
os

, �64�

between the 2n-point T-matrix element

T2n
�H� = Tp1,. . .,pn;k1,. . .,kn

j1,. . .,jn;i1,. . .,in , �65�

and the 2n-point Green’s function,

G2n
�H� = Gp1,. . .,pn;k1,. . .,kn

j1,. . .,jn;i1,. . .,in , �66�

is determined by the LSZ reduction approach, where

G0ir
�kr� =

i

�r − �kr

�ir� + i0+
, �67�

is the Green’s function of the free photon and Gp1,. . .,pn;k1,. . .,kn

j1,. . .,jn;i1,. . .,in

is the Fourier transformation of Eq. �62�. Here, the subscript
os denotes the on-shell limits �→�k

�i�. Then, the 2n-point
Green’s function

Gp1,. . .,pn;k1,. . .,kn

j1,. . .,jn;i1,. . .,in = � �− 1�n�2n ln Z��k
s,�k

s�	
��p1

j1� . . . ��pn

jn���k1

i1 . . . ��kn

in �
�k

s=�k
s�=0

,

�68�

is obtained by the generating functional

ln Z��k
s,�k

s�	 = Tr ln M��,��	 − i�
s
� d�dk

��k
s����2

� − �k
�s� + i0+ ,

�69�

where we have used the matrix

M��,��	 = ��� − � + i�e/2	���� ��� − ���

�†��� − �� �� − i0+�����
� ,

�70�

and the field variable

���� = �
s
� dk

2�

V̄s�k
s���

� − �k
�s� + i0+ . �71�

Here, the atom decay rate is �e=�sV̄s
2 /vs. Finally, together

with Eqs. �68� and �69�, Eq. �64� gives the basic element of
the S matrix, i.e., T matrix. Using the T-matrix elements, we
can find the all S-matrix elements. For convenience, we let
v1=v2=1 below.

B. Single and two e-photon S matrices

We consider the single and the two e-photon S matrices in
this subsection. The diagrammatic analysis shows that the
single e-photon S-matrix element,

Sp;k
j;i = �kp�ij + iTp;k

j;i , �72�

consists of the T-matrix element

iTp;k
j;i = Gp;k

j;i �2�G0j
−1�p�G0i

−1�k�	�os, �73�

where k and p are the momenta of the incoming photon in
the waveguide i and the outgoing photon in the waveguide j,
respectively. Together with Eqs. �68� and �69�, we obtain the
single e-photon T-matrix element as

iTp;k
j;i =

− iV̄iV̄j

k − � + i
1

2
�e

�kp. �74�

Next, we consider the special case: the incident e photon is
prepared in the waveguide 1. Then, the S-matrix elements are
Sp;k

1;1= tk
�11��kp and Sp;k

2;1= tk
�21��kp for

tk
�11� =

k − � + i
1

2
�V̄2

2 − V̄1
2�

k − � + i
1

2
�V̄2

2 + V̄1
2�

, �75�

and

tk
�21� =

− iV̄1V̄2

k − � + i
1

2
�e

. �76�

We can verify the unitarity of the S matrix as

�tk
�11��2 + �tk

�21��2 = 1. �77�

For the two-photon case, the diagrammatic analysis and
the LSZ reduction approach give the two e-photon S-matrix
element

Sp1p2;k1k2

j1,j2;i1,i2 = Sp1k1

j1;i1Sp2k2

j2;i2 + Sp2k1

j2;i1Sp1k2

j1;i2 + iTp1p2;k1,k2

j1,j2;i1,i2 , �78�

with the two-photon T-matrix element

iTp1,p2;k1,k2

j1,j2;i1,i2 = Gp1,p2;k1,k2

j1,j2;i1,i2 ��
r=1

2

�2�G0ir
−1�kr�G0jr

−1 �pr�	�
os

,

�79�

where kr and pr are the momenta of the incoming photons in
the waveguide ir and the outgoing photons in the waveguide
jr, respectively. Together with Eqs. �68� and �69�, the two
e-photon T-matrix element becomes

iTp1p2;k1,k2

j1,j2;i1,i2 =
iV̄i1

V̄i2
V̄j1

V̄j2
�k1 + k2 − 2�H�

��p2 − �H��k1 − �H�

�
�k1+k2,p1+p2

�p1 − �H��k2 − �H�
, �80�

with �H=�− i�e /2.
Finally, we consider the special case: the two incident e

photons are prepared in the waveguides 1 and 2, respectively,
i.e., the incident state �in� is �in�=ak1,e

�1�†ak2,e
�2�†�0�. In this case,

Eqs. �78� and �80� give the S-matrix elements as
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Sp1p2;k1k2

1,1;1,2 = tk1

�11�tk2

�21���k1p1
�k2p2

+ �k1p2
�k2p1

�

+
iV̄2V̄1

3

�

�k1 + k2 − 2�H�
�p2 − �H��k1 − �H�

�k1+k2,p1+p2

�p1 − �H��k2 − �H�
,

�81�

Sp1p2;k1k2

1,2;1,2 = tk1

�11�tk2

�22��k1p1
�k2p2

+ tk1

�21�tk2

�21��k1p2
�k2p1

+
iV̄1

2V̄2
2

�

�k1 + k2 − 2�H�
�p2 − �H��k1 − �H�

�k1+k2,p1+p2

�p1 − �H��k2 − �H�
,

�82�

and

Sp1p2;k1k2

2,2;1,2 = tk1

�21�tk2

�22���k1p1
�k2p2

+ �k1p2
�k2p1

�

+
iV̄1V̄2

3

�

�k1 + k2 − 2�H�
�p2 − �H��k1 − �H�

�k1+k2,p1+p2

�p1 − �H��k2 − �H�
.

�83�

Here, tk
�22� is defined by

tk
�22� =

k − � + i
1

2
�V̄1

2 − V̄2
2�

k − � + i
1

2
�V̄1

2 + V̄2
2�

. �84�

C. State of the outgoing photons

With the help of the S-matrix elements obtained in the
above subsection, we find that, for the single incident e pho-
ton prepared in the waveguide 1, the out state of the scattered
photon is

�out� = �tk
�11�ak,e

�1�† + tk
�21�ak,e

�2�†��0� . �85�

As functions of the incident momentum k, the tk
�11� and tk

�21�

are plotted in Fig. 11. We find that if V̄2
2= V̄1

2, the transmission

coefficient tk
�11� equals to zero when k=� �Fig. 12�. This

result displays that the outgoing e photon is only emitted
from the waveguide 2 when the incident e photon is in reso-
nance with the atom.

For the case of the two incident e photons prepared in the
different waveguides, i.e., the state �in� of the incident pho-
tons is

�in� = ak1,e
�1�†ak2,e

�2�†�0� . �86�

From Eqs. �81�–�83�, we obtain the out state of the scattered
photons as

�out� = �out�11 + �out�12 + �out�12, �87�

with three parts: �a� the state of the two outgoing e photons
both in the waveguide 1 is

�out�11 = �
p1�p2

Sp1p2;k1k2

1,1;1,2 ap1,e
�1�†ap2,e

�1�†�0� . �88�

�b� The state of the two outgoing e photons in the differ-
ent waveguides is

�out�12 = �
p1,p2

Sp1p2;k1k2

1,2;1,2 ap1,e
�1�†ap2,e

�2�†�0� . �89�

�c� The state of the two outgoing e photons both in the
waveguide 2 is

�out�22 = �
p1�p2

Sp1p2;k1k2

2,2;1,2 ap1,e
�2�†ap2,e

�2�†�0� . �90�

In the spatial representation, the state of the outgoing e pho-
ton,

�out� =� dx1dx2eiExc�g11�xc,x�ax1,e
�1�†ax2,e

�1�† + g12�xc,x�ax1,e
�1�†ax2,e

�2�†

+ g22�xc,x�ax1,e
�2�†ax2,e

�2�†	�0� , �91�

is determined by the wave function in the center-of-mass
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FIG. 11. �Color online� The transmission coefficients in the

waveguides 1 and 2: V̄1=1, V̄2=2. The energy-level spacing � is
taken as the unit.
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FIG. 12. �Color online� The transmission coefficients in the

waveguides 1 and 2: V̄1= V̄2=2. The energy-level spacing � of the
atom is taken as the unit. If the incident photon is in resonance with
the atom, the transmission coefficient in the waveguide 1 equals
zero and that in the waveguide 2 equals one. This result displays
that the outgoing photon only emits from waveguide 2.

LEHMANN-SYMANZIK-ZIMMERMANN REDUCTION… PHYSICAL REVIEW B 79, 205111 �2009�

205111-11



frame xc= �x1+x2� /2 with the relative coordinate x=x1−x2:
�a� the wave function g11�x� of two photons both in the
waveguide 1 is obtained as

g11�x� =
1

2�
�tk1

�11�tk2

�21� cos��kx� −
4V̄2V̄1

3ei�E/2−�H��x�

4�k
2 − �E − 2�H�2
 .

�92�

�b� The wave function g12�x� of two photons in the differ-
ent waveguides is obtained as

g12�x� =
1

2�
��tk1

�11�tk2

�22� + tk1

�21�tk2

�21��cos��kx� + i�tk1

�11�tk2

�22�

− tk1

�21�tk2

�21��sin��kx� −
8V̄1

2V̄2
2ei�E/2−�H��x�

4�k
2 − �E − 2�H�2
 . �93�

�c� The wave function g22�x� of the two photons both in
the waveguide 2 is obtained as

g22�x� =
1

2�
�tk1

�21�tk2

�22� cos��kx� −
4V̄1V̄2

3ei�E/2−�H��x�

4�k
2 − �E − 2�H�2
 ,

�94�

where we define E=k2+k1 and �k= �k1−k2� /2.

D. Quantum statistics by second-order correlation functions

Finally, we analyze the quantum statistical features of the
scattered photon by the second-order correlation functions of
photons. The second-order correlation function of the outgo-
ing e photon is defined by

Gij
�2��x1,x2� = �out�ax1,e

�i�†ax2,e
�j�†ax2,e

�j� ax1,e
�i� �out� . �95�

It is straightforward to prove that the second-order correla-
tion is just �gij�x��2 by substituting Eq. �91� into Eq. �95�.
Thus the wave function gij�x� displays the quantum statistic
characters of the scattered photons. Here, the second-order
correlation function �gij�x��2 is plotted in Figs. 13 and 14 for
different system parameters. In these figures, we take the
energy-level spacing of the atom as unit and the total energy

of the incident two e photons equal to two, i.e., two times of
the energy-level spacing of the atom.

Figure 13 shows that if V̄1= V̄2=2, the outgoing two e
photons attract with each other through the interaction with
the atom. This displays the obvious bunching behavior of
photons. In Fig. 13�a�, the two incident photons are both in
resonance with the atom so �g11�x��2= �g22�x��2. Figure 14

shows that when V̄1� V̄2, such as V̄1=1 and V̄2=2, if the
outgoing two e photons are emitted from the same wave-
guide they attract with each other and display the photon
bunching behavior. If the outgoing two e photons are emitted
from the different waveguides, they display the photon
bunching behavior when the two photons are both in reso-
nance with the atom.

By adjusting the difference �V= V̄2− V̄1 between the in-

teractions V̄1 and V̄2, we find that: �a� if the two photons are
both in resonance with the atom, the out-going photons al-
ways display the photon bunching behavior; however, when
�V increases the photon bunching behavior becomes vague,
and in the limit �V→
, �g11�x��2, �g22�x��2, and �g12�x��2 all
tend to become constants which implies the photon bunching
behavior disappears. �b� If the two photons are not resonant
with the atom and the total energy equals to 2�, the func-
tions �g11�x��2, �g22�x��2, and �g12�x��2 exhibit the oscillation
behaviors. As �V→
, �g11�x��2, �g22�x��2, and �g12�x��2 all
tend to become constants and the oscillation behavior disap-
pears.

To summarize this section, we have used the LSZ reduc-
tion approach to investigate the single-photon transmission
and the quantum statistic properties of the two-photon trans-
port in the H-type waveguide. The transport of multiphoton
in the more complex CRA can be investigated systematically
by the same method.

VII. SUMMARY

In conclusion, we have demonstrated that the LSZ ap-
proach is feasible to be generalized for studying the complex
nanostructure for multiphoton transport, such as the multi-
photon transport problems in the complex CRA systems.
Concretely, the single-, two-, and three-photon transports in
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2

�g12�x��
2

�g11�x��
2

FIG. 13. �Color online� The correlations of the two photons in

the center-of-mass frame: V̄1= V̄2=2. The energy-level spacing � of
the atom is taken as the unit. �a� The total energy of the incident
photons E is two, and the difference �k of two incident energies is
zero. In this case, the two photons are both in resonance with the
atom. �b� The total energy of the incident photons E is two, and the
difference �k of two incident energies is one.
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FIG. 14. �Color online� The correlations of the two photons in

the center-of-mass frame: V̄1=1 and V̄2=2. The energy-level spac-
ing � of the atom is taken as the unit. �a� The total energy of the
incident photons E is two, and the difference �k of two incident
energies is zero. In this case, the two photons are both in resonance
with the atom. �b� The total energy of the incident photons E is two,
and the difference �k of two incident energies is 1.8.
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the T-type waveguide are investigated by the LSZ approach
in detail. Some of our results are in accord with the known
results obtained by other methods for the simple case. Be-
sides, the scattering of three photons in the T-type waveguide
and the quantum statistical characters of two photons in the
H-type waveguide are systematically studied by this ap-
proach. For the single-photon transmission in the T-type
CRA, we find two bound states: the lower bound state is
below the bottom of the photon energy band while the upper
bound state is above the top of the photon energy band. We
also give the three-photon scattering wave function by the
LSZ approach. Obviously, the LSZ reduction approach can
be carried out to investigate the N-photon transport in the
more complex architectures constructed by the T-type CRA.

Finally, we emphasize that the LSZ reduction approach
can be extended to investigate not only the multiphoton scat-
tering problem in the quantum optics but also the scattering
processes in other fields, such as the Kondo scattering in the
condensed-matter physics and the Feshbach resonance16,39 in
the atomic physics. It is more interesting to simulate the
scattering processes in the condensed-matter physics or the
atomic physics by the complex CRA architectures. By mak-
ing use of the LSZ reduction approach, we can study the
photon scattering in these artificial CRA architectures to un-
derstand the realistic scattering processes as well as electron
transport40–42 in the condensed-matter physics.
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APPENDIX: MULTIPHOTON EIGENSTATES IN THE
T-TYPE CRA

In the appendix, we utilize the scattering Bethe ansatz37,38

to obtain the multiphoton eigenstates. For convenience, we
start with Hamiltonian �41�. In real space, Hamiltonian �41�
is rewritten as HT

e =Hp+Ha+Hint, where the Hamiltonian of
photons is

Hp = − i� dx	†�x��x	�x� , �A1�

and the Hamiltonian of two-level atom is Ha=��e��e�. The
interaction Hamiltonian Hint is

Hint = V̄� dx��x��	�x��+ + H.c.	 . �A2�

Here,

	�x� =
1

L

�
k

ak,ee
ikx �A3�

is the Fourier transformation of ak,e. The single-photon
eigenstates are constructed by

��p� = �� dxfp�x�	†�x� + ep�+
�0� . �A4�

The Schrödinger equation HT
e ��p�= p��p� gives

�p� =� dxeipx�p
†�x��0� , �A5�

where we define an operator

�p
†�x� = ���− x� + ei�p��x�		†�x� + ��x�ep�+, �A6�

which is the single-photon creation operator 	†�x� when V̄

tends to zero. However, when V̄ is not zero, �p
†�x� neither

satisfies the bosonic commutation relation nor the fermionic
commutation relation. Here, ep and fp�x� are

ep =
V

p − � + i�/2
, �A7�

fp�x� = eipx���− x� + ei�p��x�	 , �A8�

where �= V̄2 and the phase shift,

ei�p =
p − � − i�/2
p − � + i�/2

, �A9�

is the same as tk �Eq. �45�	.
For studying the multiphoton eigenstates, we use the scat-

tering Bethe ansatz to assume the N-photon eigenstate

���N = �
P

AP� �Dx	ei�jkPj
xj�

i=1

N

�kPi

† �xi��0� . �A10�

Here, �Dx	 denotes �i=1
N ��xi+1−xi�dxi and P

= �P1 , P2 , . . . , PN� is a permutation of �1,2 , . . . ,N�. The
Schrödinger equation gives the relation AP /AP�=ei��Pj,Pj+1�,
where the phase shift is

ei��Pj,Pj+1� =
kPj

− kPj+1
− i�

kPj
− kPj+1

+ i�
, �A11�

where P= �P1 , P2 , . . . , Pj , Pj+1 , . . . , PN� and P�
= �P1 , P2 , . . . , Pj+1 , Pj , . . . , PN�. As an example, we give the
explicit expression of the three-photon eigenstate

���N=3 =� ��x3 − x2���x2 − x1��
i

dxi�1 + S12 + S23 + S12S13

+ S23S13 + S12S13S23	eik1x1+ik2x2+ik3x3

� �k1

† �x1��k2

† �x2��k3

† �x3��0� , �A12�

where

Sij =
kj − ki − i�

kj − ki + i�
Pij , �A13�

and Pijf�. . . ,ki , . . . ,kj , . . .�= f�. . . ,kj , . . . ,ki , . . .�. Here, f is any
given function.
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