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We study exactly both the ground-state fidelity susceptibility and bond-bond correlation function in the
Kitaev honeycomb model. Our results show that the fidelity susceptibility can be used to identify the topo-
logical phase transition from a gapped A phase with Abelian anyon excitations to a gapless B phase with
non-Abelian anyon excitations. We also find that the bond-bond correlation function decays exponentially in
the gapped phase, but algebraically in the gapless phase. For the former case, the correlation length is found to
be 1 /�=2 sinh−1��2Jz−1 / �1−Jz��, which diverges around the critical point Jz= �1 /2�+.
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I. INTRODUCTION

Quite recently, a great deal of effort �1–16� has been de-
voted to the role of fidelity, a concept borrowed from
quantum-information theory �17�, in quantum phase transi-
tions �QPTs� �18�. The motivation is quite obvious. Since the
fidelity is a measure of similarity between two states, the
change of the ground-state structure around the quantum
critical point should result in a dramatic change in the fidel-
ity across the critical point. Such a fascinating prospect has
been demonstrated in many correlated systems. For example,
in the one-dimensional XY model, the fidelity shows a nar-
row trough at the phase transition point �2�. Similar proper-
ties were also found in fermionic �3� and bosonic systems
�4�. The advantage of the fidelity is that, since the fidelity is
a space geometrical quantity, no a priori knowledge of the
order parameter and symmetry breaking is required in stud-
ies of QPTs.

Nevertheless, the properties of the fidelity are mainly de-
termined by its leading term �7,8�, i.e., its second derivative
with respect to the driving parameter �or the so-called fidelity
susceptibility �8��. According to the standard perturbation
method, it has been shown that the fidelity susceptibility ac-
tually is equivalent to the structure factor �fluctuation� of the
driving term in the Hamiltonian �8�. For example, if we fo-
cus on thermal phase transitions and choose the temperature
as the driving parameter, the fidelity susceptibility, extracted
from the mixed-state fidelity between two thermal states �6�,
is simply the specific heat �7,8�. From this point of view, the
fidelity approach to QPTs seems still to be within the frame-
work of the correlation function approach, which is intrinsi-
cally related to the local order parameter.

However, some systems cannot be described in a frame-
work built on the local order parameter. This might be due to
the absence of preexisting symmetry in the Hamiltonian,
such as topological phase transitions �19� and Kosterlitz-
Thouless phase transitions �20�. For the latter, since the tran-
sition is of infinite order, it has already been pointed out that
the fidelity might fail to identify the phase transition point

�8,11�. Therefore, it is an interesting issue to address the role
of fidelity in studying topological phase transitions.

The Kitaev honeycomb model was first introduced by Ki-
taev in search of topological order and anyonic statistics. The
model is associated with a system of 1/2 spins which are
located at the vertices of a honeycomb lattice. Each spin
interacts with three nearest-neighbor spins through three
types of bonds, called x �y , z� bonds depending on their
direction. The model Hamiltonian �21� is as follows:

H = − Jx �
x bonds

� j
x�k

x − Jy �
y bonds

� j
y�k

y − Jz �
z bonds

� j
z�k

z

= − JxHx − JyHy − JzHz, �1�

where j ,k denote the two ends of the corresponding bond,
and Ja and �a �a=x ,y ,z� are dimensionless coupling con-
stants and Pauli matrices, respectively. Such a model is
rather artificial. However, its potential application in topo-
logical quantum computation has made it a focus of research
in recent years �21–32�.

The ground state of the Kitaev honeycomb model consists
of two phases, i.e., a gapped A phase with Abelian anyon
excitations and a gapless B phase with non-Abelian anyon
excitations. The transition has been studied by various ap-
proaches. For example, it has been shown that a kind of
long-range order exists in the dual space �26�, such that basic
concepts of Landau’s theory of continuous phase transitions
might still be applied. In real space, however, the spin-spin
correlation functions vanish rapidly with increasing distance
between two spins. Therefore, the transition between the two
phases is believed to be of topological type due to the ab-
sence of a local order parameter in real space �21�.

In this work, we first try to investigate the topological
QPT occurring in the ground state of the Kitaev honeycomb
model in terms of the fidelity susceptibility. We find that the
fidelity susceptibility can be used to identify the topological
phase transition from a gapped phase with Abelian anyon
excitations to gapless phase with non-Abelian anyon excita-
tions. Various scaling and critical exponents of the fidelity
susceptibility around the critical points are obtained through
a standard finite-size scaling analysis. These observations
from the fidelity approach are a little surprising. Our earlier
thought was that the fidelity susceptibility, which is a kind of*sjgu@phy.cuhk.edu.hk
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structure factor obtained by a combination of correlation
functions, can hardly be related to the topological phase tran-
sition, since the latter cannot be described by the correlation
functions of local operators. So our second motivation fol-
lowing from the first one is to study the dominant correlation
function appearing in the definition of the fidelity suscepti-
bility, i.e., the bond-bond correlation function. We find that
the correlation function decays algebraically in the gap-
less phase, but exponentially in the gapped phase. For the
latter, the correlation length takes the form 1 /�
=2 sinh−1��2Jz−1 / �1−Jz�� along a given evolution line.
Therefore, the divergence of the correlation length around
the critical point Jz= �1 /2�+ is also a signature of the QPT.

We organize our work as follows. In Sec. II, we introduce
briefly the definition of the fidelity susceptibility in the
Hamiltonian parameter space; then we diagonalize the
Hamiltonian based on Kitaev’s approach and obtain the ex-
plicit form of the Riemann metric tensor, from which the
fidelity susceptibility along any direction can be obtained.
The critical and scaling behaviors of the fidelity susceptibil-
ity are also studied numerically. In Sec. III, we explicitly
calculate the bond-bond correlation functions in both phases.
Its long-range behavior and the correlation length in the
gapped phase are studied both analytically and numerically.
Section IV includes a brief summary.

II. FIDELITY SUSCEPTIBILITY IN THE GROUND STATE

To study the fidelity susceptibility, we notice that the
structure of the parameter space of the Hamiltonian �1� is
three dimensional. In this space, we can always let the
ground state of the Hamiltonian evolve along a certain path
in the parameter space, i.e.,

Ja = Ja��� , �2�

where � is a kind of driving parameter along the evolution
line. We then extend the definition of fidelity to this arbitrary
line in high-dimensional space. Following Ref. �2�, the fidel-
ity is defined as the overlap between two ground states,

F = ���0���	�0�� + ���
� , �3�

where �� is the magnitude of a small displacement along the
tangent direction at �. Then the fidelity susceptibility along
this line can be calculated as

�F = lim
��→0

− 2 ln Fi

��2 = �
ab

gabnanb, �4�

where na=�Ja /�� denotes the tangent unit vector at the given
point, and gab is the Riemann metric tensor introduced by
Zanardi, Giorda, and Cozzini �7�. For the present model, we
have

gab = �
n

��n���	Ha	�0���
��0���	Hb	�n���

�En − E0�2 , �5�

where 	�n���
 is the eigenstate of the Hamiltonian with en-
ergy En. Clearly, gab does not depend on the specific path
along which the system evolves. However, once gab are ob-

tained, the fidelity susceptibility is just a simple combination
of gab together with a unit vector which defines the direction
of system evolution in the parameter space.

According to Kitaev �21�, the Hamiltonian �1� can be di-
agonalized exactly by introducing Majorana fermion opera-
tors to represent the Pauli operators as

�x = ibxc, �y = ibyc, �z = ibzc , �6�

where the Majorana operators satisfy A2=1, AB=−BA for
A ,B� �bx ,by ,bz ,c� and A�B, and also bxbybzc	�
= 	�
 to
ensure the commutation relations of spin operators. Then the
Hamiltonian can be written as

H =
i

2�
j,k

ûjkJajk
cjck. �7�

Since the operators ûjk= ibj
ajkbk

ajk satisfy �ûjk ,H�=0,
�ûjk , ûml�=0, and ûjk

2 =1, they can be regarded as generators
of the Z2 symmetry group. Therefore, the whole Hilbert
space can be decomposed into common eigenspaces of ûjk;
each subspace is characterized by a group of ujk= 	1. The
spin model is transformed to a quadratic Majorana fermionic
Hamiltonian

H =
i

2�
j,k

ujkJajk
cjck. �8�

Here we restrict ourselves to only the vortex-free subspace
with translational invariants, i.e., all ujk=1. After Fourier
transformation, we get the Hamiltonian of a unit cell in the
momentum representation �21�,

H = �
q
a−q,1

a−q,2
�T 0 if�q�

− if�q�� 0
�aq,1

aq,2
� , �9�

where q= �qx ,qy�,

aq,
 =
1

�2L2�
r

e−iq·rcr,
, �10�

r refers to the coordinate of a unit cell, 
 to a position type
inside the cell, and

f�q� = �q + i�q,

�q = Jx cos qx + Jy cos qy + Jz,

�q = Jx sin qx + Jy sin qy . �11�

Here, we set L to be an odd integer; then the system size is
N=2L2. The momenta take the values

qx�y� =
2n

L
,n = −

L − 1

2
, . . . ,

L − 1

2
. �12�

The above Hamiltonian can be rewritten using fermionic op-
erators as

H = �
q

��q
2 + �q

2�Cq,1
† Cq,1 − Cq,2

† Cq,2� . �13�

Therefore, we have the ground state
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	�0
 = �
q

Cq,2
† 	0
 = �

q

1
�2
��q

2 + �q
2

�q + i�q
a−q,1 + a−q,2�	0
 ,

�14�

with the ground-state energy

E0 = − �
q

��q
2 + �q

2 . �15�

The fidelity of the two ground states at � and �� can be
obtained as

F2 = �
q

1

2
1 +

�q�q� + �q�q�

EqEq�
� = �

q
cos2��q − �q�� �16�

with

cos�2�q� =
�q

Eq
, sin�2�q� =

�q

Eq
,

cos�2�q�� =
�q�

Eq�
, sin�2�q�� =

�q�

Eq�
. �17�

The Riemann metric tensor can be expressed as

gab = �
q
 ��q

�Ja
� ��q

�Jb
� , �18�

where

��2�q�
�Jx

=
Jz sin qx + Jy sin�qx − qy�

�q
2 + �q

2

�q

	�q	
,

��2�q�
�Jy

= −
Jx sin�qx − qy� − Jz sin qy

�q
2 + �q

2

�q

	�q	
,

��2�q�
�Jz

= −
Jx sin qx + Jy sin qy

�q
2 + �q

2

�q

	�q	
. �19�

Clearly, with these equations, we can in principle calculate
the fidelity susceptibility along any direction in the param-
eter space according to Eq. �4�. Here, we would like to point
out that the same results can be obtained from the general-
ized Jordan-Wigner transformation used first by Feng,
Zhang, and Xiang �26�.

Following Kitaev �21�, we restrict our studies to the plane
Jx+Jy +Jz=1 �see the large triangle in Fig. 1�. According to
his results, the plane consists of two phases, i.e., a gapped A
phase with Abelian anyon excitations and a gapless B phase
with non-Abelian excitations. The two phases are separated
by three transition lines, i.e., Jx=1 /2, Jy =1 /2, and Jz=1 /2,
which form a small triangle in the B phase.

Generally, we can define an arbitrary evolution line on the
plane. Without loss of generality, we first choose the line as
Jx=Jy �see the dashed line in the triangle of Fig. 1�. Then the
fidelity susceptibility along this line can be simplified as

�F =
1

16�
q
 sin qx + sin qy

�q
2 + �q

2 �2

. �20�

The numerical results of different system sizes are shown in
Fig. 1. First of all, the fidelity susceptibility per site, i.e.,
�F /N, diverges quickly with increasing system size around
the critical point Jz=1 /2. This property is similar to the fi-
delity susceptibility in other systems, such as the one-
dimensional Ising chain �2� and the asymmetric Hubbard
model �12�. Second, �F /N is an intensive quantity in the A
phase �Jz�1 /2�, while in the B phase, the fidelity suscepti-
bility also diverges with increasing system size. Third, the
fidelity susceptibility shows many peaks in the B phase; the
number of peaks increases linearly with the system size L
�see the left upper inset of Fig. 1�. The phenomena of fidelity
susceptibility per site in the B phase have not been found in
other systems previously, to our knowledge, so that they are
rather impressive.

To study the scaling behavior of the fidelity susceptibility
around the critical point, we perform a finite-size scaling
analysis. Since the fidelity susceptibility in the A phase is an
intensive quantity, the fidelity susceptibility in the thermody-
namic limit scales as �12�

�F

N
�

1

	Jz − Jz
c	�

�21�

around Jz
c=1 /2. Meanwhile, the maximum point of �F at Jz

=Jz
max for a finite sample behaves as

�F

N
� L�, �22�

with �=0.507	0.0001 �see the inset of Fig. 2�. According
to the scaling ansatz, the rescaled fidelity susceptibility
around its maximum point at Jz

max is just a simple function of
the rescaled driving parameter, i.e.,
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6
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(χ
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(χ
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Jz

1xJ = 1yJ =

1zJ =

1xJ = 1yJ =

1zJ =
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L=303
L=909

ln
(χ
F/N
)

Jz

FIG. 1. �Color online� Fidelity susceptibility as a function of Jz

along the dashed line shown in the triangle for various system sizes
L=101,303,909. Both upper insets correspond to enlarged pictures
of two small portions.
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�F
max − �F

�F
= f„L��Jz − Jz

max�… . �23�

where f�x� is a universal scaling function and does not de-
pend on the system size, and � is the critical exponent. The
function f�x� is shown in Fig. 2. Clearly, the rescaled fidelity
susceptibilities of various system sizes fall onto a single line
for a specific �=0.96	0.005. Then the critical exponent �
can be obtained as

� =
�

�
= 0.528 	 0.001. �24�

One of the most interesting observations is that a huge
number of peaks appear in the B phase. The scaling analysis
shows that the number of peaks is proportional to the system
size. Physically, a peak means that the ground state cannot
adiabatically evolve from one side of the peak to the other
side easily because the two ground states have distinct fea-
tures. From this point of view, the ground state in the B
phase might be stable to a adiabatic perturbation. Moreover,
the existence of many peaks can also be reflected by recon-
struction of the energy spectra. For this purpose, we choose a
small portion of the evolution line and plot both the fidelity
susceptibility and a few low-lying excitations in Fig. 3. Since
the fidelity is inversely proportional to the energy gap �Eq.
�5��, the location of each peak corresponds to a gap mini-
mum.

Similarly, we can also choose the system evolution line as
Jz=1 /3; the fidelity susceptibility then takes the form

�F =
1

36�
q
 �sin qx − sin qy� + 2 sin�qx − qy�

�q
2 + �q

2 �2

. �25�

The numerical results for this case are shown in Fig. 4. The
results are qualitatively similar to those of previous cases. In
the B phase, there still exist many peaks. Both the number
and the magnitude of the peaks increase with the system size,

while in the A phase, the fidelity susceptibility becomes an
intensive quantity.

III. LONG-RANGE CORRELATION AND FIDELITY
SUSCEPTIBILITY

Follow You et al. �8�, the fidelity susceptibility is a com-
bination of correlation functions. Precisely, for a general
Hamiltonian

H = H0 + �HI, �26�

the fidelity susceptibility can be calculated as

�F =� ����0	HI���HI�0�	�0
 − ��0	HI	�0
2�d� , �27�

with � being the imaginary time and

HI��� = eH����HIe
−H����.

Therefore, the divergence of the fidelity susceptibility at the
critical point implies the existence of a long-range correla-
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0.0
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Fm
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-χ
F)
/χ
F

Lν(Jz-Jz
max)

ν=0.96

FIG. 2. �Color online� Finite-size scaling analysis for the case of
power-law divergence for system sizes L=201,301, . . . ,901. The
fidelity susceptibility, considered as a function of system size and
driving parameter, is a function of L��Jz−Jz

max� only and has the
critical exponent �=0.96.
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FIG. 3. �Color online� Fidelity susceptibility and a few low-
lying excitations as a function of Jz in a small portion of the evo-
lution line for system size L=51.
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FIG. 4. �Color online� Fidelity susceptibility as a function of
Jx=2 /3−Jy along the dashed line shown in the triangle for various
system sizes L=101,303,909.
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tion function. Without loss of generality, if we still restrict
ourselves to the plane Jx+Jy +Jz=1 and choose Jz �Jx=Jy� as
the driving parameter, the bond-bond correlation function is
defined as

C�r1,r2� = ��r1,1
z �r1,2

z �r2,1
z �r2,2

z 
 − ��r1,1
z �r1,2

z 
��r2,1
z �r2,2

z 
 .

�28�

Here the subscripts r1 ,1 and r1 ,2 denote the two ends of the
single z bond at r1= �x ,y�. In the vortex-free case, through
Eqs. �6�, �10�, and �14�, the spin operators �r1,1

z �r1,2
z can be

expressed in the form of fermion operators. So we finally get

��r1,1
z �r1,2

z 
 = ��r2,1
z �r2,2

z 
 =
1

N
�
q

�q

Eq
�29�

and

��0	�r1,1
z �r1,2

z �r2,1
z �r2,2

z 	�0


=
1

N2 �
q,q�

�cos��q − q���r1 − r2�� − 1�
��q�q� − �q�q��

EqEq�

�30�

with q�q� and r1�r2. The same results can also be ob-
tained by using the Jordan-Wigner transformation method
�26,27�.

We show the dependence of the correlation function Eq.
�28� on the distance for a finite sample of L=100 in Fig. 5.
Obviously, the lines can be divided into two groups. In the
gapless phase �Jz�1 /2�, the correlation function decays al-
gebraically, while in the gapped phase �Jz�1 /2�, it decays
exponentially. If Jz�1 /2, the denominator in Eq. �30� has
two zero points, which are of order 1 /N in the large-N limit.
Their contribution causes the summation to be finite in the
thermodynamic limit. Then, using the stationary phase
method, we can evaluate the exponent of the correlation
function at long distance to be 4, i.e.,

C�r1,r2� �
1

	r1 − r2	4
. �31�

From Fig. 5, the average slope of the top three lines around
r=10 is estimated to be 4.05, which is slightly different from
4. Nevertheless, we would rather interpret the difference as
due to both finite-size effects and numerical error. On the
other hand, if Jz�1 /2, the phase is gapped and the denomi-
nator in Eq. �30� does not have a zero point on the real axis.
Therefore, the whole summation is strongly suppressed ex-
cept for the case of small 	r1−r2	, whose range actually de-
fines the correlation length. In order to evaluate the correla-
tion, we need to extend the integrand �in the thermodynamic
limit� in Eq. �30� to the whole complex plane, where we can
find two singular points. Using the steepest descent method,
we can evaluate the correlation length to be

1

�
= 2 sinh−1

�2Jz − 1

1 − Jz
. �32�

Obviously, the correlation length becomes divergent as Jz
→0.5+. This property can also be used to signal the QPT
occurring in the Kitaev honeycomb model in addition to the
fidelity and Chern number �21�. The correlation length we
obtained is the same as that of the string operators �27�,
which, however, is a nonlocal operator.

Although it is not easy to calculate the fidelity suscepti-
bility from the correlation function directly due to the dy-
namic term in Eq. �27�, our conjecture is confirmed for the
present model. That is, the divergence of the fidelity suscep-
tibility is related to the long-range correlations. Figure 6 is
illustrative. The correlation function at r1−r2= �L /2,L /2�, in
spite of its smallness, remains nonzero in the region Jz
�1 /2, but it vanishes in Jz�1 /2. For the former, the oscil-
lating structures of the two lines meet each other.

IV. SUMMARY AND DISCUSSION

In summary, we have studied the critical behavior of the
fidelity susceptibility where a topological phase transition
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-10

-5
ln
(| C
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1,r

2)
|)

r

0.2 0.7
0.3 0.8
0.4 0.9

Jz

FIG. 5. �Color online� Bond-bond correlation function as a func-
tion of distance r for various Jz and a finite sample of L=100, where
r1−r2= �r ,r�. Downward peaks in top lines are due to zero-point
crossing.
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FIG. 6. �Color online� Fidelity susceptibility and correlation
function at r1−r2= �L /2,L /2� as a function of Jz for a finite sample
of L=100.

FIDELITY SUSCEPTIBILITY AND LONG-RANGE… PHYSICAL REVIEW A 78, 012304 �2008�

012304-5



occurs in the honeycomb Kitaev model. Though no symme-
try breaking exists and no local order parameter in real space
can be used to describe the transition, the fidelity suscepti-
bility definitely can indicate the transition point. We found
that the fidelity susceptibility per site is an intensive quantity
in the gapped phase, while in the gapless phase, the huge
number of peaks reflects frequent spectral reconstruction
along the evolution line. We also studied various scaling and
critical exponents of the fidelity susceptibility around the
critical points.

Based on the conclusions from the fidelity, we further
studied the bond-bond correlation function in both phases.
We found that the bond-bond correlation function, which
plays a dominant role in the expression for the fidelity sus-
ceptibility, decays exponentially in the gapped phase, but al-
gebraically in the gapless phase. The critical exponents of the

correlation function in both the gapless and gapped phases
are calculated numerical and analytically. Therefore, in addi-
tion to the topological properties of the Kitaev honeycomb
model, say, the Chern number, we found that both the fidelity
susceptibility and the bond-bond correlation functions can be
used to witness the QPT in the model.

Note added. Recently, work appeared on the fidelity per
site instead of the fidelity susceptibility in a similar model
�33�.
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