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We describe a mechanism to detect quantum phase transition �QPT� in a system by a coherent probe weakly
coupled to it. We illustrate this mechanism by a circuit QED architecture where a superconducting Josephson
junction qubit array interacts with a one-dimensional superconducting transmission line resonator �TLR�. The
superconducting qubit array is modeled as an Ising chain in transverse field. Our investigation shows that the
QPT phenomenon in the superconducting qubit array can be evidently revealed by the correlation spectrum of
TLR output: At the critical point, the drastic broadening of spectrum indicates the occurrence of QPT. We also
show the generalization of this mechanism to other QPT systems.
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I. INTRODUCTION

Quantum phase transition �QPT� is essentially caused by
quantum fluctuation at zero temperature.1 Though the abso-
lute zero temperature is not achievable in experiment, quan-
tum critical behavior can be observed at very low tempera-
ture where the quantum fluctuation prevails. However, it is
not straightforward to detect the quantum critical behavior
which is usually masked by other degree of freedom in the
complicated system. For example, the superconductivity
conceals the direct study of the quantum order-disorder tran-
sition in high-Tc superconductors and in heavy-fermion ma-
terials, and the characterization of the zero temperature mag-
netic instability is complicated by the presence of charge
carriers and substitutional disorder.2 It is favorable to detect
quantum critical behavior without direct measurement on the
critical system itself. Recent theoretical investigations3–6

have shown that ground state hypersensitivity near the criti-
cal point can result in the hypersensitivity in the time evolu-
tion of the QPT system, which has a profound relationship
with quantum chaos as well as quantum decoherence. We
find that these discoveries provide a possible mechanism for
indirectly probing QPT, which may have broad applications.

In this paper, by a concrete physical system, we describe
an indirect detection scheme in a macroscopic QPT system,
the superconducting Josephson junction �JJ� qubit array
which is modeled as an Ising chain in transverse field �ITF�.
The superconducting qubit array is coherently coupled to an
on-chip superconducting transmission line resonator �TLR�
via circuit QED architecture.7 We find that, due to the dy-
namic hypersensitivity near the critical point, the critical be-
havior of this qubit array manifests itself in the exotic spec-
tral structure of its coupled system. That is, when QPT
occurs in the superconducting qubit array, the spectrum of
the TLR is significantly changed from discrete-peak structure
into a smooth and continuous distribution. The drastic broad-
ening of the spectrum serves as a witness of QPT. In the last
section of this paper, we also show that this mechanism can
be applied to other QPT systems.

II. QUANTUM PHASE TRANSITION MODEL AND ITS
ENERGY SPECTRUM

We consider a quantum network including N Cooper pair
boxes �CPBs� �see Fig. 1�. Each CPB is a direct current

superconducting quantum interference device �dcSQUID�
formed by a superconducting island connected to two Jo-
sephson junctions and �th CPB is biased by an external volt-
age Vg�. The effective Josephson tunneling energy can be
modified by the magnetic flux �x threading the dcSQUID.
When the coupling capacitance Cm between two CPBs is
much smaller than the total capacitance C� connected to
each CPB �e.g., in Ref. 9, Cm /C��0.05�, we can only con-
sider the nearest neighbor interaction, and the Coulomb en-
ergy of this CPB chain reads

HC = Ec�
i

�n��� − ng
����2 + Em�

i

�n��� − ng
�����n��+1� − ng

��+1�� ,

�1�

where Ec=2e2 /C�, Em=4e2Cm /C�
2 , and n��� is the number of

excess Cooper pairs on the �th CPB and ng
���=Vg

��� /2e. With
proper bias voltage, the CPB behaves as a qubit8 and the
qubit array becomes an engineered “spin” chain with N spin-
1 /2 particles. Then, the qubit array can be described by a
one-dimensional �1D� ITF model with the effective Hamil-
tonian
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FIG. 1. �Color online� The schematics of our setup. A capaci-
tively coupled Josephson junction qubit array is placed in a 1D
TLR. Each qubit couples with the quantized magnetic field of the
TLR.
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H0 = ĥ��� � B�
�=1

N

���x
��� + �z

����z
��+1�� , �2�

where �=Bx /B and B=e2Cm /C�
2 characterize the Coulomb

interaction between the nearest neighbors. The �x-dependent
part comes from the Josephson energy of each CPB Bx
=EJ cos���x /�0� /2, with EJ the Josephson energy of single
junction and �0=h /2e the flux quantum. Here, all CPBs are
assumed to be identical and biased at the optimal point. The
Pauli matrix operators

�z = �0��0� − �1��1� ,

�x = − �0��1� − �1��0� �3�

are defined in terms of the charge eigenstates of operator n
�0� and �1�. �0� and �1� denote 0 and 1 excess Cooper pair on
the island, respectively. Note that this qubit array is com-
pletely different from the generic JJ array, which is usually
used to study the superfluid-Mott insulator phase transition.3

Until recently, the research of Josephson junction extends to
qubit regime, and several superconducting Josephson junc-
tion qubits array configurations have been investigated for
unpaired Majorana fermion states10 and quantum state
transfer.11,12 Experimentally, a most recent experiment has
demonstrated the possibility to implement a four-JJ-qubit
Ising array.13

In our setup, as a quantum probe, a 1D TLR of length L0,
is placed in parallel with this qubit array �see Fig. 1�. The
distance between the center superconducting line and the line
connected with qubit is d. Each CPB is situated at the anti-
nodes

x =
�2n + 1�L0

2N
�n = 0, . . . ,N − 1� �4�

of the magnetic field induced by the oscillating supercurrent
in the TLR.7 Since the current vanishes at the end of the
TLR, this provides the boundary condition for the electro-
magnetic field of this on-chip resonator. Thus, the electric
field is zero at those antinodes, and the qubits are only
coupled with the magnetic component which shifts the origi-
nal �x threading each dcSQUID by

�� =
��0

�
�a + a†� , �5�

with

� =
�S0

d�0
	�l	

L0
, �6�

where l is the inductance per unit length and S0 is the en-
closed area of the dcSQUID. For very large N, the energy
spectrum of the cavity mode is quasicontinuous. In principle,
it is hard to single out one mode especially when the two
systems are not exactly resonant. However, if we take the
dissipation for the cavity into account, there are only some
discrete Fox-Li quasimodes surrounded by many additional
modes. The additional modes induce the decay of the Fox-Li
quasimode with decay rate 
. Therefore, the single mode

approximation is still hold. Here, we have assumed that only
a single mode �it is worth to point out that our proposal here
is also valid for multimode field� with frequency 	 is
coupled with qubit array and a �a†� is its annihilation �cre-
ation� operator.

Usually, � is small enough for the harmonic
approximation3,14 cos(��a+a†�)�1−�2�a+a†�2 /2. The ex-
tra flux modifies Bx in Eq. �2� to

Bx 

EJ

2
�1 − � �S

�0d
	�l	

L
�a + a†�2� . �7�

This results in an additional coupling between the x compo-
nent of the qubits and the bosonic mode,

HI = −
B��2

4 �
�

�a†a + aa†��x
���, �8�

besides the free Hamiltonian of the bosonic mode HF
=	a†a. Here, we have already invoked the rotating wave
approximation to neglect the high frequency terms propor-
tional to a†2 and a2 under the condition 	�Bx, B. This ap-
proximation can be satisfied with accessible parameters in
the current experiments. For example, if we take15 C�

�600 aF, Cm�30 aF, L0�1 cm, S0�10 �m2, d�1 �m,
and N=500, then B=1.6 GHz, EJ=13 GHz, 	�120 GHz,
and ��0.1.

Introducing the Jordan-Wigner transformation,

�z
��� = �

��

�2c
†c − 1��c� + c�

†� ,

�x
��� = 1 − 2c�

†c�, �9�

the free Hamiltonian H0 can be diagonalized as

H0 = �
k

�k��k
†�k −

1

2
 �10�

by the fermionic quasiparticle operator

�k = �
�=1

N
e−ik�

	N
�c� cos

�k

2
− ic�

† sin
�k

2
 , �11�

with dispersion relation

�k��� = 2B	1 + �2 − 2� cos k �12�

and

tan �k��� =
sin k

� − cos k
. �13�

The ground state �G� of H0 describes the state without any
quasiparticle excitation.1,16,17

With respect to the Fock state �n� of the TLR, the Hamil-
tonian of the whole system H=H0+HF+HI can be decom-
posed as H=�nHn�n��n�, where each branch Hamiltonian
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Hn � ĥ��n� = B�
�=1

N

��n�x
��� + �z

����z
��+1�� , �14�

with �n=��1− �2n+1��2 /4�. Here, the constant term �n	
has been omitted. For further convenience, we introduce the
pseudospin operators18

sxk = i��−k�k + �−k
† �k

†� ,

syk = �−k
† �k

† − �−k�k,

szk = �k
†�k + �−k

† �−k − 1. �15�

They describe the pairing of quasiparticle excitations of �k.
In terms of pseudospin operators Sk= �sxk ,syk ,szk�, each
branch Hamiltonian

Hn = �
k�0

Bnk · Sk �16�

describes a collection of pseudospins and each spin experi-
ences different effective magnetic field

Bnk = ��nk sin 2�nk,0,�nk cos 2�nk� , �17�

with 2�nk=�nk−�k, �nk=�k��n�, and �nk=�k��n�.

III. DETECTION OF QUANTUM PHASE TRANSITION
BASED ON CIRCUIT QED

We expect to detect the critical behavior of the supercon-
ducting qubit array by the coherence property of the TLR. To
do this, a natural option is to examine the correlation spec-
trum S�	�=�dte−i	tS�t�, which is the Fourier transformation
of the first-order correlation function of the single mode
field,

S�t� = �a†�t�a�0�� = �
n

n�cn�2e−
�t�Dn,n−1�t� . �18�

Here, the average �¯� is taken over an initial state ���0��
= ��0� � �G�, and ��0�=�ncn�n� is an arbitrary pure state of the
TLR �discussion can also be generalized to the mixed state
of TLR�. The decoherence factor

Dn,n−1�t� = �G�exp�iHnt�exp�− iHn−1t��G� �19�

evaluates the overlap of the wave functions driven by two
different Hamiltonians Hn and Hn−1 separately. We also phe-
nomenologically introduce the decaying factor exp�−
�t�� in
the quasimode treatment of dissipation, where 
 is about
6.3 MHz for the first excitation mode.7

With these knowledge, the spectral function

S�	� = �
n

n�cn�2Dn,n−1�	� �20�

can be analytically derived �see Appendix� with

Dn,n−1�	� = �
ak,bk

F�n���ak,bk��L„	,��n���ak,bk��,
… .

�21�

Here, the sum is taken over all the possible configurations of
combinations ��ak ,bk� �ak ,bk= ± �, e.g., one possible combi-
nation is ��+,−�1 , �+, + �2 , . . . , �−, + �N/2�, and

F�n���ak,bk�� = �
k

cakbk,k
�n,n−1� �22�

is defined by

c++=,k
�n,n−1� = − sin �nk cos �n−1k sin �nk,

c+−,k
�n,n−1� = sin �nk sin �n−1k cos �nk,

c−+,k
�n,n−1� = cos �nk cos �n−1k cos �nk,

c−−,k
�n,n−1� = cos �nk sin �n−1k sin �nk, �23�

where �nk=�n−1k−�nk. Note that Dn,n−1�	� is a sum of many
Lorentzian distributions

L�	,�,
� =
2



2 + �	 − ��2 , �24�

with the same half-width 
 at half maximum but different
central frequencies

��n���ak,bk�� = �
k

�ak�nk + bk�n−1,k� . �25�

Neglecting the decay of quasimodes, those Lorentzian line
shapes reduce to delta functions.

The time evolution of the first-order correlation function
S�t� with N=1000 is shown in Fig. 2 for different � with
��0�= ��0�+ �1�� /	2. It can be seen that the decay rates for
different � are almost the same except �=1. This decay is
induced by the dissipation of the quasimodes, which has the
same influence for different �. However, near the critical
point, i.e., ��1, the decay is drastically enhanced. This
means that there exists an extra strong decay mechanism
related to QPT.
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t

FIG. 2. �Color online� The first-order correlation function S�t�
for ��0�= ��0�+ �1�� /	2 is plotted with different �. Here, N=1000
and the time t is in the units of 1 /B.
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To illustrate the effect of QPT more clearly, we resort to
the behavior of the spectral function S�	�. The numerical
result by fast Fourier transformation is shown in Figs. 3 and
4. In Fig. 3, the left panel is for ��0�= ��0�+ �1�� /	2, while the
right panel is for a coherent state ��0�= ��� with �=1. It can
be seen that, for the two different initial states, generally,
there are only one or a few Lorentzian peaks centered at
discrete frequencies in S�	�, while near the phase transition
point, the spectrum of TLR gets broad and chaotic. As N
increases, this broadened distribution at the critical point be-
comes more and more smooth and tends to be a white-noise
spectrum at large N limit �see Fig. 4�. Thus, the QPT of the
superconducting qubit array is featured by the intensive

broadening in the TLR output spectrum. Therefore, we can
infer the QPT from the correlation spectrum of the quantum
probe.

IV. UNDERLYING PHYSICS FOR THE SPECTRUM
STRUCTURE

To investigate the underlying physical mechanism for the
behavior described above, we rewrite S�	� in the form

S�	� = �
n,ii�

pi,i�
�n��Ei

�n��Ei�
�n−1��L�	,�ii�

�n�,
� . �26�

Here, �Ei
�n�� is the ith eigenvector of Hn with eigenvalue Ei

�n�,

pi,i�
�n� = n�cn�2�G�Ei

�n���Ei�
�n−1��G� . �27�

In a sense, S�	� measures how many different eigenvectors
of Hn−1 are necessary to express one eigenvector of Hn. Due
to the inner product in p

i,i�
�n� , the main contribution comes

from the low excited energy eigenvectors. The more are nec-
essary, the wider the support of S�	�. This observation pro-
vides the intrinsic reason for the broadening of the spectrum.
Since �2 is assumed to be a small perturbation, one would
generally expect that the difference between Hn and Hn−1 is
almost negligible and their eigenvectors are very close to
each other; this means

�Ei
�n��Ei�

�n−1�� � �i,i� �28�

and S�	� reduces to a single Lorentzian distribution. Then,
the support of S�	� is very narrow and the corresponding
inverse Fourier transformation S�t� decays very slow.

However, the above analysis is invalid at the critical
point. Near the critical point, the property of the QPT sys-
tem, such as ground state and long range order, is signifi-
cantly influenced by a small perturbation in either of the two
competing terms: the Ising interaction and the transverse
field. The seemingly very small difference between the two
Hamiltonians Hn and Hn−1 actually has drastic impact on the
evolutions driven by the two Hamiltonians. This is the so-
called hypersensitivity of QPT.5 The dynamical hypersensi-
tivity is related to the hypersensitivity of ground state in QPT
system.6 This implies that more eigenvectors of Hn−1 are
needed to reproduce one eigenvector of Hn. Therefore, many
Lorentzian shapes have to be included, and the support of
S�	� becomes much broader. This, in turn, accelerates the
decay of S�t� and acts as the extra strong decay mechanism
related to QPT as we have noticed in Fig. 2.

A more straightforward explanation of the spectral struc-
ture comes from the pseudospin Hamiltonian �Eq. �16��. Far
from the critical point, cos �nk�1 and sin �nk�0. This
means that all the effective magnetic fields for different pseu-
dospins are pointing to a single direction z and then all the
pseudospins are aligned to form a large collective spin with
identical precession frequency. In this case, although the
number of qubits ��N� in the array is very large, all the
qubits tend to stay in the same microscopic state �similar to
the case of Bose Einstein condensation�. Such ordered mac-
roscopic “environment” will not destroy the coherence of the
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FIG. 3. �Color online� The spectrum S�	� is shown with differ-
ent �. The left panel is for ��0�= ��0�+ �1�� /	2 and the right panel is
for a coherent state ��0�= ���. Note that the vertical scale for �=1 is
different. Here, N=1000 and the frequency 	 is in the units of
103B.
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FIG. 4. �Color online� The spectrum S�	� at the critical point is
plotted for different N with ��0�= ��0�+ �1�� /	2. The frequency 	 is
in the units of 103B.
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coupled system. Then, the correlation spectrum exhibits dis-
crete feature, which is the characteristic of highly coherent
quantum system. However, near the critical point, the direc-
tions of local effective magnetic fields are not aligned and
the pseudospins point to very different directions. Then, the
collection of many pseudospins behaves as a random envi-
ronment which results in a disorder or white-noise output
spectrum of the coupled system.

Note that the above probe mechanism for QPT requires
B�2�
, which ensures that the decoherence related to QPT
near the critical point is far more prominent than that caused
by the surrounding environment. However, the coupling co-
efficient B�2 should also be much smaller than the energy
scale of the free qubit array. Otherwise, the QPT nature of
the ITF model would be significantly changed by the
strongly coupled bosonic mode.

V. GENERAL FORMALISM

In the above sections, we show that the QPT of a CPB
chain formed ITF model can be revealed by the correlation
spectrum of a coupled transmission line resonator. As we
analyzed in Sec. IV, this indirect detection scheme results
from the hypersensitivity in the QPT dynamics, which is a
rather general aspect of quantum phase transition. In this
section, we give a general description of this detection
method to various QPT models.

For a system that is a quantum phase transition model,
then generally it has two competing terms,

H�q� = H1
�q� + H2

�q�. �29�

To probe the QPT of this system, it is weakly coupled to
another detector with free Hamiltonian H�d� and interaction
Hamiltonian HI. The total Hamiltonian of the system is H
=H�q�+H�d�+HI. Suppose HI has the following form:

HI = gF�d�P�q�, �30�

where F�d� is the dynamic variable of the detector system
while P�q� is the dynamic variable of the QPT system. If the
following two conditions are satisfied:

�H�d�,F�d�� = 0, �31�

�H1
�q�,P�q�� = 0 or �H2

�q�,P�q�� = 0, �32�

we can detect QPT from correlation function

S�d��t� = �V+
�d��t�V−

�d��0�� , �33�

where V+
�d� �V−

�d�� is the raising �lowering� operator for the
eigenstate of F�d�, i.e.,

V±
�d��f� = �f ± 1��f� , �34�

and the average is carried out for a thermal state

� = �
f

Pf�f��f � � ��0���0� . �35�

Here, ��0� is the ground state of H�q� and ��f�� is the common
eigenvectors of F�d� and H�d�, with F�d��f�= f �f� and H�d��f�
=Ef

�d��f�.

In this case,

S�d��t� = �V+
�d��t�V−

�d��0�� � �
f

PfDf ,f−1�t� , �36�

with

Df ,f−1�t� = ��0�eiHfte−iHf−1t��0� . �37�

Here, we have already used the relation

H = �
f

Hf�f��f � , �38�

with

Hf = H�q� + gfP�q� + Ef
�d�. �39�

The spectral function can be written as

S�	� = �
f

Pf�
ii�

Tf ,f−1
i,i� �Ei,f�Ei�,f−1���	 + Ei�,f−1 − Ei,f� ,

�40�

where Tf ,f−1
i,i� ���0 �Ei,f� �Ei�,f−1 ��0� and �Ei,f� is the ith ei-

genvector of Hf, i.e., Hf�Ei,f�=Ei,f�Ei,f�. As we discussed in
Sec. IV, the number of peaks �� functions� is mainly deter-
mined by the inner product �Ei,f �Ei�,f−1�. If the difference
between Hf and Hf−1 is negligible, only one term i= i� is kept
in the sum. Conversely, if the difference is large, there are
many terms kept and many peaks in the spectrum. What
determines the difference between Hf and Hf−1 is the term
gfP�q�, which represents the influence of the detector. Sup-
pose gf is small �g�1 for weak coupling and the population
on large f levels are usually very small�, this term is not
important when the QPT system is far away from the critical
point. However, near the critical point, a small perturbation
added on the two competitive terms results in major differ-
ence on the property of the system. The major difference of
the system demonstrates itself through the spectral function
of the detector, i.e., the spectral function exhibits multipeaks
structure near the critical point.

To understand the above general formalism, we illustrate
it with two specific examples.

�1� If F�d� is a generalized coordinate operator, such as
x ,� , . . . ., its conjugate variable is the generalized momentum
��d�, such as px, n.

Then the raising �lowering� operator can be written as

V±
�d� = e±i��d�

. �41�

Or we can also use scaled raising �lowering� operator to sim-
plify expression in some cases,

V+
�d� = 	F�d�ei��d�

,

V+
�d� = e−i��d�	F�d�. �42�

A concrete example of this kind is the number operator used
in our paper, where F�d�=a†a and V+

�d�=a†, V+
�d�=a.

�2� If F�d� is the z component of an angular momentum
operator, such as �z, Jz , . . . ., then the raising �lowering� op-
erator can be written as
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V±
�d� = �± or J±. �43�

This is the model studied in Ref. 5. The intrinsic reason of
the deep valley in Figs. 2 and 3 of Ref. 5 is just what we
discussed in this paper.

VI. SUMMARY AND REMARKS

In summary, with a superconducting circuit QED struc-
ture, we demonstrate an indirect detection scheme for the
QPT phenomenon in a macroscopic quantum system. The
quantum criticality of a superconducting qubit array can be
probed by examining the coherent output of the coupled
TLR. The detection mechanism utilizes the hypersensitivity
of QPT system at the critical point. If one of the two com-
peting terms in their Hamiltonian is weakly coupled with an
external quantum system, the effect of this weak coupling to
the critical system is magnified by the hypersensitivity at the
critical point. This, in turn, accelerates the decoherence of
the coupled system, which can be detected via drastic change
in the correlation spectrum of the coupled system. This
mechanism is possible to be generalized to other QPT sys-
tems with similar characteristics.

It is also notable that the sensitivity of the overlap of
ground state with respect to a small perturbation in param-
eters has been studied in many body physics as Anderson
orthogonality catastrophe �AOC�. It has been proven that
AOC coincides with the critical behavior of QPT for a cer-
tain category of physical model including ITF model dis-
cussed here.6 One can expect that our detection scheme may
also indicate the occurrence of AOC in this model.

On the other hand, we would like to remind the readers
that a simple energy level crossing �SELC� may also lead to
the same spectrum broadening since this dynamical behavior
depends on the energy level structure of the system. En-
hanced decoherence is essentially due to the large degree of
freedom of the environment, while an environment with en-
ergy gap sufficiently large will suppress the decoherence. In
the present example of transverse Ising model, the drastic
broadening only occurs at the quantum critical point which is
not a SELC point. In the case of SELC, there are energy gaps
at both sides of the cross point. In many systems, the SELC
of the ground and the first excited states is accompanied by
the change in the low-lying spectral structure, which would
induce enhanced decoherence. However, if the ground state
and the first excited states are separated from other low-lying
eigenstates by sufficient large energy gap, SELC does not
lead to enhanced decay.19 In this sense, this proposal might
also be sensitive to SELC in some many-body systems.

Note added. Recently, we found an experimental work on
probing quantum phase of ultracold atoms in optical lattices
by transmission spectrum in cavity QED.20 It is closely re-
lated to our proposal.
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APPENDIX: EVALUATION OF THE SPECTRAL
FUNCTION

With pseudospin operators, the unperturbed Hamiltonian
is written as

H0 = �
k

�k��k
†�k −

1

2
 = �

k�0
�kszk, �A1�

and the branch Hamiltonian is written as

Hn = �
k�0

�nkszk
�n�, �A2�

where

szk
�n� = szk cos 2�nk + sxk sin 2�nk. �A3�

Defining �± �k ��± �nk� to be the eigenvector of the szk �szk
�n��

with eigenvalue ±1, then the relations between the two sets
of eigenvectors are

�− �nk = cos �nk�− �k − sin �nk� + �k,

� + �nk = sin �nk�− �k + cos �nk� + �k. �A4�

Note that the inner products of different �± �nk of different
modes m, n are not orthogonal:

mk�± � ± �nk�
= �kk� cos��nk − �mk� ,

mk�+ �− �nk�
= �kk� sin��mk − �nk� . �A5�

The ground state of H0 is a direct product of �−�k as

�G� = �
k�0

�

�− �k = �
k�0

�

�cos �nk�− �nk − sin �nk� + �nk� ,

�A6�

and its time evolution under the branch Hamiltonian can be
calculated as

exp�− iHnt��G� = �
k�0

�

�cos �nke
i�nkt�− �nk + sin �nke

−i�nkt� + �nk� .

�A7�

Inserting this relation into Eq. �19�, it is straightforward
reaching

Dn,n−1�t� = �
k

�
akbk=±

�Cakbk,k
�n,n−1�ei�a�nk+b�n−1,k�t�e−
�t�, �A8�

where we have included the decay caused by quasimode and
the definition of Cab,k

�n,n−1� is the same as Eq. �23�. Commuting
the order of sum and product in the above equation, we get
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Dn,n−1�t� = �
��ak,bk��

�
k

�Cakbk,k
�n,n−1�ei�a�nk+b�n−1,k�t�e−
�t�

� �
��ak,bk��

D��ak,bk��
n,n−1 �t� , �A9�

where

D��ak,bk��
n,n−1 �t� = F�n���ak,bk��exp�− 
�t� + i�

k

�ak�nk + bk�n−1,k�t
and ��ak ,bk�� is a set of configurations for the possible
values of a and b in the product, such as ��+1,−1� , �+2,+2� ,

. . . , �−2/N ,+2/N��. By performing Fourier transform on Eq.
�A9� and inserting it into Eq. �20�, we get the expression of
spectral function S�	� used in this paper,

S�	� = �
n

n�Cn�2 �
��ak,bk��

D��ak,bk��
n,n−1 �	� , �A10�

with

D��ak,bk��
n,n−1 �	� = F�n���ak,bk��L„	,��n���ak,bk��,
… .

�A11�
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