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We theoretically explore the possibility of creating spin quantum entanglement in a system of two electrons
confined respectively in two vertically coupled quantum dots in the presence of Rashba-type spin-orbit cou-
pling. We find that the system can be described by a generalized Jaynes-Cummings model of two-mode bosons
interacting with two spins. The lower excited states of this model are calculated to reveal the underlying
physics of the far-infrared absorption spectra. The analytic perturbation approach shows that an effective
transverse coupling of spins can be obtained by eliminating the orbital degrees of freedom in the large-detuning
limit. Here, the orbital degrees of freedom of the two electrons, which are described by two-mode bosons,
serve as a quantized data bus to exchange the quantum information between the two electron spins. Then a
nontrivial two-qubit logic gate is realized and spin entanglement between the two electrons is created by virtue
of spin-orbit interactions.
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I. INTRODUCTION

Control and manipulation of the spin degrees of freedom
has become one of the most important topics both in
spintronics1 and in quantum information processing.2 The
spin-orbit interaction �SOI� in semiconductor heterostruc-
tures provides a way to couple electron spins with their or-
bital degrees of freedom, and consequently has attracted
more and more attention in recent years. The spin properties
of a few electrons confined in semiconductor nanostructures,
such as quantum dots,3–8 coupled quantum dots,9 quantum
rings,10 and quantum wires,11 have been studied. The results
show that the carrier’s spin properties are strongly affected in
the presence of the SOI, and novel features emerge in these
nanostructures compared with the traditional ones without
the SOI.

On the other hand, the spin confined in a quantum dot is a
natural choice for the physical realization of a qubit. This
kind of system is considered as an important candidate for
solid-state-based quantum computing. Among various ap-
proaches to implementing quantum information processing
using quantum dot systems, optical methods, using the clas-
sical laser field12 and quantized cavity modes,13 have been
proposed to create entanglement and to realize single- and
double-qubit logic gates. In Ref. 15, a scheme with quantum
dots embedded in an optical cavity was designed, so that the
cavity mode can serve as a data bus and induce a spin-spin
interaction. This kind of cavity-mediated two-qubit gates are
studied in detail for several other solid-state systems very
recently.16

Now we note that the SOI phenomena in nanostructures
have been investigated with the help of quantum optics
methods. Taking advantage of the tunability of the SOI
strength, an experiment to observe coherent oscillations in a
single quantum dot was proposed in Ref. 3. In this proposal,
the orbital degrees of freedom are modeled by two boson
modes. Under the rotating-wave approximation �RWA�, the
SOI of an electron confined in a single quantum dot was
reduced to a Jaynes-Cummings �JC� model, which is a very

typical model in quantum optics. This analogy between the
SOI in a quantum dot and the JC model in cavity QED
suggests that it is possible to make use of the orbital degrees
of freedom, instead of the real optical cavity modes, to serve
as a quantized data bus, and then to induce a spin
entanglement.14

In this paper, we propose and study a model of two elec-
trons confined in two vertically coupled quantum dots
�CQDs� respectively with Rashba-type SOI, and explore the
possibility of realizing a nontrivial two-qubit logic gate or
creating spin entanglement in this system. For simplicity, we
consider two vertically coupled quantum dots with two-
dimensional parabolic confinement. In the case of strong
confinement and large interdot separation, the Coulomb in-
teraction between the two electrons is approximately ex-
panded to second order, and then the orbit motions of the
two-electron system can be reduced to four-mode bosons.
Under the RWA, only two of the four modes are coupled
with the spin degrees of freedom. Then it is proved that the
total system with SOI can be effectively described by a gen-
eralized JC model with coupling between two-mode bosons
and two spins. By diagonalizing the Hamiltonian directly in
the lower excited subspace, the eigenvalues and the corre-
sponding eigenfunctions are obtained exactly. The far infra-
red �FIR� absorption spectra are calculated according to these
analytical solutions, which help us to understand the under-
lying physics of the spectra. To get the effective Hamiltonian
of spin-spin interaction, we perform the Fröhlich transforma-
tion in the large-detuning limit. This effective Hamiltonian
can dynamically drive a two-qubit logic gate operation. By
using the conventional material parameters, our numerical
estimation shows that the effective spin interaction induced
by SOI is quite strong, compared to the spin decoherence in
low-dimensional semiconductor structures. It is feasible ex-
perimentally to implement a two-qubit logic gate, and thus to
produce quantum entanglement.

The paper is organized as follows. In Sec. II, the general-
ized JC model is derived from the original Hamiltonian of
two electrons confined in two quantum dots. Analytical so-
lutions of lower excited states and FIR spectra are presented
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in Sec. III. In Sec. IV, we show that the perturbation treat-
ment gives the effective transverse spin-spin interaction in
the large-detuning limit, and demonstrate that a two-qubit
logic gate and quantum entanglement can be achieved in this
kind of system with SOI.

II. TWO-MODE JC MODEL FOR VERTICALLY CQDS
WITH SOI

We consider two vertically CQDs with an interdot sepa-
ration z0 �see Fig. 1�. Each quantum dot is described by a
two-dimensional parabolic confinement potential V�ri�
=m0�0

2ri
2 /2 with the basic frequency �0. Including the

Rashba-type SOI

HSO
�i� =

�

�
��i � �i�z, �1�

the Zeeman term

HZ
�i� =

1

2
g�BB · �i, �2�

and the Coulomb interaction

VCoul��r1 − r2�� =
e2

4�		0�r1 − r2�
, �3�

the total Hamiltonian reads

H = �
i=1,2

� �i
2

2m0
+ V�ri� + HSO

�i� + HZ
�i�� + VCoul. �4�

Here, −e, �B, and 	0 are the electron charge, Bohr magneton,
and dielectric constant in vacuum, respectively. m0, g, and 	
are the material-related parameters of effective mass, Landé
g factor, and relative dielectric constant, respectively.

�i=pi+eA�ri� is the canonical momentum and A�ri�=
B�−yi /2 ,xi /2 ,0� is the vector potential for magnetic field
B=Bẑ.

In order to simplify the Coulomb interaction, we consider
a special case in which the interdot separation z0 is much
larger than the lateral confinement characteristic length
l0=	� /m0�0, i.e., �l0 /z0�2
1. Then we expand the Coulomb
interaction as a power series of the relative coordinate
r= �r1−r2� up to the second order:17,18

VCoul�r� 
 V0 −
1

2
m0�1

2r2. �5�

Here, we have defined V0=e2 / �4�		0z0�, and ��1

=	�2V0 /m0z0
2. We also assume that the two electrons are

strictly confined to the two quantum dots, respectively, and
then neglect the overlap of their wave functions.

In the center of mass �c.m.� reference frame defined by
R= �r1+r2� /2 and r=r1−r2, we have the c.m. and relative
momenta P=p1+p2 ,p= �p1−p2� /2, and the corresponding
angular momenta L=R�P, l=r�p, where M =2m0,
m=m0 /2, r is the relative coordinate, and R is the c.m. co-
ordinate. The orbital part of the Hamiltonian is expressed in
a quadrature form of these coordinates:

Horbit = �
i=1,2

� �i
2

2m0
+ V�ri�� + VCoul

=
P2

2M
+

1

2
M�2R2 +

1

2
�cLz +

p2

2m
+

1

2
m�2r2 +

1

2
�clz. �6�

Here, the cyclotron frequency is �c=eB /m0, and the fre-
quencies of c.m. and relative motion are �=	�0

2+�c
2 /4 and

�=	�2−2�1
2, respectively. Note that the effect of the Cou-

lomb repulsion is to reduce the relative motion to a lower
frequency compared to the c.m. motion. In our model the
requirement �l0 /z0�2
1 ensures that ��0 is satisfied even
when B=0.

We define the boson operators ax ,ax
† ,aX, and aX

† of the x
components by

X =	 �

2M�
�aX

† + aX� ,

x =	 �

2m�
�ax

† + ax� ,

PX = i	�M�

2
�aX

† − aX� ,

px = i	�m�

2
�ax

† − ax�; �7�

and the boson operators ay ,ay
† ,aY, and aY

† of the y compo-
nents are defined in a similar way. Let

A = �aX + iaY�/	2,

a = �ax + iay�/	2,

FIG. 1. �Color online� Schematic illustration of vertically
stacked quantum dots. Each quantum dot confines an electron. We
assume that the interdot separation z0 is larger than the characteris-
tic length of quantum dot confinement, l0.
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B = �aX − iaY�/	2,

b = �ax − iay�/	2. �8�

Then we rewrite the orbit Hamiltonian �6� in terms of four-
mode bosons A ,a ,B, and b as

Horbit = � �A�A†A + 1/2� + � �B�B†B + 1/2�

+ � �a�a†a + 1/2� + � �b�b†b + 1/2� , �9�

with their frequencies, respectively,

�A = � −
1

2
�c, �B = � +

1

2
�c, �10�

�a = � −
1

2
�c, �b = � +

1

2
�c. �11�

These four frequencies, together with the Zeeman energy
��z= �g ��BB are drawn in Fig. 2�a� with respect to the mag-
netic field B. Note that the Zeeman energy ��z and the boson
frequencies �A and �a reach the resonant region at B

11 T with the parameters listed in Table I. We also draw
the lower-energy spectra of the orbit Hamiltonian �6� in Fig.
2�b�. We will focus on how these states are affected in the
presence of SOI in the following sections.

In terms of the four-mode boson operators defined by Eqs.
�7� and �8�, the SOI Hamiltonian HSO, after some straightfor-
ward algebra, can be rewritten as

HSO
RWA = gAA��1+ + �2+� + gaa��1+ − �2+� + H.c. �12�

Note that, due to the negative value of the Landé g factor, a
unitary rotation �z�−�z and �±�−� has been
performed.3 To obtain the interaction Hamiltonian above, we
have used the RWA to neglect the counter-rotating terms like
�+B† ,�+b† ,�−B, and �−b. This approximation has been veri-
fied numerically for the single-electron case in Ref. 3. The
coupling strengths gA and ga are defined as follows:

gA = �	m0�

2�
�1 −

�c

2�
� , �13�

ga = �	m0�

2�
�1 −

�c

2�
� . �14�

So far, we have obtained a generalized JC model where
two-mode bosons interact with two spins. In the following
sections we will further demonstrate how the orbit motion
induces a spin-spin entanglement in the presence of SOI.

III. LOWER EXCITED STATES AND FIR SPECTRA

In this section, we calculate the eigenenergies and eigen-
states of the low excited states. Notice that the total excita-
tion number operator

N̂ = a†a + A†A +
1

2
��1z + �2z� �15�

commutes with H=Horbit+HZ
�1�+HZ

�2�+HSO
RWA. For a given in-

teger N, which is the eigenvalue of N̂, the dimension of the
invariant subspace V�N� is 4N+4 for N�0.

The lowest subspace V�−1�, corresponding to N=−1, is of
one dimension. The ground state can be directly written as
�GS�= �0A ,0a ,0B ,0b , ↓ , ↓ �, which means the excitation num-
bers of boson modes nA ,na ,nB and nb are zero, i.e.,

nA = na = nB = nb = 0, �16�

and both spins are in the down state. The corresponding
eigenenergy is

EGS =
�

2
��A + �B + �a + �b − 2�z� . �17�

TABLE I. Parameters �for InAs �Ref. 6�� used in the
calculations.

Quantity Value

m0 0.042

	 14.6

g −14

� 10 meV nm

�0 20 meV

l0 9.5 nm

z0 20 nm

FIG. 2. �Color online� �a� Energy dispersions with respect to
the magnetic field B of the four modes of the boson frequencies
�A �red �light gray� solid line�, �a �blue �dark gray� solid line�, �B

�red �light gray� dashed line�, and �b �blue �dark gray� dashed line�,
and the Zeeman energy �z �black line�. �b� Energy spectrum of H0.
Different lines correspond to different spin and orbit states, which
are indicated explicitly in the figure. The parameters used in calcu-
lation are listed in Table I.
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The second lowest subspace V�0� is of four dimensions.
The Hamiltonian can be exactly diagnolized in this subspace.
We define

�S� =
1
	2

��0A,0a,↑,↓� − �0A,0a,↓,↑�� ,

�T0� =
1
	2

��0A,0a,↑,↓� + �0A,0a,↓,↑�� ,

�T−1
A � = �1A,0a,↓,↓�, �T−1

a � = �0A,1a,↓,↓� , �18�

where both nB and nb are zero, and they are omitted in the
state notations for simplicity. The eigenstates of the Hamil-
tonian in this subspace are

��A
+� = sin

�A

2
�T−1

A � + cos
�A

2
�T0� , �19�

��A
−� = cos

�A

2
�T−1

A � − sin
�A

2
�T0� , �20�

��a
+� = sin

�a

2
�T−1

a � + cos
�a

2
�S� , �21�

��a
−� = cos

�a

2
�T−1

a � − sin
�a

2
�S� , �22�

and the corresponding eigenvalues are

EA
± = −

�A

2
±	��A

2
�2

+ 2gA
2 , �23�

Ea
± = −

�a

2
±	��a

2
�2

+ 2ga
2. �24�

Here, the zero-point energies of the four boson modes are
omitted. �A,a are defined as

tan �A,a =
2	2gA,a

�A,a
�25�

where �A,a� �0,��, and �A,a=�z−�A,a.
With the help of these exact eigenenergies and eigenstates

obtained above, we can calculate the FIR absorption spectra
analytically. To this end, we consider the time-dependent
Hamiltonian of the system in an optical field,

H̃�t� = H + H�e−i�t + H.c. �26�

where H�e−i�t is the time-dependent term induced by the
classical optical field6

H� � − �
i=1,2

� ea

m
� · �pi + eAi� +

�ea

�
��i � ��z� , �27�

where a is the radiation field amplitude, and �= �x̂− iŷ� /	2 is
the polarization vector for circularly polarized light.

The absorption coefficient is calculated according to the
Fermi golden rule19,20

���� � ��
f

�f �H��i��2��� − � fi� . �28�

Here, �� fi=Ef −Ei, �i�= �GS� is the ground state, and �f�
stands for the excited states. We will focus on the four lowest
excited states ��A

±� and ��a
±�. According to Eqs. �7� and �8�,

the perturbation H� is obtained as

H� = � �	�0

�
�1 −

�c

�
�A+ + �	2m0�0

�
��1+ + �2+� .

�29�

Note that we have omitted the terms related to the B and
b modes, which are not involved in the initial and final states
we are considering, and thus do not contribute to the absorp-
tion coefficient. Our analytical results give the FIR spectra
obvious physical meanings. From Eq. �29� above, we find
that the first term is spin independent, and it provides a c.m.
angular momentum excitation. This c.m. angular momentum
excitation, which is the consequence of the Kohn theorem,21

exists even in the absence of SOI. The second term, which is
spin dependent, is due to the presence of SOI. This term
contributes an excitation of the two spins symmetrically, i.e.,
�↓ ↓ �� �↑ ↓ �+ �↓ ↑ �. Thus, H� only couples the ground state
�GS� with the c.m. excited states ��A

±�, while ��a
±� are inac-

tive in this case. The matrix elements of �A
± �H� �GS� are

calculated, and the FIR spectra are shown in Fig. 3�b�.

FIG. 3. �Color online� �a� Exact energy spectra given by Eqs.
�23� and �24�. The arrows indicate the dipole-allowed transition
from �GS� �black line� to ��A

±� �red �light gray� lines�. ��a
±� �blue

�dark gray� lines� are dipole inactive. �b� FIR spectra for increasing
magnetic field B. The anticrossing is clearly shown. A Lorentz pro-
file function � /����−� fi�−�2� is used to replace the � function.
The phenomenological broadening factor �=0.2 meV. Spectra are
normalized to their maxima and offset for clarity.
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IV. QUANTUM ENTANGLEMENT IN LARGE-DETUNING
LIMIT

Due to the linearly increase of the dimension of the in-
variance subspace V�N� with respect to N, it is difficult to
obtain a compact solution of the eigenvalue problem for N
�1. Instead of the exact solution, the approximate solution
by perturbation theory will be given in this section. In the
region where perturbation treatment is valid, we derive an
effective transverse spin-spin interaction Hamiltonian. This
Hamiltonian can induce a two-qubit logic gate, and can be
used to produce a controllable quantum entanglement.

We summarize the Hamiltonian obtained:

H0 = Horbit +
1

2
� �z��1z + �2z� , �30�

H1 = gAA��1+ + �2+� + gaa��1+ − �2+� + H.c., �31�

and then consider its reduction in the large-detuning limit,
i.e., �A,a�gA,a. In this limit, we perform the Fröhlich trans-
formation with the operator

S = � gA

�A
A†��1− + �2−� +

ga

�a
a†��1− − �2−�� − H.c. �32�

and the effective Hamiltonian exp�−S�H exp�S� is calculated
up to the second order as

HS 
 H0 +
1

2
�H1,S� . �33�

Here, the second term in the right-hand side �RHS� can be
written explicitly as

1

2
�H1,S� = � ���1+�2− + �1−�2+� +

gAga

2
� 1

�A
+

1

�a
��A†a

+ a†A���1z − �2z� + � gA
2

�A
�A†A + 1/2� +

ga
2

�a
�a†a

+ 1/2����1z + �2z� + � gA
2

�A
+

ga
2

�a
� . �34�

Note that the first term of Eq. �34� is the effective trans-
verse spin-spin coupling induced by SOI. The effective cou-
pling strength

�� = gA
2/�A − ga

2/�a �35�

depends on �i� the SOI strength � �see Eqs. �13� and �14��,
and �ii� the frequency difference between �A and �a, which
is a consequence of the Coulomb interaction. We note that, in
the subspace V�0�, the second term of Eq. �34� vanishes, and
the remaining terms commute with the total spin �2= ��1

+�2�2. Thus we can denote the eigenstates by the spin sin-
glet �S�= ��↑ ↓ �− �↓ ↑ �� /	2 and triplet �T0�= ��↑ ↓ �
+ �↓ ↑ �� /	2, �T1�= �↑ ↑ �, and �T−1�= �↓ ↓ � in the large-
detuning limit in subspace V�0�. Diagonalizing the Hamil-
tonian �34�, we obtain the eigenenergies

E�T−1
A � = − �A −

2gA
2

�A
, �36�

E�T−1
a � = − �a −

2ga
2

�a
, �37�

E�T0� =
2gA

2

�A
, �38�

E�S� =
2ga

2

�a
�39�

for the different spin states corresponding to the exact solu-
tions in Eq. �24�. Here, we also omit the zero-point energies.

The above energies are drawn as functions of magnetic
field in Fig. 4�c� in comparison with the exact solutions. The
exact consistency of the two solutions in the large-detuning
region confirms the validity of our perturbation treatment.
Figure 4�b� shows the effective spin coupling strength in-
duced by SOI in our model. Taking B=10 T for example �the
point denoted by X in Fig. 4�b��, we have the spin coupling
strength ��
20 �eV. This value is comparable with that in
the proposal of the spin-spin coupling induced by electro-
magnetic field in cavity.15 Thus, it is feasible to realize the
two-qubit gate operation during the long coherence time of
conduction band electrons.

The spin transverse coupling described by the first term in
the RHS of Eq. �34� generates an ideal 	iSWAP gate16,22 at a
specific time t0=� /4�. On the other hand, it is worthy of
notice that the unitary transformation exp�−S�H exp�S� may
induce an excitation of the boson modes, and then cause gate
error during the time evolution of the spin states. To explic-

FIG. 4. �Color online� �a� The ratio gA /�A �black line� and
ga /�a �red �gray� line�. The perturbation treatment is valid when
both gA /�A and ga /�a are less than unity. �b� The effective trans-
verse spin coupling strength induced by SOI. �c� A comparison of
eigenenergies between exact �Eqs. �23� and �24�, lines� and pertur-
bative �Eqs. �36�–�39�, scattered dots� solutions in the large-
detuning region. Our perturbation treatment is valid in the unshaded
region.
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itly show the unwanted boson mode excitations and to ex-
amine the reliability of our model, we consider the time evo-
lution of the initial state ���0��= �0A ,0a , ↓ ↑ �:

���t�� = U�t����0� ,

where

U�t� = exp�− it�eSHSe−S�/ � � = eS exp�− itHS/ � �e−S.

�40�

Notice that ���0�� belongs to the subspace V�0�, and the time
evolution will be restricted in this subspace. Figure 5�a�
gives the probabilities Pi�t�= �i ���t���2 of finding state �i� at
time t, where �i� stands for the four bases of the subspace
V�0�: �0A ,0a , ↑ ↓ �, �0A ,0a , ↓ ↑ �, �1A ,0a , ↓ ↓ �, and �0A ,1a , ↓ ↓ �,
respectively. Besides the states �0A ,0a , ↑ ↓ � and �0A ,0a , ↓ ↑ �,
the unwanted boson mode excitation states �1A ,0a , ↓ ↓ � and
�0A ,1a , ↓ ↓ � also have nonzero populations. These popula-
tions will induce the gate error. Furthermore, we calculate
the fidelity function defined by

F�t� = ���0��U	iSWAP
+ U�t����0��� , �41�

where U	iSWAP is the ideal 	iSWAP gate operator. We notice
that the fidelity function F�t� reaches its maximum at slightly
less than unity at t= t0, and the high-frequency oscillations
appear due to the boson mode excitations mentioned above.
We also examine the fidelity function generated by the origi-
nal Hamiltonian �31�, i.e., U�t�=exp�−it�H0+H1� / � �. In this
case the original Hamiltonian �31� gives a high fidelity
F�t��
1 at a different time t�
1.2t0, which can be regarded
as a higher-order correction in comparison to the approxi-
mate Hamiltonian �33�. Finally, Fig. 5 shows that spin en-
tanglement can be created in this system by adjusting the
operation time.

V. CONCLUSION

In this paper, we have considered a system of two verti-
cally CQDs each containing an electron in the presence of
Rashba-type SOI. We have theoretically demonstrated that it
is possible to create spin entanglement in this kind of system
by using the SOI. In the large-interdot-separation case, the
Coulomb interaction between the two electrons is approxi-
mately expressed in a quadratic form. Then the two-boson–
two-spin interacting model is derived in the RWA from the
original Hamiltonian. We give the exact solutions of the low
excited states analytically. These solutions help us reveal the
physics underlying the FIR spectra near the resonant point. A
perturbation treatment in the large-detuning case shows that,
as for a quantum dot embedded in an optical cavity, the
orbital degrees of freedom play the role of a quantized data
bus via the Coulomb interaction and the SOI in this system.
The effective Hamiltonian of the spin-spin interaction is ob-
tained by eliminating the orbital degrees of freedom. This
Hamiltonian provides a two-qubit operation, which is essen-
tial in quantum information processing.

Finally, we would like to point out that using the effective
interspin coupling to create spin entanglement is feasible to
be controlled and measured. From the discussions above, we
know that the effective spin coupling strength can be con-
trolled by external magnetic field. On the other hand, the
tunable strength � of the SOI,3 in principle, also enables us
to switch on and off the effective interspin coupling by ex-
ternal gates conveniently. To probe the quantum entangle-
ment of spin systems, a similar method to the protocol pro-
posed in Ref. 23 can be used, where the information stored in
the spin degrees of freedom is converted to the charge states,
and then the charge states can be detected.
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FIG. 5. �Color online� �a� Probability Pi�t� as a function of t.
Black, red solid lines represent the probabilities of �0A ,0a , ↑ ↓ � and
�0A ,0a , ↓ ↑ �, respectively. Blue and orange solid lines, which are
below 0.2, represent the probabilities of �1A ,0a , ↓ ↓ � and
�0A ,1a , ↓ ↓ �, respectively. The dashed lines are the probabilities
generated by the standard 	iSWAP gate. �b� Gate fidelity as a function
of t. The black line indicates the ideal 	iSWAP operation. The blue
and red lines represent the fidelity function generated by the
second-order approximation Hamiltonian and the original Hamil-
tonian �see text�, respectively.
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