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We study the collective excitation of a macroscopic ensemble of polarized nuclei fixed in a quantum dot.
Under the approximately homogeneous condition that we explicitly present in this paper, this many-particle
system behaves as a single-mode boson interacting with the spin of a single conduction-band electron confined
in this quantum dot. Within this effective spin-boson system, the quantum information carried by the electronic
spin can be coherently transferred into the collective bosonic mode of excitation in the ensemble of nuclei. In
this sense, the collective bosonic excitation can serve as a stable quantum memory to store the quantum spin
information of the electron.
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I. INTRODUCTION

In the current development of quantum information sci-
ence and technologies, people have devoted much effort
searching for the optimal system serving as a long-lived
quantum memory to store the quantum information carried
by a quantum system with short decoherence time.1 A uni-
versal quantum information storage can be understood as a
physical process to encode the states of each qubitsrather
than the general quantum stated into the states of the quan-
tum memory with much longer decoherence time than the
lifetime of qubit,2 or transform the quantum information car-
ried by a quantum systemssuch as photonsd, which is diffi-
cult to manipulate, to an easily controllable systemssuch as
the localized atomic ensembled.3 Such quantum information
storage is absolutely necessary in both measurement-based
quantum computation schemes4,5 and two-qubit gate-based
computation schemes.6

In the past years the collective excitation of the ensemble
of atoms have been proposed to serve as quantum memory
for photon information.7 Several experiments8–10 have al-
ready demonstrated the central principle of this scheme.
These schemes work to record the Fock states of photon or
their coherent superpositions. In this paper we will pay at-
tention to the universal quantum storagescalled qubit stor-
aged that stores the basic two-level state, the state of qubit
rather than a general quantum state.2 The universality of the
qubit storage lies on the fact that a general quantum state can
be encoded as the state of multiqubits, and the corresponding
quantum logic operations can be decomposed into the “quan-
tum networks,” which are the product of the fundamental
operations defined with respect to the qubits.6

As usual, the foundation of a universal scheme of quan-
tum information storage depends on whether one can dis-
cover a quantum system with very long decoherence time as
the universal quantum memory. Recently a protocol for uni-
versal quantum information storage was presented based on
the nanomechanical resonator interacting with charge qubits.
As the universal quantum memory, the nanomechanical reso-
nator behaves as a single-mode harmonic oscillator and its
coupling to charge qubit is just described by the Jaynes-
CummingssJCd model.11 Such spin-boson interaction forms

the basis for ion-trap-based computation schemes as well.12

These idealized schemes motivate us to seek another more
practical protocol based on collective bosonic excitation in
various physical systems. We note that a mesoscopic system
that consists of finite nuclear spins attached in a quantum dot
has been proposed to realize a long-lived quantum memory
in this universal way.13–15 The present paper will start from
this basic idea and then work on the macroscopic limit that
the number of polarized nuclei is very large so as to be
treated approximately as infinite.

We will show that, under two independent sufficiently ap-
proximately homogeneous conditions, the collective excita-
tion of a macroscopic ensemble of polarized nuclei fixed in a
quantum dot can behave as a single bosonic mode. In this
sense, confined in this quantum dot, the spin of a single
conduction-band electron interacts with this collective exci-
tation and then forms an effective spin-boson system. It dem-
onstrates a dynamic process to coherently store the quantum
information carried by the electronic spin in the collective
bosonic mode of the nuclei ensemble. Then the collective
excitation of the nuclei ensemble can serve as a universal
quantum memory to store the quantum information of spin
state of electrons.

II. BOSON REALIZATION OF COLLECTIVE EXCITATION
IN THE ENSEMBLE OF POLARIZED NUCLEI

We can consider the ensembles ofN,103–5 polarized nu-
clei with spin I0, which are fixed in a charged quantum dot
and interact with a single conduction-band electron confined
in this dot sFig. 1d. There exists a hyperfine contact interac-
tion between thes-state conduction electron and the fixed
nuclei. When a static magnetic field is applied to the dot, the
effective Hamiltonian for the total system reads

H = Vzsz + vzo
j=1

N

Iz
s jd + szo

j=1

N

gjIz
s jd + s+o

j=1

N
gj

2
I−

s jd + h.c,

s1d

where the operators
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I sid = sIx
sid,Iy

sid,Iz
sidd s2d

and

s = ssx,sy,szd s3d

describe the spins of the nucleus atith site and the conduc-
tion electron, respectively. The coefficientsVz andvz are the
Larmor precession frequencies of nucleus and electron,
which are linearly determined by the applied external mag-
netic field. The strengthgi of the hyperfine interaction de-
pends on the local value of the normucsxidu2 at the positionxi

of ith nucleus, whereascsxid is the wave packet of a single
electron inside the dot. In this paper, we take the average of
couplings asḡ=oigi /N=A/N. Here, we have also used the
spin-flip operators

s± = ssx ± isyd/2 s4d

and

I±
s jd = sIx

s jd ± iI y
s jdd/2. s5d

In the following discussion, the eigenstates ofsz and Iz
s jd are

denoted asu↑ le, u↓ le, and uml j, which satisfy

szu↑le = u↑le, szu↓le = − u↓le s6d

and

Iz
s jduml j = muml j, m= I0,I0 − 1, . . . ,−I0. s7d

An obvious observation seen from the above expression
of the Hamiltonians1d is that all nuclei wholly couple to a
single electron spin. Then we can introduce a pair of collec-
tive operators

B =
oi=1

N
giI−

sid

Î2I0o j
gj

2
s8d

and its conjugateB+ to depict the collective excitations in the
ensemble of nuclei with spinI0 from its polarized initial state

uGl = uM = − NI0l = p
i=1

N

u− I0li , s9d

whereM is the eigenvalue of thez component of total nuclei
spin Iz=oi=1

N Iz
s jd, which denotes the saturated ferromagnetic

state of nuclei ensemble.
Now we can show that the collective excitations depicted

by B andB+ can behave as bosons under the “quasihomoge-
neity” conditions in the low-excitation limitswe will explic-

itly present this as followsd. In fact, in the previous
investigations,3,16,17 we have proved that, if the coupling is
homogeneous or in a periodic way, the collective operatorsB
and B† can indeed be considered as boson operators in the
low-excitation and macroscopic limitn/N→0, wheren is
the number of excitation from ground stateuGl. The number
n characterizes the number of collective excitations of the
nuclei ensemble, which is defined through the eigenvalue
mn=−NI0+1/2+n of the z component of total spin

Jz = sz + Iz, s10d

wheren=0,1,2, . . . ,2NI0−1. It is obvious thatJz is a “good
quantum number” for the Hamiltonians1d since fJz,Hg=0.
Here, we do not include the saturated ferromagnetic states
with Jz= ± sNI0+ 1

2
d. It is noted thatn is actually the number

of excitations in the system, regardless of modeB or others.
There is an intuitive argument that if thegis have different
values, but the distribution is “quasihomogeneous,”B andB†

can also be considered as boson operators satisfying

fB,B+g → 1, s11d

approximately. In the following discussion, we will provide
two descriptions for the quasihomogeneity condition, under
which Eq.s11d holds in the limitn/N→0.

To this end we rewrite the commutator ofB andB† as

fB,B+g = −
o j

gj
2Iz

s jd

I0o j
gj

2
; 1 − FsN,nd, s12d

where

FsN,nd =
o j

gj
2fIz

s jd + I0g

I0o j
gj

2
. s13d

Sincegj
2øgmax

2 , F=FsN,nd can be estimated as

F ø
gmax

2 sIz + NI0d
g2I0N

ø
gmax

2 n

g2I0N
, s14d

whereg2=o jgj
2/N is the average over sethgj

2j. Here we have
used the definition ofn: Iz+ I0N=n or n+1 with respect to
the electronic spin-up or spin-down and the conditionNI0
@1. Therefore, it is easy to see that whengmax

2 /g2,1 in the
limit n/N→0, we haveFsN,nd→0 and thenfB,B+g.1.
Based on the above argument, the first quasihomogeneity
condition can be obtained as

gmax
2

g2 , 1. s15d

Note that the above condition corresponds to the physically
relevant case of a quantum dot sincegi is proportional to the
norm ucsxidu2 at the position of nuclei for the wave packet
csxid of a quasifree electron moving inside the dot.

However, the above quasihomogeneity condition is not
necessary and we can find another independent one as fol-
lows. By a straightforward calculation we can also reexpress
FsN,nd as

FIG. 1. Polarized nuclei interacting with an electron in a quan-
tum dot. Because of the overlap between the electronic wave func-
tion and the nuclear wave functions, an effective spin-spin coupling
between the electron and the nuclei is induced.
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F = 1 −
sIz + I0Nd

I0N
−

o j
Iz

s jdfgj
2 − g2g

I0Ng2 . s16d

Since the termsIz+ I0Nd / sI0Nd,n/ sI0Nd for N@1 and
ukIz

s jdluø I0, the upper limit of the second term on the right-
hand side of Eq.s16d can be estimated as

Uo j
Iz

s jdsgj
2 − g2d

I0Ng2
U ø sdg2d/g2, s17d

in terms of the absolute value deviation

dg2 =
1

N
o

j

ugj
2 − g2u, s18d

of gj
2. Therefore it is obvious thatfB,B+g→1 in the low-

excitation limit n/N→0 when another quasihomogeneity
condition

dg2

g2 → 0 s19d

holds.
It is pointed out that, both of the two quasihomogen-

eity conditionss15d and s19d are sufficient conditions for
the boson commutation relationfB,B+g=1, but they are in-
dependent from each other, and we can obtain neither of
them from the other. There are some cases in which one of
the two conditions is satisfied, but another is violated. For
instance, in the case withN,104, if g1=g2=¯ =gN−1=g
and gN=10g then we haveg2=1.01g2, gmax

2 =100g2, and
dg2<0.02g2. It is apparent that the conditions15d is violated,
but the condition s19d is satisfied sincegmax

2 /g2<100
and dg2/g2<0.02. In another example, we takeg1
=g2= . . . =gN/2=g and gN/2+1=gN/2+2= . . . =gN=3g, then we
haveg2=5g2, gmax

2 =9g2, anddg2<4g2. This is a physically
relevant case when the size of the electron wave function is
fixed and the nuclear spin density is increased. It indicates
that the conditions19d is violated, but the conditions15d is
satisfied in this case.

III. EFFECTIVE HAMILTONIAN DECORATED
BY EXTERNAL MAGNETIC FIELD

As mentioned above thez component of total spinJz
=sz+ Iz is conserved and thus we can classify the total Hil-
bert space for the ensemble of polarized nuclei according to
the excitation numbern. In the following we denote the
eigenspace ofJz with eigenvaluemn by Vn. ThenVn can be
decomposed into a direct sum of two eigenspaces

Vn+ = Spanhugk
sndluk = 1,2, . . . ,j, s20d

where the basis vectors

ugk
sndl P Hu↑l ^ ul1l2, . . . ,lNluo

j

l j = − NI0 + nJ s21d

and

Vn− = Spanhufk
sndluk = 1,2, . . . ,j, s22d

where the basis vectors

ufk
sndl P Hu↓l ^ ul1l2 ¯ lNluo

j

l j = − NI0 + n + 1J s23d

of Iz, i.e., Vn=Vn+ % Vn−. Then the Hamiltonians1d can be
decomposed into three parts in the invariant subspaceVn,
namely,

H = HR + HS+ Hp. s24d

Each partHR, HS, andHp can be described as follows. The
first part

HR = Vss+B + s−B+d s25d

is a resonate JC Hamiltonian with the collective Rabi fre-
quency

V =ÎI0o
j

gj
2

2
s26d

coupling the electron spin to the collective excitation. Asso-
ciated with the noncollective excited statesugk

sndl, ufk
sndl and

the corresponding composite energies

mgsnd =
Vz

2
+ vzSmn −

1

2
D −

NḡI0

2
,

m fsnd = −
Vz

2
+ vzSmn +

1

2
D +

NḡI0

2
. s27d

The second part

HS= Vzsz + vzo
j=1

N

Iz
s jd − szo

j=1

N

gjI0

= mgsndo
k

ugk
sndlkgk

sndu + m fsndo
k

ufk
sndlkfk

sndu s28d

is derived from the first and second terms of the original
Hamiltonian and also operates within the subspaceVn In the
third part

Hp = szo
j=1

N

gjsIz
s jd + I0d

= o
k

o
j=1

N
gj

2
sMkn

s jd + I0dugk
sndlkgk

sndu

− o
k

o
j=1

N
gj

2
sMkn8

s jd + I0dufk
sndlkfk

sndu, s29d

Mkn
s jd sMkn

8s jdd is the c number, which describes thez compo-
nent of thej th nuclear spin in the stateugk

sndl sufk
sndld.

We observe that the interaction partHJC=HR+HS is very
similar to the JC Hamiltonian in cavity QED describing the
interaction between the two-level atom and single-mode
electromagnetic field in the rotating-wave approximation. In
order to create the entanglement between electron spin and
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collective bosons, one can adjust the external fieldB0 so that
m fsnd=mgsnd; that is,

Vz = vz + NḡI0. s30d

In this caseHJC= %nHJC
[n] on the whole spaceV= %n Vn can be

reduced to the irreducible parts

HJC
fng , HR + nvz, s31d

for vz=Vz−NḡI0. Correspondingly, the dynamics of the total
system can also be constrained within the invariant subspace
Vn and then the last termnvz independent ofs+ andB can be
ignored since it can not contribute to the dynamics of the
system significantly.

To consider the effectiveness of the above qubit storage
protocol, we need to analyze the role of other collective
modes orthogonal to the basic collective model defined byB
and B+. These auxiliary collective modes complement the
B mode to generate a complete Hilbert space of the nuclei
ensemble. In fact, we can generally construct the com-
plete set of creation and annihilation operatorsCk

+ and
Ck sk=1,2, . . . ,Nd including C0=B and all auxiliary modes
as

Ck =
oi=1

N
hi

fkgI+
sid

Î2I0o j
hj

2
, s32d

where

hfkg = sh1
fkg,h2

fkg, . . . ,hN
fkgd s33d

sfor k=1,2. . . ,Nd are N orthogonal vectors in the
N-dimension spaceRN, which can be systematically con-
structed by making use of the Gramm-Schmidt orthogonal-
ization method starting from

hf1g = sg1,g2, . . . ,gNd P RN. s34d

Since hfkg ·hf jg=dkj and the Gramm-Schmidt orthogonaliza-
tion can also result in the quasihomogeneity conditions

dhfkg2

hfkg2
, 0, or

hmax
fkg2

hfkg2
, 1, s35d

we have

fCk,Cj
+g → dkj s36d

in the largeN limit.
For example, one can construct a boson mode with re-

spect to the existing mode by the collective excitationB by
choosing a distribution of coupling constants

Hhiuhi = gN−i,hN−i = − gi, ∀ i ,
N

2
J s37d

as a permutation ofhgij and then define a independent boson
mode by the collective operatorC as Eq.s32d. We can check
that both the orthogonal relationoi=1

N gihi =0 and the quasiho-
mogeneity conditionsdh2/h2,0 or hmax

2 /h2,1 can be obvi-
ously satisfied. Then one can prove that in each invariant
subspaceVn with n!N, there are the typical boson commu-
tation relations

fC,C+g = 1, fC,B+g = 0. s38d

Apparently, from the above generalized the Gramm-
Schmidt orthogonalization, the auxiliary boson operators can
be expressed as the linear combination of the spin operators
through a matrix transformationC=UI for

C = sB,C2, . . . ,CNdT, s39d

I = sI−
s1d,I−

s2d, . . . ,I−
sNddT,

where U is a unitary sor orthogonald matrix. SinceC+C
= I +I =o j=1

N I+
s jdI−

s jd under such transformation one can prove
that there exists a constraint

B+B + o
k

Ck
+Ck < Iz + I0N, s40d

when they work on the subspaceVn with n!N

Vz = vz + NḡI0. s41d

Formally, the Hamiltonian in Eq.s31d can be rewritten in
the whole space as

HJC = HR + vzIz + Vzsz − szo
j=1

N

gjI0 , HR + vzo
k

Ck
+Ck

+ vzsB+B + szd s42d

according to the above constraint. The above argument im-
plies no coupling between the basic modeB and the auxiliary
modesCk sk=1,2, . . . ,N−1d, and thus the dependence onCk

is trivial in the above equation. However, all mode-coupling
terms between the auxiliary modesCk and the electron-spin
qubit occur only inHp, which can cause decoherence of the
qubit.18 In Sec. VI we will explore this decoherence mecha-
nism in detail.

IV. VALIDITY OF THE SINGLE-MODE APPROXIMATION

First, let us assume thatB mode is independent of those
auxiliary collective modesCk. To formally diagonalizeHJC
by straightforward calculations, one can obtain the eigenval-
ues ofHJC

E±smi,md = Sm+ o
i

miDvz ±ÎI0sm+ 1do
j

gj
2

2
s43d

and the corresponding eigenstates

ucs±dshmij,mdl =
1

Î2m!mi!
Su↑le ± u↓le

B+

Îm+ 1
D

^ sB+dmsCi
+dmiuGl, s44d

where we haveoimi +m=n.
It is also pointed out that, only the “excited” nuclear spins

whosez component values are not −I0 have contributions to
the summation in the definition ofHp s29d. Therefore, be-
cause of the low-exciton condition, there is an intuitive ar-
gument to show thatHp is only a perturbation term. In the
following, this guess can be proved explicitly. Under the
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quasihomogeneity conditionss15d and s19d, one has

Hp ,
ḡ

2
sIz + NI0dsz, s45d

whereḡ=A/N is the average coupling strength between the
electron and nuclei. Then the first-order energy correction for
Hp can be estimated with perturbation theory

dEsnd , kcn
s±duHpucn

s±dl ,
n

4
ḡ. s46d

On the other hand, the energy gap betweenE±snd is

DEshmij,md =ÎI0sm+ 1do
j

gj
2

2
,

ḡ
Î2

ÎNI0sm+ 1d,

s47d

where we have used the relationg2, ḡ2, which meets the
conditions s15d and s19d. Therefore, the magnitude of the
contribution ofHp can be described by the ratio

U dEsnd
DEshmij,md

U ,Î n

N
. s48d

The above estimation implies thatHp can indeed be regarded
as perturbation toHJC in the low-excitation case and macro-
scopic limit n!N. Therefore, we can takeHJC as the effec-
tive Hamiltonian of the total system. It is noted that, there is
no coupling between modeB and the auxiliary modesCk.
Hence we can write the effective Hamiltonian of the electron
spin and theB mode as

Hc = Vss+B + s−B+d + vzfB+B + sz − 1
2g . s49d

In order to quantitatively evaluate the extent of approxi-
mation of the single-mode boson approach and obtain the
effective Hamiltonian, the numerical method is employed to
verify our approximate analytical result. We compute the
eigenstates of the original spin-exchange Hamiltonian

Hs =
1

2o
j

gjss+I−
s jd + s−I+

s jdd s50d

and

Hc − nvz = Vss+B + s−B+d s51d

for finite N system. Without loss of generality we take a
Gaussian-type distribution, which satisfies the conditions
s15d ands19d. In Fig. 2, the spectrums ofHs andHc−nvz for
N=80 andI0=1/2 system in the subspaceJz=−N/2+1 are
plotted in Figs. 2sad and 2sbd. It shows that the spectrums are
in agreement with each other. By comparing the numerically
exact results with the analytically approximate ones for the
effective spin-boson system, the numerical result shows that
in the low-excitation and macroscopic limit with the quasi-
homogeneity condition, the single mode boson effective
Hamiltonians49d can work well in describing the collective
excitation of the nuclei ensemble stimulated by the conduc-
tion band electron. We can also understand the difference of
the spectrum structures in Fig. 2 in terms of the concept of
“hardcore boson.”19 We imagine a model HamiltonianHb

=HssI−
s jd→bs jdd, which is obtained by replacingI−

s jd sI+
s jdd in

Eq. s50d with a set operatorsbs jdsbs jd+d. If they satisfy the
usual commutation relation of bosons that the operators
bs jd+sbs jdd andbskdsbskd+d on different sites commute with each
other, thenB andB+ automatically satisfy the boson commu-
tation relation and then result in the regular spectrum same
as to that illustrated in Fig. 2sbd. However, if the bosons are
of hardcore, i.e., they are repulsive with each other at a same
site, one can describe them with vanishing anticommutators
hbs jd+,bs jd+j=0 for the same site and the vanishing commuta-
tors fbs jd± ,bskd±g=0 for different sites. In this case the repul-
sive interaction with hardcore feature will widen the original
spectral lines to form the similar band structure in the energy
spectrum.

V. QUANTUM INFORMATION STORAGE
AS A DYNAMICAL PROCESS

We note that the above effective Hamiltonian is just of the
JC type on the resonance and then it can be used to produce
the entanglement between the qubit state of the electron and
the bosonic mode of the collective excitation of the nuclei
ensemble. Thus this entanglement induces a writing process
of qubit information into the collective excitation.

We assume that the initial state of the total system

ucs0dl = uds0dle ^ uGl s52d

contains the arbitrary superposition

uds0dle = au↑le + bu↓le s53d

of electronic states and define the Fock state

umlb =
1

Îm!
sB+dmuGl s54d

for the collective excitation. We now consider the long time
evolution by projecting the wave function onto each invari-
ant subspace spanned by the stateshu↑ leumlb, u↓ leum+1lbj
swe denote this subspace byZmd. Then this evolution of
modeB and the electron spin can be explicitly characterized
by reduced evolution matrices

FIG. 2. Spectrums ofHs sad and Hc−vz sbd for N=80 and
I0=1/2 system in the subspaceJz=−N/2+1. Theslight deviation
between the two spectrums is because of the hardcore effect of two
bosons and should vanish in macroscopic limit.

EFFECTIVE BOSON-SPIN MODEL FOR NUCLEI-… PHYSICAL REVIEW B 71, 205314s2005d

205314-5



Umstd = e−ivzmtF cosVmt − i sinVmt

− i sinVmt cosVmt
G s55d

for m=0,1,2, . . . .Here the dressed Rabit frequency

Vm = Îsm+ 1dV s56d
depends on the number of collective excitation. A storage
process of qubit information is expressed by the factorization
map

uds0dle ^ uGl → u↓lesbuG1l − iae−ivzp/2VuG2ld

= u↓leWsauG1l + buG2ld s57d

at t=p /2V. HereuG1l= uGl, uG2l=sB+duGl are two collective
excitation states that are orthogonal to each other, and

W= F 0 1

− ie−ivzp/2V 0
G s58d

is a unitary transformation.
The same case was also encountered in Ref. 10ssee the

difference between the initial and final states in Eq.s2d of
Ref. 10d. In quantum information theory this can be easily
implemented by a local unitary transformation independent
of the initial stateuds0dle sor the coefficientsa andbd. So the
decoding process can easily map back from the final state of
the quantum memory

uFl = buG1l − iae−ivzp/2VuG2l s59d

by its inverse transformationW−1. In this sense, we say that
the above map implements the quantum information storage.
We note that this is very similar to the case in quantum
teleportation, in which the initial state-independent transfor-
mation can easily be implemented by Bob for the teleported
state once the two-bit classical information is told by Alice.

However, if one prepares the quantum memory not in its
perfectly polarized stateuGl se.g., umlb smÞ0dd, the general
initial state

ucs0dl = sau↑le + bu↓led ^ umlb s60d

will evolve into

ucstdl = aUmstdu↑leumlb + bUm−1stdu↓leumlb

= ae−imvzt cossVmtdu↑leumlb + be−ism−1dvzt cossVm−1td

3u↓leumlb − ibe−ism−1dvzt sinsVm−1tdu↑leum− 1lb

− iae−imvzt sinsVmtdu↓leum+ 1lb. s61d

It is noted that in order to obtain the above result, we have
consideredu↑ le^ umlb and u↓ le^ umlb, which belong to dif-
ferent subspacesZm andZm−1. Hence they are driven by two
different blocks Umstd and Um−1std of the block-diagonal
evolution matrixU=diagfUmstdg, respectively. The above re-
sult from a straightforward calculation shows that only the
ensemble of nuclei, which is prepared in the collective
ground state, the polarized ensemble, can serve as a quantum
memory. Otherwise there must exist the systematic error for
quantum information processing.

VI. DECOHERENCE DUE TO THE COUPLINGS
WITH AUXILIARY MODES

Finally, we need to revisit the quantum decoherence in the
process of quantum information storage based on the collec-
tive excitation of the polarized nuclei ensemble. The main
source of decoherence is due to the existence of the single
particle motion described by the perturbation Hamiltonian
Hp. The similar situation was ever considered for the collec-
tive excitation in the ensemble of free atoms by one of the
present authorssCPSd and his collaborators.21 The condition
under which we can ignore the perturbation result from non-
collective excitations is just of preserving quantum coher-
ence. By making use of the boson modesCk, we can expect
that the partHp contains the coupling between the spin qubit
and N−1 auxiliary Ck modes. This will realize a typical
quantum decoherence model for a two-level system coupled
to a bath of many harmonic oscillators.

In order to analyze this problem more quantitatively, we
describe the single-particle motion from the perturbation
Hamiltonian Hp in terms of the excitation of auxiliary
modes. We consider a quasihomogeneous casegj <g, in
which

Hp < o
k

svz + 1
2gszCk

+Ckd , s62d

where we ignore the coupling termgB+Bsz/2 since it can
only lead a phase shift in the spin qubit. We consider the
nuclear ensemble prepared in a thermal equilibrium state

rR =
1

Z
p
k

o
nk

expS−
vznk

kBT
Dunklknku,

where

Z = p
k

o
nk

expS−
vznk

kBT
D s63d

the partition function at the temperatureT wherekB is the
Boltzmann constant. Let the spin qubit be initially in a pure
stateufl=au0l+bu1l. After a straightforward calculation we
obtain the density matrix at timet

rstd = Ustdsuflkfu ^ rRdU−1std s64d

and the corresponding reduced-density matrixrSstd
=TrBrstd by tracing over the auxiliary modeshCkj. The off-
diagonal elements ofrSstd can be given explicitly as

rS
!std10 = rSstd01 =

a!bsesvz/kBTd − 1dN−1eisN−1du

Îses2vz/kBTd − 2esvz/kBTd cossgtd + 1dN−1
,

s65d
where

u = arctan
sinsgtd

expsvz/kBTd − cossgtd
. s66d

In the zero-temperature limit orT→0, there is no decoher-
ence since the off-diagonal elements
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rS
!std10 = rSstd01 = a!b s67d

do not change. But in a finite temperature, the norm of off-
diagonal element is proportional to the so-called decoherence
factor

DsT,td = dsT,tdN−1 ;
„esvz/kBTd − 1dN−1

Îses2vz/kBTd − 2esvz/kBTd cossgtd + 1…N−1
.

s68d
This result illustrates that thermal excitation of the auxiliary
modes will block the implementation of the macroscopic
nuclear ensemble-based quantum memory since in the large
N limit DsT,td→0 except for the special instances at

t =
2kp

g
, k = 0,1,2, . . . s69d

In these instances,DsT,td=1 and there is no decoherence at
all. Besides, since in these instancesrS

!std10=a!b is just the
initial values and then we implement a ideal quantum infor-
mation storage to recover the stored state. To further consider
the temperature dependecne of the auxiliary mode induced
decoherence, we plot a 3D graphic ofDsT,td for a small size
N=20 system. Figure 3 shows that the caseDsT,td=1 ap-
pears periodically as timet, and DsT,td→1 all the time
whenT→0. According to the experimental data,14 the period
is roughly estimated as 2p /g,10−7s.

VII. SUMMARY WITH REMARKS

In summary we have studied the possibility of quantum
memory by using collective excitation of ensemble of polar-

ized nuclei surrounding a single electronic spin in a quantum
dot. We explicitly present the quasihomogeneous indepen-
dent conditions, under which the many-particle system, a
macroscopic ensemble of polarized nuclei, can be treated as
a single-mode bosonic system. Thus the interaction is of the
similar form of Jaynes-Cummings model. Based on this fact,
the collective excitation can serve as a quantum memory to
store the spin state of a conduction electron.

We also pointed out that the physical system for quantum
information storage is the same as that in Ref. 10, which first
showed that electronic-spin coherence can be reversibly
mapped onto the collective state of the surrounding nuclei.
But our studies emphasize that the collective excitation-
based quantum memory can be understood in terms of the
spin-boson model with essential simplicity in physics. Espe-
cially the valid conditions are discovered in present paper.
That is, the collective operators are explicitly invoked to de-
pict the bosonic collective excitations and then we can
present an effective boson-spin model, which reveals physi-
cal mechanism with collective quantum coherence behind
the original conceptual protocol for the long-lived quantum
memory.

There are two sources of quantum decoherence in such
quantum information processing, one is due to noncollective
mode and the other is due to the nuclear spin diffusion or
coupling with environment. The latter is dominate and has
been well considered in Ref. 20, but the former can still play
a role in certain cases. So we stress the former in this paper
since the same situation was even considered for the collec-
tive excitation in the ensemble of free atoms by us.21 In
principle, the latter can also be treated in our spin-boson
model with similar approach by adding diffusion terms. We
also noted that the systematic errors in transferring quantum
information can occur because of the appearance of higher
excitation by illustrating that only the ensemble of nuclei
prepared in the collective ground state rather than the excited
ones can serve as a quantum memory. How to avoid the
higher excitation of the collective boson mode and how to
correct the error due to the appearance of higher excitation
are open questions that need further investigations.

ACKNOWLEDGMENTS

We acknowledge the support of the CNSFsGrants No.
90203018 and No. 10474104d, the Knowledge Innovation
ProgramsKIPd of the Chinese Academy of Sciences, the Na-
tional Fundamental Research Program of ChinasGrant No.
001GB309310d, and Science and Technology Cooperation
Fund of Nankai and Tianjin University.

*Electronic address: songtc@nankai.edu.cn
†Electronic address: suncp@itp.ac.cn
‡Internet www site: http//www.itp.ac.cn/suncp
1The Physics of Quantum Information, edited by D. Bouwmeeste,

A. Ekert, and A. ZeilingersSpringer, Berlin, 2000d; D. P. DiVin-

cenzo and C. Bennet, NaturesLondond 404, 247 s2000d and
references therein.

2E. Pazy, I. D’Amico, P. Zanardi, and F. Rossi, Phys. Rev. B64,
195320s2001d.

3C. P. Sun, Y. Li, and X. F. Liu, Phys. Rev. Lett.91, 147903
s2003d.

FIG. 3. The decoherence factorDsT,td for a small-size system
as the function of time and temperature.

EFFECTIVE BOSON-SPIN MODEL FOR NUCLEI-… PHYSICAL REVIEW B 71, 205314s2005d

205314-7



4Knill R. Laflamme, and G. J. Milburn, NaturesLondond 409, 46
s2001d.

5D. L. Zhou, B. Zeng, Z. Xu, and C. P. Sun, Phys. Rev. A68,
062303s2003d.

6A. Barenco, C. H. Bannett, R. Cleve, D. P. DiVincenzo, N. Mar-
golus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys.
Rev. A 52, 3457s1995d.

7M. D. Lukin, Rev. Mod. Phys.75, 457 s2003d.
8C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature

sLondond 409, 490 s2001d.
9C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D.

F. Phillips, A. S. Zibrov, and M. D. Lukin, Science301, 196
s2003d.

10A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou,
L.-M. Duan, and H. J. Kimble, NaturesLondond 423, 734
s2003d.

11A. N. Cleland and M. R. Geller, Phys. Rev. Lett.93, 070501
s2004d.

12D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod.

Phys. 75, 281 s2003d.
13J. M. Taylor, C. M. Marcus, and M. D. Lukin, Phys. Rev. Lett.

90, 206803s2003d.
14A. Imamoglu, E. Knill, L. Tian, and P. Zoller, Phys. Rev. Lett.

91, 017402s2003d.
15M. Poggio, G. M. Steeves, R. C. Myers, Y. Kato, A. C. Gossard,

and D. D. Awschalom, Phys. Rev. Lett.91, 207602s2003d.
16Y. X. Liu, C. P. Sun, S. X. Yuet al., Phys. Rev. A63, 023802

s2001d.
17G. R. Jin, P. Zhang, Y. X. Liu, and C. P. Sun, Phys. Rev. B68,

134301s2003d.
18A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.

Garg, and W. Zwerger, Rev. Mod. Phys.59, 1 s1987d; D. P.
Divincenzo and D. Loss, cond-mat/0405525sunpublishedd.

19M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Phys. Rev. B40, 546 s1989d.

20D. F. Phillips, A. S. Zibrov, and M. D. Lukin, Science301, 196
s2003d.

21C. P. Sun, S. Yi, and L. You, Phys. Rev. A67, 063815s2003d.

SONGet al. PHYSICAL REVIEW B 71, 205314s2005d

205314-8


