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Effective boson-spin model for nuclei-ensemble-based universal quantum memory
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We study the collective excitation of a macroscopic ensemble of polarized nuclei fixed in a quantum dot.
Under the approximately homogeneous condition that we explicitly present in this paper, this many-particle
system behaves as a single-mode boson interacting with the spin of a single conduction-band electron confined
in this quantum dot. Within this effective spin-boson system, the quantum information carried by the electronic
spin can be coherently transferred into the collective bosonic mode of excitation in the ensemble of nuclei. In
this sense, the collective bosonic excitation can serve as a stable quantum memory to store the quantum spin
information of the electron.
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I. INTRODUCTION the basis for ion-trap-based computation schemes as'4vell.
In the current development of quantum information sci- These idealized schemes motivate us to seek another more

ence and technologies, people have devoted much eﬁoﬁraptical prot'ocol based on collective bosonic excitgtion in
searching for the optimal system serving as a long-lived/arious physical systems. We note that a mesoscopic system
quantum memory to store the quantum information carriedhat consists of finite nuclear spins attached in a quantum dot
by a quantum system with short decoherence firAeuni- has been proposed to realize a long-lived quantum memory
versal quantum information storage can be understood asi@ this universal way>-°The present paper will start from
physical process to encode the states of each dqudgiier this basic idea and then work on the macroscopic limit that
than the general quantum stateto the states of the quan- the number of polarized nuclei is very large so as to be
tum memory with much longer decoherence time than thdreated approximately as infinite.
lifetime of qubit? or transform the quantum information car- ~ We will show that, under two independent sufficiently ap-
ried by a quantum systeigsuch as photonswhich is diffi- proximately homogeneous conditions, the collective excita-
cult to manipulate, to an easily controllable systésuch as tion of a macroscopic ensemble of polarized nuclei fixed in a
the localized atomic ensembleSuch quantum information quantum dot can behave as a single bosonic mode. In this
storage is absolutely necessary in both measurement-basgense, confined in this quantum dot, the spin of a single
quantum computation schemiésand two-qubit gate-based conduction-band electron interacts with this collective exci-
computation schemés. tation and then forms an effective spin-boson system. It dem-
In the past years the collective excitation of the ensembl@nstrates a dynamic process to coherently store the quantum
of atoms have been proposed to serve as quantum memaijformation carried by the electronic spin in the collective
for photon informatiorl. Several experimerfts'® have al- bosonic mode of the nuclei ensemble. Then the collective
ready demonstrated the central principle of this schemegxcitation of the nuclei ensemble can serve as a universal
These schemes work to record the Fock states of photon guantum memory to store the quantum information of spin
their coherent superpositions. In this paper we will pay at-state of electrons.
tention to the universal quantum stora@alled qubit stor-
age that stores the basic two-level state, the state of qubili BoSON REALIZATION OF COLLECTIVE EXCITATION
rath_er than a general quantum staféhe universality of the IN THE ENSEMBLE OF POLARIZED NUCLEI
qubit storage lies on the fact that a general quantum state can
be encoded as the state of multiqubits, and the corresponding We can consider the ensembles\bf 10°-° polarized nu-
guantum logic operations can be decomposed into the “quarelei with spinl,, which are fixed in a charged quantum dot
tum networks,” which are the product of the fundamentaland interact with a single conduction-band electron confined
operations defined with respect to the quBits. in this dot(Fig. 1). There exists a hyperfine contact interac-
As usual, the foundation of a universal scheme of quantion between thes-state conduction electron and the fixed
tum information storage depends on whether one can digauclei. When a static magnetic field is applied to the dot, the
cover a quantum system with very long decoherence time asffective Hamiltonian for the total system reads
the universal quantum memory. Recently a protocol for uni-
versal quantum information storage was presented based on , , i
the nanomechanical resonator interacting with charge qubits. H=Q,05+ 0,2, 19+ 0,2 g1 9 + 0, > —le(_” +h.c,
As the universal quantum memory, the nanomechanical reso- =1 =1 =1
nator behaves as a single-mode harmonic oscillator and its (1)
coupling to charge qubit is just described by the Jaynes-
Cummings(JC) model! Such spin-boson interaction forms where the operators
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ity present this as follows In fact, in the previous
investigations;'617 we have proved that, if the coupling is
homogeneous or in a periodic way, the collective operdors
andB' can indeed be considered as boson operators in the
low-excitation and macroscopic limit/N— 0, wheren is

the number of excitation from ground sta@). The number

FIG. 1. Polarized nuclei interacting with an electron in a quan-N characterizes the number of collective excitations of the

tum dot. Because of the overlap between the electronic wave fundduclei ensemble, which is defined through the eigenvalue
tion and the nuclear wave functions, an effective spin-spin coupling™h=-NIlg+1/2+n of the z component of total spin

between the electron and the nuclei is induced.

M )

I(i):(lx A9,

1) 2

and
(3

describe the spins of the nucleusitt site and the conduc-
tion electron, respectively. The coefficielfls and w, are the

o= (0y,0y,0,)

(10

wheren=0,1,2,...,Nly—1. It is obvious that, is a “good
quantum number” for the Hamiltoniafi) since[J,,H]=0.
Here, we do not include the saturated ferromagnetic states
with J,= i(NIO+§). It is noted tham is actually the number

of excitations in the system, regardless of m&ler others.
There is an intuitive argument that if tfigs have different
values, but the distribution is “quasihomogeneo®dndB’

J,=o,+1,,

Larmor precession frequencies of nucleus and electrorgan also be considered as boson operators satisfying
which are linearly determined by the applied external mag-

netic field. The strengtly; of the hyperfine interaction de-
pends on the local value of the notg(x;)|? at the positior;

[B,B*] —1, (11)

approximately. In the following discussion, we will provide

of ith nucleus, whereag(x;) is the wave packet of a single wo descriptions for the quasihomogeneity condition, under
electron inside the dot. In this paper, we take the average Gfhich Eq.(11) holds in the limitn/N— 0.

couplings axg=2;g;/N=A/N. Here, we have also used the
spin-flip operators

os = (oytio)/2 (4
and

19 =P =i )2. (5)

In the following discussion, the eigenstateSOQfandl(zj) are
denoted a$1)e, || )e, and|m);, which satisfy

O'Z|T>e: |T>ev 0'2|l>e: - |l>e (6)

and

1Dy, =mm);, m=lglo-1, ..., ~lo.

()

An obvious observation seen from the above expressio
of the Hamiltonian(1) is that all nuclei wholly couple to a
single electron spin. Then we can introduce a pair of collec
tive operators

Ei’\llgilg)

REDE:

and its conjugat®™ to depict the collective excitations in the
ensemble of nuclei with spiky from its polarized initial state

B (8)

N
IG)=[M==Nip)=TT|-1o), 9)
i=1

whereM is the eigenvalue of thecomponent of total nuclei
i =N ()
spin [,=22,1

z
state of nuclei ensemble.

To this end we rewrite the commutator Bfand BT as

21(})
j<lz

[BB]=-—— =1-F(Nn), (12
where
2, g1+ 1]
F(N,n) = — e 5 (13
Sinceg’ <A F=F(N,n) can be estimated as
£ < Inallz*Nl)) _ G (14)

n 9°loN g°loN’

whereg?=3,g?/N is the average over sgg’}. Here we have

used the definition oh: 1,+IgN=n or n+1 with respect to

the electronic spin-up or spin-down and the conditiéhy

> 1. Therefore, it is easy to see that whgf,,/g>~ 1 in the

limit n/N—O0, we haveF(N,n)—0 and then[B,B"]=1.
Based on the above argument, the first quasihomogeneity
condition can be obtained as

Omax_

= .
9

Note that the above condition corresponds to the physically

relevant case of a quantum dot sirg;a@s proportional to the
norm |¢(x)|? at the position of nuclei for the wave packet

(15

, Which denotes the saturated ferromagneticy(x;) of a quasifree electron moving inside the dot.

However, the above quasihomogeneity condition is not

Now we can show that the collective excitations depictednecessary and we can find another independent one as fol-
by B andB* can behave as bosons under the “quasihomogdews. By a straightforward calculation we can also reexpress

neity” conditions in the low-excitation limitwe will explic-

F(N,n) as
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V. = Spard|fi")k=1,2, ...}, (22

F= IN 1,NG? (18 Wwhere the basis vectors
Since the term(I,+1oN)/(IgN)~n/(IoN) for N>1 and £y e {H} @[l WX l;==Nlg+n+ 1} (23
|<I(Z”>|<Io, the upper limit of the second term on the right- J
hand side of Eq(16) can be estimated as of I, i.e., V,=V,,®V,_. Then the Hamiltoniar(1) can be
W2 =2 decomposed into three parts in the invariant subspége
EJ- 17(g; - 9°) S namely,
——=| = (899", (17)
loNg H=Hg+Hs+H,. (24)
in terms of the absolute value deviation Each partHg, Hs, andH,, can be described as follows. The
1 first part
2= 2_2
og°= N; |9j 99, (18) Hg=Q(0,B+ 0_B*) (25)

of gjz. Therefore it is obvious thdiB,B*]—1 in the low-
excitation limit n/N—O when another quasihomogeneity

condition
5 2
9 o

gz
holds.

It is pointed out that, both of the two quasihomogen-

is a resonate JC Hamiltonian with the collective Rabi fre-

quency
/ o°
j

coupling the electron spin to the collective excitation. Asso-
ciated with the noncollective excited stateg”), |f") and
the corresponding composite energies

(19

eity conditions(15) and (19) are sufficient conditions for QO 1\ Ngi,

the boson commutation relatigi8,B*]=1, but they are in- fg(n) = ?Z + wz<mn— 5) -,

dependent from each other, and we can obtain neither of

them from the other. There are some cases in which one of o

the two conditions is satisfied, but another is violated. For wi(n) = - &z+ o (m + }) + Ndlo 27)
instance, in the case withl~_2104, if 01=g= """ =019 f 2 A" 2 2

and gy=10g then we haveg-=1.019°, ¢;,,~=100“, and

502~ 0.0292 It is apparent that the conditida5) is violated, The second part

but the condition (19) is satisfied sinceg?,,/g?~100 N N

and 8g?/g?~0.02. In another example, we take, Hs=Q,0,+ wzz 1Y - Uzz 9jlo

=02= ... =0n2=0 and gnz+1=Gniz+2= - =On=39, then we = =

haveg?=5¢% g7,,,=99%, and 8g°~4g”. This is a physically = ug(M 2 |gNG |+ M ZFONEY (28)
relevant case when the size of the electron wave function is k k

fixed and the nuclear spin density is increased. It indicates
that the condition19) is violated, but the conditiofil5) is

satisfied in this case.

Ill. EFFECTIVE HAMILTONIAN DECORATED
BY EXTERNAL MAGNETIC FIELD

is derived from the first and second terms of the original
Hamiltonian and also operates within the subspécén the
third part

N
Hp= 0,2 (1Y +19)
i=1

As mentioned above the component of total spinl, N
=o,+l, is conserved and thus we can classify the total Hil- =>> gl(MEr)] + |o)|9(kn)><9|(<n)|
2
k

bert space for the ensemble of polarized nuclei according to

=1

the excitation numben. In the following we denote the
eigenspace od, with eigenvaluem, by V,. ThenV,, can be > %(Mﬁﬂ) + |O)|f(kn>><f(kn)| (29)
: 2 !
k

decomposed into a direct sum of two eigenspaces
Vo, = Spailgy)k=1,2, ...},

where the basis vectors

ok

and

=1

(20) M(kjr: (M((gj)) is the ¢ number, which describes tteecompo-

nent of thejth nuclear spin in the stadg,((“)> (|f(k”)>).
We observe that the interaction patjc=Hg+Hgis very

My ¢ {|T> @ [l ... ,|N>|2 li=—Nlo+ n} (21) similar to the JC Hamiltonian in cavity QED describing the
j

interaction between the two-level atom and single-mode
electromagnetic field in the rotating-wave approximation. In
order to create the entanglement between electron spin and
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collective bosons, one can adjust the external fiigldo that [C,C']=1, [C,B*]=0. (39

n)=puy(n); that is, .
Hil)= (1) Apparently, from the above generalized the Gramm-

Q,= w,+ Ndl,. (30 Schmidt orthogonalization, the auxiliary boson operators can
be expressed as the linear combination of the spin operators
through a matrix transformatio@=UlI for

C=(B,C, ...,.CY)", (39)

In this caseH o=@ HJ on the whole spacé=®,, V, can be
reduced to the irreducible parts

HYY ~ He + Ny, (31)

for w,=Q,—Ngl,. Correspondingly, the dynamics of the total =12 )T
system can also be constrained within the invariant subspace . : . . +
V,, and then the last termw, independent ofr, andB can be wh+ere L;'\l |s(j)atj)un|tary (or orthogonal matrix. SinceC*C
ignored since it can not contribute to the dynamics of the=! | =2j=il, |- under such transformation one can prove
system significantly. that there exists a constraint

To consider the effectiveness of the above qubit storage
protocol, we need to analyze the role of other collective
modes orthogonal to the basic collective model define® by
and B*. These auxiliary collective modes complement thewhen they work on the subspavfg with n<N
B mode to generate a complete Hilbert space of the nuclei

B'B+ >, C;Cc=1,+IoN, (40)
k

ensemble. In fact, we can generally construct the com- ;= 0, + Nglo. (41)
plete set of creation and annihilation operat@} and Formally, the Hamiltonian in Eq(31) can be rewritten in
Ck (k=1,2,... N) including Co=B and all auxiliary modes the whole space as
as N

Ei'\il hi[k]lg) Hic=Hr+ o+ Q0,— UZE gjlo~ Hgr+ wzz C;Ck

Cy= 77—, (32 =1 k
2

\/2|OEJ. h; +w,(B'B+0,) (42

where according to the above constraint. The above argument im-
hiK = (hK] plk hik)) 33 plies no coupling between the basic md@land the auxiliary
15025 - 0lN modesCy (k=1,2,... N-1), and thus the dependence Gp

(for k=1,2...N) are N orthogonal vectors in the is trivialin the above equation. However, all mode-coupling

N-dimension spac®kN, which can be systematically con- terms between the auxiliary mod€g and the electron-spin

structed by making use of the Gramm-Schmidt orthogonalgubit occur only inH,,, which can cause decoherence of the
ization method starting from qubit!® In Sec. VI we will explore this decoherence mecha-

ism in detail.
h*=(g1,0z ... gu) € RN, (39 oo

i Kl.xplil= g, . - i iza-
Since h™-h"= g and the Gramm-Schmidt orthogonaliza- |y, v piTy OF THE SINGLE-MODE APPROXIMATION
tion can also result in the quasihomogeneity conditions

Faian K2 First, let us assume th& mode is independent of those

= _ o, max _ 9 (35) auxiliary collective mode<,. To formally diagonalizeH ;¢

K hK2 by straightforward calculations, one can obtain the eigenval-
ues ofH;c

we have

+ / 2
[Ck,Cj 1— & (36) E.(m,m) = (m+ 2 mi)‘l)zi lo(m+ 1)2 921. (43)
in the largeN limit. i j

For example, one can construct a boson mode with reand the corresponding eigenstates
spect to the existing mode by the collective excitati®iby

choosing a distribution of coupling constants . 1 B
9 ping [P ({m}m) = ,=(|T>ei |1)e )
N v2mimy! Vym+1
hilhi = Oneishn-i = — 05, O < 3 N
I| i = ON-is NIN- Oi | 2 ( 7) ® (B+)m(ci )m|G>, (44)
as a permutation dfg;} and then define a independent bosonwhere we havel;m,+m=n.
mode by the collective operat@ as Eq.(32). We can check It is also pointed out that, only the “excited” nuclear spins

that both the orthogonal relaticz]l,g;n=0 and the quasiho- whosez component values are notg-have contributions to
mogeneity condition$h?/h?~0 orh3_./h?>~1 can be obvi- the summation in the definition dfi, (29). Therefore, be-
ously satisfied. Then one can prove that in each invariantause of the low-exciton condition, there is an intuitive ar-
subspacé/, with n<N, there are the typical boson commu- gument to show thaii, is only a perturbation term. In the
tation relations following, this guess can be proved explicitly. Under the
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guasihomogeneity conditiort¢5) and(19), one has 0.15F m=1, 5m=0
q 10} e—— m=0, =m =1
Hp -~ g(lz+ NlO)O-Z! (45) ® 0.10 i
£ 005;
whereg=A/N is the average coupling strength between the g 000} —— m=0, zm =2
electron and nuclei. Then the first-order energy correction for 2 005t
H, can be estimated with perturbation theory 2
i D -0.10F w— m=0, zm =1
SE(m) ~ (Y Holug”) ~ 0. (46) 0.15] m=1, zm=0
0.20 @ (b)
On the other hand, the energy gap betwgem) is ' Models
2 qg — FIG. 2. Spectrums oHg (8 and H.-w, (b) for N=80 and
9 9
AE({m},m) = 4 /lgm+1)> 5~ TEVN|o(m+ 1), lo=1/2 system in the subspace=-N/2+1. Theslight deviation
j v

between the two spectrums is because of the hardcore effect of two
(47 bosons and should vanish in macroscopic limit.

where we have used the relati@%~§2, which meets the
conditions (15) and (19). Therefore, the magnitude of the
contribution ofH, can be described by the ratio

=Hy (1" —b®), which is obtained by replacing” (1) in
Eq. (50) with a set operator®? (b)), If they satisfy the
usual commutation relation of bosons that the operators
‘ SE(n) _ \/E 48) bW*(b1) andb™®(b®*) on different sites commute with each

N other, therB andB* automatically satisfy the boson commu-

AE({m},m) . : :
S ) tation relation and then result in the regular spectrum same
The above estimation implies thief, can indeed be regarded g to that illustrated in Fig.(B). However, if the bosons are

as perturbation tél,c in the low-excitation case and macro- of hardcore, i.e., they are repulsive with each other at a same

scopic limitn<N. Therefore, we can taki,c as the effec- sjte one can describe them with vanishing anticommutators
tive Hamiltonian of the total system. It is noted that, there isfy()* K()*1=0 for the same site and the vanishing commuta-

no coupling between modB and the auxiliary mode€,. tors [b1*,b®]=0 for different sites. In this case the repul-

Hence we can write the effective Hamiltonian of the electrong;ye interaction with hardcore feature will widen the original
spin and the mode as spectral lines to form the similar band structure in the energy

H.=Q(0,B+0_B) + 0| B'B+0,- 1. (49)  spectrum.
In order to quantitatively evaluate the extent of approxi-
mation of the single-mode boson approach and obtain the V. QUANTUM INFORMATION STORAGE
effective Hamiltonian, the numerical method is employed to AS A DYNAMICAL PROCESS

verify our approximate analytical result. We compute the

. I 4 oot We note that the above effective Hamiltonian is just of the
eigenstates of the original spin-exchange Hamiltonian

JC type on the resonance and then it can be used to produce
o= }E 0 0 the entanglement between the q_ubit state (_)f the electron a|_1d
$T 9% CARSIEYY) (50) the bosonic mode of the collective excitation of the nuclei
J ensemble. Thus this entanglement induces a writing process
and of qubit information into the collective excitation.
H, = N, = O(0,B + 0_B") (51) We assume that the initial state of the total system

for finite N system. Without loss of generality we take a [4(0)) = |d(0)) © |G) (52
Gaussian-type distribution, which satisfies the conditionsontains the arbitrary superposition

(15 and(19). In Fig. 2, the spectrums ¢i; andH.—nw, for

N=80 andl,=1/2 system in the subspack=-N/2+1 are |d(0)e = a|T)e+ Bl e (53
plotted in Figs. 2a) and Zb). It shows that the spectrums are of glectronic states and define the Fock state

in agreement with each other. By comparing the numerically
exact results with the analytically approximate ones for the
effective spin-boson system, the numerical result shows that
in the low-excitation and macroscopic limit with the quasi-
homogeneity condition, the single mode boson effectivefor the collective excitation. We now consider the long time
Hamiltonian(49) can work well in describing the collective €evolution by projecting the wave function onto each invari-
excitation of the nuclei ensemble stimulated by the conducant subspace spanned by the staig9emy, || )e/m+ 1)y}
tion band electron. We can also understand the difference dfve denote this subspace I&,). Then this evolution of
the spectrum structures in Fig. 2 in terms of the concept ofmodeB and the electron spin can be explicitly characterized
“hardcore boson!® We imagine a model Hamiltoniakl, by reduced evolution matrices

1
Imy, = —=(B")"G) (54)
ym!
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_ cosO.t  —isinO.t VI. DECOHERENCE DUE TO THE COUPLINGS
Un(t) =eeam) = ™ " (55) WITH AUXILIARY MODES
—isinQ.t cosQpt
for m=0,1,2, ... Here the dressed Rabit frequency Finally, we need to revisit the quantum decoherence in the
JEE— process of quantum information storage based on the collec-
Qp=V(m+1)Q (56) tive excitation of the polarized nuclei ensemble. The main

depends on th'e. number' of.collective excitation. A storag&ource of decoherence is due to the existence of the single
process of qubit information is expressed by the factorizatiorparticle motion described by the perturbation Hamiltonian

map Hp. The similar situation was ever considered for the collec-
w20 tive excitation in the ensemble of free atoms by one of the

d(0))e ® [G) — |)e(BIGy) —iae™ 2 =(Gy)) present author€CPS and his collaborator& The condition
= DeW(a|Gy) + B|G.)) (57) under which we can ignore the perturbation result from non-

collective excitations is just of preserving quantum coher-
att=m/2Q. Here|G,)=|G), |G,)=(B*)|G) are two collective ence. By making use of the boson mod&s we can expect
excitation states that are orthogonal to each other, and that the part,, contains the coupling between the spin qubit

and N-1 auxiliary C, modes. This will realize a typical

W= { 0 1} (58) quantum decoherence model for a two-level system coupled
—jgTiwm2Q g to a bath of many harmonic oscillators.
In order to analyze this problem more quantitatively, we
is a unitary transformation. describe the single-particle motion from the perturbation

The same case was also encountered in Refs&6 the  Hamiltonian H, in terms of the excitation of auxiliary
difference between the initial and final states in E2). of  modes. We consider a quasihomogeneous @gsey, in
Ref. 10. In quantum information theory this can be easily which
implemented by a local unitary transformation independent

of the initial stated(0)), (or the coefficientsr and8). So the Hp= 2 (w,+ 390,CiCy), (62
decoding process can easily map back from the final state of k
the quantum memory where we ignore the coupling tergB*Bo,/2 since it can
_ only lead a phase shift in the spin qubit. We consider the
[F) = BIGy) ~iae™2™2%|Gy) (59 nuclear ensemble prepared in a thermal equilibrium state
by its inverse transformatiow . In this sense, we say that 1 @My
the above map implements the quantum information storage. PR= EH > exp - kZT >|nk><nk|y
We note that this is very similar to the case in quantum kg B
teleportation, in which the initial state-independent transfor- h
mation can easily be implemented by Bob for the teleporte(yv ere
state once the two-bit classical information is told by Alice. N
However, if one prepares the quantum memory not in its z=[]> exp -—= k) (63
perfectly polarized statfG) (e.g.,|m), (m# 0)), the general kg keT
initial state the partition function at the temperatufewhere kg is the
Boltzmann constant. Let the spin qubit be initially in a pure
[9(0)) = (a| e+ BlL)e) @ [M)p (60)  state|¢py=a|0)+B|1). After a straightforward calculation we
. . obtain the density matrix at time
will evolve into
— -1
[940) = U (D1l + U101, PO=UO(gK e © PO (64
= ae M2 cod Q)| 1) M)y, + BT MV cog Q) and the corresponding reduced-density matrpg(t)

=Trgp(t) by tracing over the auxiliary modd€,}. The off-

—jgaiMmDot o - . . .
X[ Delm, — i ge™™ SIN( Q10| Telm = 1y diagonal elements qgig(t) can be given explicitly as

—iae M4 sin(Q)| | Yelm+ 1)y (61)

. o IB(e(wZIKBT) _ 1)N—1ei(N—l)(9

It is noted that in order to obtain the above result, we have ps(t10= ps(to1= (2T _ 2g@dkah) codg) + VL'
considered T )e® |m), and | | )¢® |m),, which belong to dif-

ferent subspaces,, andZ,, ;. Hence they are driven by two (65)
different blocks U(t) and U,_4(t) of the block-diagonal where

evolution matrixU =diad U,,(t)], respectively. The above re-

sult from a straightforward calculation shows that only the 0= arctan sin(gt) (66)
ensemble of nuclei, which is prepared in the collective B 'eXIO(wz/kBT) - codgt)’

ground state, the polarized ensemble, can serve as a quantum

memory. Otherwise there must exist the systematic error fom the zero-temperature limit of — 0, there is no decoher-
guantum information processing. ence since the off-diagonal elements
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ized nuclei surrounding a single electronic spin in a quantum
dot. We explicitly present the quasihomogeneous indepen-
dent conditions, under which the many-particle system, a
macroscopic ensemble of polarized nuclei, can be treated as
a single-mode bosonic system. Thus the interaction is of the
similar form of Jaynes-Cummings model. Based on this fact,
the collective excitation can serve as a quantum memory to
store the spin state of a conduction electron.

We also pointed out that the physical system for quantum
information storage is the same as that in Ref. 10, which first
showed that electronic-spin coherence can be reversibly
] mapped onto the collective state of the surrounding nuclei.
t (22.4g7) But our studies emphasize that the collective excitation-
based quantum memory can be understood in terms of the
spin-boson model with essential simplicity in physics. Espe-
cially the valid conditions are discovered in present paper.
That is, the collective operators are explicitly invoked to de-
Ps(D)10= ps(t)or= "B (67)  pict the bosonic collective excitations and then we can

do not change. But in a finite temperature, the norm of Oﬁ_present an effective boson-spin model, which reveals physi-

diagonal element is proportional to the so-called decoherenc al mgqhamsm with collective quantum coherence behind
the original conceptual protocol for the long-lived quantum

FIG. 3. The decoherence factb(T,t) for a small-size system
as the function of time and temperature.

factor
memory.
DIT.0) = (TN = (e'@dkeD — N-1 There are two sources of quantum decoherence in such
TR - J(e207%eT) — peledkeD coggt) + VT guantum information processing, one is due to noncollective

mode and the other is due to the nuclear spin diffusion or

. . - (68) coupling with environment. The latter is dominate and has
This result illustrates that thermal excitation of the auxiliary oo well considered in Ref. 20. but the former can still play

modes will block the implementation of the MACTOSCOPIC, ol in certain cases. So we stress the former in this paper

nugle_ar ensemble-based quantum memory since in the lar%?nce the same situation was even considered for the collec-
N limit D(T,t) — 0 except for the special instances at tive excitation in the ensemble of free atoms by2hsn

ok principle, the latter can also be treated in our spin-boson
t=—, k=0,1,2,... (69)  model with similar approach by adding diffusion terms. We
9 also noted that the systematic errors in transferring quantum
In these instance®)(T,t)=1 and there is no decoherence atinformation can occur because of the appearance of higher
all. Besides, since in these instangdt);o=a*B is just the excitation by illustrating that only the ensemble of nuclei
initial values and then we implement a ideal quantum infor-Prepared in the collective ground state rather than the e_xcited
mation storage to recover the stored state. To further consid&€s can serve as a quantum memory. How to avoid the
the temperature dependecne of the auxiliary mode induceligher excitation of the collective boson mode and how to
decoherence, we plot a 3D graphicT,t) for a small size  correct the error due to the appearance of_hlg_her excitation
N=20 system. Figure 3 shows that the c&¥@,t)=1 ap- a'® open questions that need further investigations.
pears periodically as timé and D(T,t)—1 all the time
whenT— 0. According to the experimental datathe period
is roughly estimated as® g~ 10’s. We acknowledge the support of the CN$8Grants No.
90203018 and No. 104741Q4the Knowledge Innovation
Program(KIP) of the Chinese Academy of Sciences, the Na-
tional Fundamental Research Program of CHi@aant No.
In summary we have studied the possibility of quantum001GB30931f) and Science and Technology Cooperation
memory by using collective excitation of ensemble of polar-Fund of Nankai and Tianjin University.
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