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Decoherence and relevant universality in quantum algorithms
via a dynamic theory for quantum measurement
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It is well known that environment may decohere a quantum bit~qubit! system immersed in it, making a
quantum computation invalid. But the quantitative features of the decoherence seem to depend on both the
constitution of the environment and the details of its coupling with the qubit system. In this paper, based on the
dynamic approach for quantum measurement developed from the Hepp-Coleman model@K. Hepp, Helv. Phys.
Acta 45, 237~1972!#, we generally model the environment as a collection of a large number of subsystems and
then consider to what extent and in which way the environment and its coupling with the qubit system may
affect a quantum computation process. In the weak-coupling limit, we find that as far as decoherence time is
concerned, there is no essential difference between an environment of two-level subsystems and an environ-
ment of harmonic oscillators. This implies that there exists some universality independent of specific consti-
tutions of environments. However, it is also shown that this is not true at finite temperature or in the case of
strong coupling. So only if the coupling is weak and the temperature low does there exist the possibility of
developing a universal scheme of controlling a qubit system such that the decoherence is avoided. The possible
effect of environment on the efficiency of a quantum algorithm is also explicitly illustrated through the
example of Shor’s prime factorization algorithm.@S1050-2947~98!06909-1#

PACS number~s!: 03.67.Lx, 03.65.Bz, 89.70.1c
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I. INTRODUCTION

Quantum computations~QC! can be understood a
quantum-mechanical evolution processes of certain quan
systems@quantum bits~so-called qubits!# @1–9#, in which
nonclassical dynamic features, such as quantum coheren
states, play a dominant role. Indeed, it is purely quant
characters that make it possible for a theoretical quan
computer to solve certain difficult mathematical proble
efficiently. In this respect, perhaps the most important
ample is Shor’s prime factorization algorithm@6#. As quan-
tum computation is a quantum process, preserving co
ence, at least to some extent, throughout the whole proc
is thus an essential requirement. This is because the dec
ence resulting from coupling with environment may make
quantum algorithm invalid and may cause unwelcome ex
nential increase of errors in output results@10–12#. Actually,
a decoherence process was even regarded as a mech
for enforcing classical behaviors in the macroscopic rea
@13#. For this reason we may well view a decohered quant
computer as a classical one. To overcome the difficul
caused by decoherence, some schemes have been pro
in the last several years@14–20#. Among them are the quan
tum error-correcting technique developed from the class
error-correction theory and the decoherence-avoid
schemes reduced from the quantum measurement th
@21–24#. For the decoherence-avoiding schemes to work,
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tuitively, one should know the details of the constitution
the environment and its coupling with the qubit system. B
the environment may be very complicated with many u
known elements. So it seems impossible to control deco
ence in a qubit system@23,24#.

As in various quantum irreversible processes, such
quantum dissipation@25–30# and wave function collapse
@27,31,32#, the environment in quantum computation@11,12#
was often modeled as a bath of harmonic oscillators wit
linear coupling to the qubit system and some procedure
control decoherence have been presented based on su
model. Then a natural question is whether or not it is reas
able to model the environment universally as a harmo
oscillator bath for practical quantum computations. This i
main issue handled in this paper. Caldeira and Leggett@25#
and Leggettet al. @26# have shown that, dealing with quan
tum dissipation in tunneling process in the weakly coupli
limit, one can generally treat the environment as a harmo
oscillator bath. In this paper, by modeling the environment
a bath of a large number of two-level subsystems, we w
consider the validity of this argument for the decoheren
problem in quantum computation. If it is valid, one can d
sign a universal decoherence-avoiding scheme in the we
coupling limit. Otherwise one will have to design differe
decoherence-avoiding schemes to cope with different
cumstances because different models may have very di
ent behaviors. Therefore we have to consider to what ex
the constitution of environment and the details of its co
pling with the qubit system affect a quantum computati
process. It is shown that, in the weakly coupling limit, th
decoherence time derived from the two-level subsyst
1810 © 1998 The American Physical Society
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PRA 58 1811DECOHERENCE AND RELEVANT UNIVERSALITY IN . . .
model of environment coincides with that derived from t
harmonic oscillator model. This implies the existence o
universality independent of the constitution of environmen
Nevertheless, there are some differences among diffe
models not to be overlooked in the case of finite tempera
or in the case of strong interaction between the environm
and the qubit system. So only when the coupling is weak
the temperature is low can we expect to find a comm
decoherence-avoiding scheme for various systems.

The starting point of this paper is the quantum dynam
approach~QDA! @33–42# to the wave function collapse
~WFC, also called von Neumann’s reduction@43#! problem
in quantum measurement. It is developed from the origi
contribution made by Hepp and Coleman~HC! @33# with a
clarified physical presentation by Bell@34#. This approach
may be thought of as a dynamic realization of von Ne
mann’s theory@43# about the quantum measuring apparat
which was proposed in contrast to Bohr’s theory. Bohr b
lieved that the apparatus must be classical. On the cont
according to the quantum dynamic approach both the m
sured system and the measuring apparatus obey the S¨-
dinger equation and the dynamic evolution governed by th
interaction is supposed to result in WFC under certain c
ditions. For example, the collapse happens if the dete
contains a great number of particles or if the detector is i
state with a very large quantum number. These two case
usually referred to as the macroscopic limit and as the c
sical limit, respectively@38#. We recall that, in the traditiona
theory of quantum measurement@24#, the WFC postulate is
only an extra assumption added to the ordinary quantum
chanics. Under this postulate, once we measure an obs
able and obtain a definite valueak the state of the system
must collapse into the corresponding eigenstateuk& from a
coherent superpositionuf&5(kckuk&^ku. In the terminology
of a density matrix this process is described by a projec
r5uf&^fu→ r̂5Skucku2uk&^ku from a pure state to a mixe
state. This projection, which was treated in the HC mo
@33# as a dynamic evolution process governed by the Sc¨-
dinger equation, means the loss of quantum coherence.

There is a strong resemblance between this phenome
and the quantum decoherence of a quantum computer re
ing from the coupling with the surrounding environment.
is then recognized that there exists a substantially close
tion between the problem of decoherence in quantum c
putation and the problem of WFC in quantum measurem
Thus, when the environment surrounding a quantum co
puter corresponds to the measurement instrument monito
the system to be measured, we can apply the known re
in quantum dynamic models@31# for quantum measuremen
to discuss such problems concerned with decoherenc
quantum computation as the dynamic mechanism of de
herence, quantum error-avoiding techniques, and calcula
of decoherence time. We can also reconsider the strateg
grouping quantum states of qubits to form decoherence
subsets@21–23# and analyze the decohering behaviors
states not belonging to decoherence free subsets.

The arrangement of this paper is as follows. To study
influence of environment on quantum computation from
quantum measurement approach, in Sec. II we describ
general model of decoherence in quantum computation w
out referring to the concrete construction of environment
a
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Sec. III, in the view of effective interaction, we show ho
certain superposition states lose their coherence and we
gest a decoherence-avoiding scheme. In Sec. IV, in
framework of the two-level subsystems model of enviro
ment, we study the decoherence problem of a two-qubit s
tem at zero temperature by explicitly calculating the de
hering factor. In Sec. V, in the weakly coupling limit, b
comparing results from different models we point out t
existence of a universality among different environments
respect to the decoherence properties of a qubit system
zero temperature. In Sec. VI we take into account the siz
a qubit system and the effect of finite temperature and rev
a further universality. In Sec. VII we make a short discuss
as a brief summary of this paper. Finally, in the Append
by the example of Shor’s prime factorization algorithm, w
demonstrate another fatal influence that environment m
impose on quantum computation—destroying the efficien
of a quantum algorithm.

II. DECOHERENCE IN QUANTUM COMPUTATION
VIA DYNAMIC FACTORIZATION

In this section we consider the effect of environment
quantum computation in general from the Hepp-Coleman
proach for quantum measurement theory@33#. We recall that
a quantum computer has at least one register. Usually a
ister is an array of qubits, each of which has two statesu0&
and u1&, so its states can be represented asun&
5un0,n1,n2, , . . . ,nL21& where the labels satisfy the uniqu
binary representationn5( i 50

L21ni2
i (ni50,1). The process

of a quantum computation is none other than a series
transformations among the states of the register. Gener
in the beginning of a computation one puts the register i
superposition stateuf(0)&5(ncnun& and then lets it evolve
according to the Schro¨dinger equation with a specific Hamil
tonian. Without the influence from environment, this evo
tion could be described with a unitary operatorU(t). Thus in
the end the machine would be in the pure stateuf(t)&
5(n,mcnU(t)m,nun&. Then in some way the results of com
putation could be drawn from this coherent superposition

When we take the influence of environment into accou
the coherence inuf(t)& may be demolished, possibly leadin
to the failure of computation. According to Zurek@13#, the
influence of environment on quantum computation can
analyzed in the view of state entanglement or state corr
tion. Let uF(0)&5uf(0)& ^ ue&5(ncnun& ^ ue& be an initial
state of the total system consisting of a qubit system and
environment. Here,ue&5ue1& ^ ue2& ^ •••^ ueN& is the initial
state of the environment without correlation with the state
the machine. Notice that we have assumed that the envi
ment consists ofN particles. The interaction between th
qubit system and the environment drives the total system
an entanglement pure state

uF~ t !&5(
n

cn~ t !un& ^ ue@n#&, ~2.1!

whereue@n#&5Un(t)ue& andUn(t) is the effective evolution
operator describing the correlation between the environm
and the stateun&. To proceed along with the discussion w
should consider the reduced density matrix
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r~ t !5Tre@ uF~ t !&^F~ t !u#

5(
n

ucn~ t !u2un&^nu1 (
nÞm

cn~ t !cm* ~ t !un&^muF~n,m;t !

1H.c. ~2.2!

Here we have traced over the environment variables and
fined the decohering factorF(n,m;t)5^e@n#ue@m#&, which
is a transition matrix element^euUn

†(t)Um(t)ue& of the envi-
ronment. The contribution of environment is completely d
termined by the decohering factor. IfF(n,m;t)51, we have
r(t)5uf(t)&^f(t)u. This is the ideal case. On the contrar
if F(n,m;t)50, the environment causes a complete decoh
ence. In such a case, a quantum computation may bec
invalid ~see the Appendix for more precise information!. It
should be emphasized here that not only the norms
F(n,m;t), but also their phases affect the quantum com
tation governed byr(t).

If we index the elements of the reduced density ma
r(t) by m andn, then the equationF(n,m,t)50 means that
its off-diagonal elements vanish. Such a case appeared in
dynamic theory of quantum measurement as a consequ
of a certain factorization structure of the effective evoluti
operator@38–42,31,32#. In fact, if Un(t) can be factorized as
Un(t)5) j

NUn
j (t), whereUa

j (t) only concerns thejth particle
in the environment, the decohering factor can be expres
as anN-multiple product

F~n,m;t !5)
j

N

^ej uUm
j †~ t !Un

j ~ t !uej&[)
j

N

F j~n,m;t !

~2.3!

of the single decohering factors F j (n,m;t)
5^euUm

j †(t)Un
j (t)ue& with norms less than unity. In the mac

roscopic limit N→`, it is possible thatF(n,m;t)→0, for
a8Þa, namely,^e@m#ue@n#&5dm,n . This factor reflects al-
most all the dynamic features of the influence of enviro
ment on a quantum computation process. For example, w
it can be written in the form exp(2t/td), the coherence will
experience a characteristic decay in the time scaletd . td ,
which characterizes the speed of decoherence, is called
decoherence time. Its value depends on the physical fea
of the quantum system and their interaction with the en
ronment. So further discussion should concern the mic
scopic dynamics of interaction between a qubit system
the environment. In the following we will deal with it in th
context of a generalized HC model.

We assume the environment is made up ofN particles and
has a free Hamiltonian in the general formĤE5S j

NĤ j .

Here, the single-particle HamiltonianĤk only depends on
dynamical variablesxj ~such as canonical coordinate, m
mentum and spin, etc.!. Not knowing further details ofĤ j ,
we will generally consider the problem of to what extent t
constitution of environment and its coupling with the qu
system can affect a quantum computation. If the st
un&(n51,2, . . . ,L) of the quantum register corresponds
the energy levelEn (n51,2, . . . ,M ), the Hamiltonian can
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be written as a sumĤs5(n51
L Enun&^nu of projections onto

the subspace spanned byun&. Physically, to satisfy the basi
requirement that the states of the qubit system should
change too much when coupled to the environment, the
teractionĤI in the present model should be chosen to be o
form with the character of quantum nondemolition~QND!
@44#

ĤI5(
n

(
j

gn, j
~xj !un&^nu. ~2.4!

It satisfies @ĤI ,Ĥs#50, and generally,@ĤI ,ĤE#Þ0. It
should be emphasized that, in the dynamic theory of qu
tum measurement, it is required that the interaction has
ferent strengths for different statesun&, i.e., it is required that
gn jÞgm j for mÞn. This is because the so-called measu
ment is a scheme to read out the states of the system from
number counting of the detector, different numbers cor
sponding to different states of the system. However, this
quirement of nondegeneracy is not necessary when we
to consider quantum computation.

If the coupling of the system to the environment is d
generate, namely,gn, j (xj )5gm, j (xj ) for certain nÞm, we
can regroup the coefficients of the interaction in t
following way: g1,j5•••5gd1,j

[k1,j ,gd111 j5•••5gd11d2 j

[k2,j ,•••, gd11•••1dq2111 j5•••5gd11•••1dqj[kq, j , . . . .

Correspondingly, the Hilbert spaceV:$un&un51,2, . . . ,L% of
the qubit system is decomposed into a direct sumVs5(q
% Vq of the subspaces

$un5m&[u1,m&um51, . . . ,d1% ~V1!,

$un5m1d1&[u2,m&um51, . . . ,d2% ~V2!,

$un5d11•••1dq211m&[uq,m&um51, . . . ,dq% ~Vq!.

This decomposition enjoys the property that the coupling
the same strengthkq j for the states belonging to the sam
subspaceVq and has the different strengthskq j andkq8 j for
the statesuq,m& and uq8,m8& belonging to the different sub
spacesVq andVq8. Now the interaction Hamiltonian can b
rewritten as

HI5(
q,m

(
j

kq, j~xj !uq,m&^q,mu. ~2.5!

As will be shown in the next section, the above gene
HamiltonianH5Ĥs1ĤE1ĤI can indeed result in a factor
ization of the decoherence factors defined for any two diff
ent statesuq,m& and uq8,m8& of the qubit system belonging
to different subspacesVq andVq8. Without referring to any
concrete modeling of environment and further details of
interaction, we are able to get some useful dynamic inform
tion about decoherence in quantum computation from
general model. The obtained conclusions, which are indep
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dent of concrete models, should be helpful to the furt
consideration of the decoherence problem.

Before going ahead, we would like to point out that en
ronment may also cause another unwelcome effect on
computation process, namely, dissipating the energy of a
bit system into the environment. Mathematically, it can
described by adding an additional termHI8 not commuting

with Ĥs to the interaction. This dissipation effect due to im
perfect isolation is characterized by the relaxation time sc
t rel . It is relatively easy to make systems having a very la
t rel and thus allowing a reasonable number of operation
complete@10#. In contrast, the effect of decoherence is mu
more insidious because the coherence information leaks
into the environment in a time scaletd much shorter thant rel
as a quantum system evolves@10,13#. Thus the sensibility of
quantum computation mainly depends ontd rather thant rel .
For this reason, the present discussions in this paper
focus on the decoherence problem rather than the dissipa
effect.

III. STATE REDUCTION IN TIME EVOLUTION

In this section we first show that the above general str
ture of space decomposition indeed dynamically leads
scheme of grouping the states of the qubit system to av
decoherence. LetVd5V1^ V2^ •••^ VN21^ VN denote the
direct product Hilbert space for the environment.Vk(k
51,2, . . . ,N) denotes the Hilbert space of thekth particle in
the environment. We will prove that, if the QND interactio
~2.4! or ~2.5! is assumed, any coherent superposit
(mCmuq,m& of states belonging to the same subspaceVq is
decoherence free and a coherent superposition(qDquq,mq&
of states belonging to different subspaces may experie
WFC or decoherence.

Let us choose an initial stateus(0)&5P j
Nus j (0)&PVd , of

the environment, and an initial stateu f (0)&5(m,qCm
q uq,m&,

of the qubit system. Then the initial state of the total syst
uF(0)&5u f (0)& ^ us(0)& will evolve into an entangling state

uF~ t !&5(
q,m

exp@2 iEqmt#Cm
q uq,m& ^)

j
U j

q~ t !us j~0!&,

~3.1!

whereEqm5Ed11•••1dq211m ,m51,2, . . . ,dq . We observe

that the effective evolution operatorUq(t) of environment is
determined by the evolution operatorsU j

q(t)5exp$2i@Ĥj

1kq,j(xj)#t% for particles through the factorized formUq(t)
5) jU j

q(t). It follows from Eq.~3.1! that states belonging to
the same subspaceVq entangle with the environment throug
the same factor) jU j

q(t)us j (0)&. This fact is the essentia
reason why coherence of the superposition(mCmuq,m& of
states belonging to the same subspaceVq can be preserved in
the dynamic evolution despite the fact that there is inter
tion between the qubit system and the environment. T
similar conclusions can be specially obtained with a conc
model, such as the harmonic oscillator model of environm
@20–24#.

We can go further to calculate exactly the following r
duced density matrix of the qubit system at timet:
r
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r~ t !5Trd@ uF~ t !&^F~ t !u#

5(
q S (m uCm

q u2uq,m&^q,mu

1 (
mÞ.m8

exp[iEqm8t2 iEqmt]Cm
q Cm8

q* uq,m&^q,m8u D
1 (

qÞq8
(

m.m8
exp@ iEq8m8t2 iEqmt#Cm

q Cm8
q8*

3uq,m&^q8,m8u)
j 51

N

^s j~0!uU j
q8†~ t !U j

q~ t !us j~0!&,

~3.2!

where Trd means taking partial trace over the variables of
environment. From this expression we see that each
diagonal element ofr(t), labeled byq andq8, is accompa-
nied by a factorized decohering factor

Fq,q8~N,t !5)
j 51

N

^s j~0!uU j
q8†~ t !U j

q~ t !us j~0!&[)
j 51

N

F
q,q8
j

~ t !

~3.3!

in the form of a factorized function. This kind of factoriza
tion structure in the evolution of a wave function is crucial
the occurrence of decoherence or WFC@38,31,32#.

Obviously, if the initial stateu f (0)& belongs to a single
subspaceVq, then the terms accompanied byFq,q8(N,t) do
not appear. Thus the system will remain in the pure st
exp@2iHst#uf(0)&^f(0)uexp@iHst# throughout the evolution pro
cess. This fact is significant for developing schemes of e
free quantum computations. The expression~3.3! also im-
plies the occurrence of decoherence when a superpositio
states mixes the vectors belonging to different subspa
Intuitively, as Fq,q8(N,t) is a multiplication of N factors
F

q,q8
j

(t) with norms not larger than unity, it may approac
zero in the macroscopic limit with very largeN. To deal with
this problem precisely, we define a real number not less t

zero,D j
q,q8(t)52 lnuF

q,q8
j

(t)u. Then the norm of the accompa
nying factorFq,q8(N,t) is expressed as

uFq,q8~N,t !u5expS 2(
j 51

N

D j
q,q8D . ~3.4!

Obviously, the series( j 51
` D j

q,q8(t)>0 since each term is no
less than zero. There are two cases in which the accomp
ing factor Fq,q8(N,t) approaches zero in the macroscop
limit with very large N. The first case is that the serie

( j 51
` D j

q,q8
(t) diverges on (0,̀ #. The second case is that th

series converges to a monotonic function oft which ap-
proaches positive infinity ast→`. Therefore it is possible
that
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r~ t !→(
q S (m uCm

q u2uq,m&^q,mu

1 (
mÞ.m8

exp@ iEqm8t2 iEqmt#Cm
q Cm8

q* uq,m&^q,m8u D
~3.5!

as N→`. In the next section, some examples will be p
sented to illustrate the above mentioned circumstances
plicitly.

In some cases the above classification of state vectors
reflection of the structure of some irreducible representa
of a certain group chainG.K whereG,K are chosen such
that HI is G invariant andHs is at mostK invariant. As an
example let us consider the group chainSO(3).SO(2). It
defines the standard angular basisuJ,M & through the Casimir
operatorsĴ2 and Ĵ3 of SO(3) and SO(2). Inthis case, we
can takeĤs5H( Ĵ2,Ĵ3) to be the Zeeman Hamiltonian in
central force field~not Coulomb field! if the interactionHI

5HI( Ĵ
2). A special case of the above general discussion

already been given in Ref.@21# where a totally factorized
interaction of the formHI5Q̂^ ( j 51

N f j (xj ) is used. HereQ̂

is a system variable commuting with the free HamiltonianĤs
of the qubit system andxj ( j 51,2, . . . ,N) are the variables
of the environment with the free HamiltonianĤD5(k

NĤk .
The Hilbert spaceVs for the system is spanned b
uq,m& (m51,2, . . . ,dq for a given q), and the common
eigenstates ofQ̂ and Ĥs are labeled byq andm.

Q̂uq,m&5equq,m&,Ĥsuq,m&5Eqmuq,m&. ~3.6!

Then we have the direct sum decompositionVs5(q
% Vq with the eigenspaces Vq5Span$uq,m&um
51,2, . . . ,dq%. This special interaction can be extended to
most general form with several system variablesQ̂j ( j
51,2, . . . ,K) that annihilate certain subspaces of the qu
system simultaneously. In fact a generalization along
line leads to an elegant mathematical structure@22,23#. For
mathematical details we refer the readers to Ref.@23# where
it was systematically described in the framework of err
avoiding quantum coding.

IV. DYNAMIC DECOHERENCE IN AN ENVIRONMENT
CONSISTING OF N TWO-LEVEL SUBSYSTEMS

To make a deeper elucidation of the above mentio
quantum dynamic mechanism of decoherence in quan
computation and the relevant trick of grouping the states
qubit system, in this section we model the environment
consisting ofN two-level subsystems. We recall that Ca
deira and Leggett@25# have pointed out that any environme
weakly coupling to a system may be approximated by a b
of oscillators. On the condition that ‘‘each environmen
degree of freedom is only weakly perturbed by its interact
with the system,’’ they have also justified describing the
fluence of environment by a coupling term linear in the b
variables up to the first order perturbation. We observe
any linear coupling only involves the transitions between
lowest two levels~ground state and the first excitation sta!
-
x-
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of each harmonic oscillator in the environment though it h
many energy levels. Therefore in such a case we can
describe the environment as a combination of many tw
level subsystems without losing generality. In fact, for qua
tum computation, Unruh@11# and Palmaet al. @12# have con-
sidered the harmonic oscillator environment. Their mode
equivalent to the one introduced to explain the WFC in qu
tum measurement by Sunet al. @31,32#. A similar model has
also been touched by Leggett and co-workers@25,26# and
Gardiner@27# in studying the tunneling effect in a quantu
dissipative process. Here we choose equivalently the t
level subsystem model to manifest some characters inde
dent of environment in the weakly coupling limit and
demonstrate explicitly the qualitative calculation of decoh
ence time through a sample example without quantum di
pation.

Let ugj& and uej& be the ground and excited states of t
jth subsystem. We define the quasispin operators

s1~ j !5uej&^gj u1ugj&^ej u,

s2~ j !52 i @ uej&^gj u2ugj&^ej u#,

s3~ j !5uej&^ej u2ugj&^gj u.

Then we introduce the Hamiltonian of the environmentHe

5( j 51
N \v js3( j ) and the interaction coupling to a qubit sy

temHI5 f (S)( j 51
N \gjs2( j ) wheref (S) is a function of the

variable S of the qubit system. Let us for the time bein
focus on the simplest case where the system consists of
qubits with the Hamiltonian

Hs5\h1S3~1!1\h2S3~2!. ~4.1!

Here S(1)5ss^ 1,Ss(2)51^ ss (s51,2,3) denote spin
operators acting on the first and the second qubits, res
tively; andss (s51,2,3) is the usual Pauli matrix. We con
sider the special interaction given by

f ~S!5S3~1!1S3~2!. ~4.2!

It means that in our model the interaction has the sa
strength for different states. This model is very simple,
even too simple in some sense. But we would like to po
out that some decoherence-avoiding scheme such as the
Hamiltonian elimination model in Ref.@21# is substantially
only a plain generalization of the present example to
multipair case if one takes into account the SU~2! rotation
transformation.

Let u1& and u0& be the qubit states that satisfyS3uk&5
(2)k11uk& (k51,0). Then the Hilbert space, spanned by

$u1,1&5u1& ^ u1&,u1,0&5u1& ^ u0&,

u0,1&5u0& ^ u1&,u0,0&5u0& ^ u0&%

contains a null subspaceV0 of HI spanned byu1,0& and
u0,1&. Any superpositionuf(0)&5Au1,0&1Bu0,1& in this
subspace will preserve its purity in the evolution proce
despite the fact that there is interaction between the sys
and the environment. Precisely, the pure stateuf(0)&^f(0)u
will evolve into the pure stateU0(t)uf(0)&^f(0)uU0

†(t)
whereU0(t)5exp@2ih1tS3(1)2ih2tS3(2)# is the free evolu-
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tion operator of the qubit system. Physically, this fact impl
that no useful information leaks out of the system in t
process and the coherence is preserved. This analysis c
easily generalized to the many-bit case where the free-q
Hamiltonian takes the formHs5(k50

L21\hkS3(k) and its in-
teraction with the environment is determined by

f ~S!5 (
k50

L21

lkS3~k!, ~4.3!

whereL is the number of qubits used and

The differentlk’s indicate that each single qubit has a d
ferent coupling to the same environment. In the Hilbert sp
of this L-qubit system with the basis

uq&5uq0& ^ uq1& ^ uq2& ^ •••^ uqL21&,

qk50,1, k50,1,2, . . . ,L

the coherence-preserving subspaceVj can be spanned b
those basis vectorsuq& satisfying

(
k50

L21

lk~2 !qk115const3j.

Let us return to the two-qubit example. If a superpositi
contains a vector outside the decoherence free subspace
coherence will happen due to the entanglement of sys
states with environment states. For example, if the ini
stateuw(0)&5Cu0,0&1Du1,1& of the qubit system involves
states not belonging toV0 and the environment is initially in
the vacuum stateu0&e5ug1& ^ ug2& ^ •••^ ugN&, the corre-
sponding pure state density matrixuw(0)& ^w(0)u ^ u0&e
^ e^0u of the total system will experience a unitary evolutio
to reach a pure state density matrixrT(t). The reduced den
sity matrix of the qubit system

r~ t !5TrerT~ t !5uCu2u0,0&^0,0u1uDu2u1,1&^1,1u

1$CD* exp@2i ~h11h2!t#F~N,t !u0,0&^1,1u1H.c.%

~4.4!

is no longer pure because the environment state beco
correlated with the qubit system state. Here the decohe
factor

F~N,t ![)
j 51

N

F j~ t !5)
j 51

N

^gj uU j 1
† ~ t !U j 0~ t !ugj& ~4.5!

is determined by the effective evolution operators of
form

U j a~ t !5exp@2 iv js3~ j !t2 i jagjs2~ j !t#,

j152, j0522, ~a50,1! ~4.6!
s
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corresponding to the qubit statesu0,0& and u1,1&, respec-
tively. Using the formula exp@isW•AW #5cosA1isW•nWA sinA for
a given vectorAW of norm A along the directionnA

W , we get
the explicit form ofU j a(t),

U j a5cos~V j at !2 i @s2~ j !sin u j a1s3~ j !cosu j a#sin~V j at !,
~4.7!

where tanu j a5jagj /v j , V j a5A(gjja)21v j
2. Then, using

Eq. ~4.7!, after some straightforward calculation we get t
real factorized decohering factor

F~N,t !5)
j 51

N

F~ j ,t !5)
j 51

N

@122 sin2u jsin2V j t#, ~4.8!

which is an N-multiple product of the factorsF( j ,t) of
norms less than 1. Here, we have used the new definit
tanu j52gj /v j , V j5A4gj

21v j
2 for the special labelsj1

52,j0522. Therefore the temporal behavior of decohe
ence is described by

uF~N,t !u5e2S~ t ![exp(
j 51

N

lnU128
gj

2

V j
2

sin2~V j t !U .
~4.9!

This is an exact result without any approximation. A sp
cial case is that the subsystems constituting the environm
are identical and the environment has a constant disc
spectrum, i.e.,vk5constantv, gk5constantg. In this case,
the decohering factoruF(N,t)u becomes an exponential func
tion exp@2bN# of N with a positive coefficientb52 lnu1
2(8g2/A4g21v2)sin2(A4g21v2t)u>0. So asN→`, the
off-diagonal elements with the decohering factoruF(N,t)u
approach zero for allt except those satisfyingA4g21v2

5(2kp/t) (k50,1,2, . . . ). For more information, one
needs a detailed analysis on the behavior of the seriesS(t)
52( j 51

N lnu128(gj
2/Vj

2)sin2(Vjt)u for various spectrum distri-
butions of environments. Of special interest is the case w
a continuous spectrum. In such a caseS(t) can be reex-
pressed in terms of a spectrum distributionr(vk) as

S~ t !52E
0

`

r~vk!lnU128
gj

2

V j
2
sin2~V j t !Udvk . ~4.10!

If the above integral diverges to positive infinity, or co
verges to a monotonously increasing function oft, e.g.,
S(t)→gt, the norm of the decoherence factor decays to z
at infinite N as t→`.

Physically, infiniteN means that the environment is
macroscopic object since it is made of infinite numbers
subsystems in that case. Therefore the occurrence of d
herence of the qubit system at infiniteN manifests a transi-
tion of the qubit system from the quantum realm to the cl
sical realm as the environment surrounding it becom
macroscopic.
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V. UNIVERSALITY OF ENVIRONMENTS
IN THE WEAK-COUPLING LIMIT

In the preceding section the analysis of decoherence
quantum computation is made by modeling the environm
as a bath of a large number of two-level subsystems.
results seem to be different from those obtained from
harmonic oscillator model of environment@13,31#. Actually
this is a specious observation. Indeed, an environment
rounding a qubit system for quantum computation may
very complicated. Intuitively, the dynamic process of dec
herence in quantum computation should depend on the
tails of interaction between the qubit system and the envir
ment. Different environments should cause differe
decoherence processes with distinct characters for the s
qubit system. So generally it seems impossible to con
decoherence in a qubit system. Nevertheless, one may
expect that in some limit situations there exists a cert
universality in the dynamics of interaction so that the phy
cal parameters dominating a quantum computation pro
would not depend on the details of environment. For
tunneling problem in the quantum dissipation process,
kind of universality has been considered by Caldeira a
Leggett @25,26# by modeling the environment as a bath
harmonic oscillators with a linear coupling to the system

In this section, we illustrate that, in the weakly couplin
limit, the decoherence time obtained from the two-level s
system model of environment coincides with that from t
harmonic oscillator model. In the case of weak coupling,
havegj!v j . Thus the norm~4.8! of the decohering factor in
the two-level subsystem model of environment becomes

uF~N,t !u5e2S~ t ![expS 2(
j 51

N 8gj
2

v j
2

sin2~v j t !D . ~5.1!

In the case of continuous spectrum, the sumS(t)
5( j 51

N (8gj
2/v j

2)sin2(vjt) can be reexpressed in terms of
spectrum distributionr(vk) as

S~ t !5E
0

` 8

vk
2
r~vk!gk

2sin2vkdvk . ~5.2!

From some concrete spectrum distributions, interesting
cumstances may arise. For instance, whenr(vk)
5(1/p)g/gk

2 the integral converges to a negative numb
proportional to timet, namely,S(t)5gt @31#. This shows
that the norm of the decoherence factor is exponentially
caying and ast→`, the off-diagonal elements of the densi
matrix vanish simultaneously. Another example of spectr
distribution is r(vk)52hvk

2/pgk
2 of Ohmic type @25,26#,

which leads to a divergent integralS(t)→` for tÞ0. There-
fore, in the present example, we can choose the spec
distributions of the two-level subsystems in the environm
such that the seriesS(t) diverges to infinity. Then the dy
namical evolution of the whole system will result in a com
plete decoherence in the reduced density matrix. This ob
vation is quite similar to that made in the context of t
harmonic oscillator model of environment.

To compare these models of environment in the wea
coupling limit, we should first briefly summarize conclusio
from the harmonic oscillator model of environment in term
or
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of the present notations@31#. Let ai
† and ai be the creation

and annihilation operators for theith harmonic oscillator in
the environment. The Hamiltonian of the environment tak
the formH5( j 51

N \v jaj
†a and its interaction with the qubi

system can be modeled as a linear coupling:

HI5 f ~s!(
j 51

N

\gj~aj
†1aj !, ~5.3!

where f (s) is a linear or nonlinear function of the qub
system variables. Let the initial state of the qubit system
uw(0)&5Cua&1Dub& be a coherent superposition of tw
eigenstates ofs,sua&5aua&,sub&5bub& and let the envi-
ronment be initially in the vacuum stateu0&e5u01& ^ u02& ^

•••^ u0N& where u0 j& is the ground state of thejth single
harmonic oscillator. The corresponding decohering fac

F(N,t)5) j 51
N

h^0uU j
b†

(t)U j
a(t)u0&h[) j 51

N F j (t) can be
obtained by solving the Schro¨dinger equations ofU j

g(t) (g
5ab) governed by the Hamiltonian of a forced harmon
oscillator

H j g5\v jaj
†aj1 f ~g!gj~aj

†1aj !. ~5.4!

In fact, by the so-called Wei-Norman algebraic expans
technique one has the following exact result@12,31,35#:

F~N,t !5expF2@ f ~a!2 f ~b!#2(
j 51

N 2gj
2

v j
2
sin2S v j t

2 D G
3expF2 i @ f ~a!22 f ~b!2#(

j 51

N gj
2

v j
S t1

sin~v j t !

v j
D G .

~5.5!

The decoherence time is decided by the norm part
F(N,t), which is the same as that in Eq.~5.1! from the
two-level subsystem model of environment in the wea
coupling limit. This can easily be seen if only one replac
v j /2 in the above equation withv j in the case that we
choose the initial state withua&5u0,0&, ub&5u1,1& and the
coupling function~4.2!. This simply implies that in this case
the details of environment do not affect the speed at whic
quantum system approaches the classical kingdom. Th
fore we have shown that there exists a universality of de
herence independent of the constitution of environments,
is, in the weakly coupling limit, the decoherence time, d
rived from the model of two-level subsystems, indeed co
cides with that derived from the model of harmonic oscil
tors.

Notice that, for the specific choiceuw(0)&5Cu0,0&
1Du1,1& of the initial state, the phases of both decoheri
factors ~4.7! and ~5.5! obtained from two different models
are zero due tof (a)22 f (b)2505j0

22j1
2 . But this is only

accidental. If we start from a general initial state, even in
weakly coupling limit, the differences in these two differe
models of environment are reflected in the phases of
decohering factors. For instance, we takeuw(0)&5Cu0,1&
1Du1,1& in the weakly coupling limit, we show that th
phase( j 51

N (gj
2/v j

2)sin(2vjt) of decohering factors
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FL~N,t !.expS 2(
j 51

N gj
2

v j
2 @2 sin2~v j t !1 i sin~2v j t !# D

~5.6!

obtained from the two-level subsystem model is essenti
different from that( j 51

N 4(gj
2/v j )@ t1sin(vjt)/vj# in Eq. ~5.5!

from the harmonic oscillator model. In the large time sc
limit, the latter is proportional to timet and thus leads to a
fast oscillation factor limt→`exp@24i(gj

2/vj)t# with a quite
uncertain phase, but the former, with the time-depend
term sin(2vjt), leads to the slow oscillation facto
exp@i(gj

2/4v j
2)sin(2vjt)# with a finite phase. Thus the prese

result seems to be more reasonable. Furthermore, it wil
shown in the next section that when the temperature is
low, different phase effects happen for different models
environment, or for different environments in practice. The
differences do affect the success probability of a quan
computation. So only in the case of weak coupling at l
temperature can there exist a common scheme of contro
a qubit system in various environments such that deco
ence is avoided.

VI. DECOHERENCE FOR THE L-QUBIT SYSTEM
AND AT FINITE TEMPERATURE

In this section the influences of the size of quantum r
ister and the temperature of environment on the proces
decoherence in quantum computation are investigated in
framework of the two-level model. In comparison with th
harmonic oscillator model, it will be shown that as far as t
size effect is concerned, the difference between the two m
els is reflected in the phases of the decohering factors. E
in the weakly coupling limit, this difference still exists. A
for the effect of finite temperature, it is observed that, thou
the decoherence time may be independent of the temper
of environment, the decohering factors have different pha
at different temperatures. Physically, the phase of a deco
ing factor is closely associated with the probability wi
which the machine ends in a specific state. Consequent
will affect the success probability of a quantum computat
~see the Appendix!.

Usually, decoherence timetd depends on the physical fea
tures of the quantum system and their interaction with
environment. For a single qubit system some numerical e
mates oftd have been made by DiVincenzo@45# for several
physical realizations. It ranges from 104 s ~for nuclear spins!
to 10212 s ~for the electron-hole excitation in bulk of a sem
conductor!. In practice, to carry out a quantum computatio
one needs a large number of qubits. The dynamic analys
the following shows that the speed of decoherence beco
larger as the number of qubits increases. Notice that the
pendence of decoherence time on the size of quantum re
ter has already been discussed in various referen
@4,5,10,12# in the framework of the harmonic oscillato
model of environment. But it should be emphasized that h
the same dependence of decoherence time on the siz
quantum register will be derived in the context of a gene
model to expose a universality. An important by-product
our analysis is the derivation of the imaginary part of t
decohering factor. We would also like to point out that t
ly
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importance of the phase of the decohering factor canno
overemphasized as to a large extent it actually determines
probability of success of a quantum computation.

Let us consider theL-qubit system coupling to the envi
ronment mentioned in the preceding section. The interac
constantslk are chosen such that the eigenvaluesj(q)
5(k50

L21lk(21)qk11 are not degenerate for$qk50,1%. Start-
ing from an initial stateuw(0)&5Cuq&1Duq8&, where up&
5)k51

L21
^ upk&,p5q,q8, the initial pure state density matri

of the total system will experience a unitary evolution
reach a pure state density matrixrL(t). Imitating the calcu-
lation process in Sec. IV, we can obtain the reduced den
matrix r(t)5TrerL(t). Its off-diagonal elements are propo
tional to the decohering factor

FL~N,t !5)
j 51

N

FL~ j ,t ![)
j 51

N

^gj uU jq
† ~L,t !U jq8~L,t !ugj&,

~6.1!

whereU jq(L,t)5exp@2ivjs3(j)t2ij(q)gjs2(j)t# is the effec-
tive evolution operator acting on the subsystem in the en
ronment. Using the notions tanu j (q)5j(q)gj /v j , V j (q)
5A@gjj(q)#21v j

2, and the matrix representation o
U jq(L,t), after a straight calculation we get

FL~ j ,t !5sin u j~q!sin@V j~q!t#sin u j~q8!sin@V j~q8!t#

1$cos@V j~q!t#2 i cosu j~q!sin@V j~q!t#%

3$cos@V j~q8!t#1 i cosu j~q8!sin@V j~q8!t#%.

~6.2!

Trivially, FL(N,t) becomes unity whenq5q8. However,
whenqÞq8, in the weakly coupling limitgj!v j , we have
sinuj(q).uj(q), cosuj(q).121

2uj
2(q), andV j (q).v j . Thus

FL~ j ,t !.12
1

2
$u j~q!2u j~q8!%2sin2~v j t !

1
i

4
$u j

2~q!2u j
2~q8!%sin~2v j t !.

Considering the approximations u j (q).sinuj(q)
.j(q)gj /vj , we obtain the decohering factors

FL~ j ,t !.12
gj

2

2v j
2 $j~q!2j j~q8!%2sin2~v j t !

1
ig j

2

4v j
2 $j j

2~q!2j j
2~q8!%sin~2v j t !, ~6.3!

which just has the same real part as that obtained from
harmonic oscillator model of environment. Consequen
the temporal behavior of the decoherence is described
F(N,t), and actually determined by
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uFL~N,t !u5exp@2SL~ t !#

5expS 2@j~q!2j~q8!#2(
j 51

N gj
2

2v j
2
sin2~v j t !D .

~6.4!

Here SL(t)5@j(q)2j(q8)#2( j 51
N (gj

2/2v j
2)sin2(vjt) is a

non-negative series. When the qubits are identical we h
lk51. Then the fastest decoherence happens if we cho
uq&5uq051& ^ uq151& ^ •••^ uqL2151& and uq8&5uq0
50& ^ uq150& ^ •••^ uqL2150&. In this case uFL(N,t)u
5exp@2L2S(t)#. Thus for the instance withS(t)5gt, we
have uF(N,t)u5exp@2L2gt# wheretd5g21 is the decoher-
ence time for a single qubit. This shows that the characte
tic time of the fastest decoherence happening in theL-qubit
system isL2 times that of a single qubit. This conclusion w
obtained by Palmaet al. @12#. But it should be stressed tha
the imaginary part( j 51

N (gj
2/4v j

2)$j j
2(q)2j j

2(q8)%sin(2vjt)
appearing here is also essentially different from@ f (a)2

2 f (b)2#( j 51
N (gj

2/v j )@ t1sin(vjt)/vj#. Thus the present re
sult seems to be more reasonable. To conclude, Eqs.~6.2!
and ~5.5! demonstrate that different models of environme
might lead to quite different results when the system is
away from the weakly coupling limit.

All of the above discussions about decoherence in qu
tum computation only concern the situation of zero tempe
ture. Let us now take the influence of finite temperature i
account. Suppose the environment is initially prepared in
equilibrium state described by the canonical density mat

rb~0!5
exp~2bĤe!

Trbexp~2bĤe!
5)

j 51

N

r jb~0!

5)
j 51

N
e2bv js3~ j !

2 cosh~bv j !
, b5

1

KBT
~6.5!

and the initial state of the qubit system is a pure st
rs(0)5uf(0)&^f(0)u. Then the initial state of the total sys
tem is described by the product density matrixr(0)
5rs(0)^ rb(0).

For a special initial state of the formuf(0)&5Au0,0&
1Bu1,1&, we obtain the decohering factorF2(N,t)5) j

N@1
22 sin2 uj sin2(Vjt)#, which is the same as that derived und
the condition of zero temperature. This is only an acciden
situation owing to the special choice of the initial state. Fo
general initial state, we will see, the decoherence proc
indeed shows a temperature dependence. In fact, for a
eral initial stateuw(0)&5Cuq&1Duq8&, we can calculate the
factor FL(N,t)5) j 51

N FL( j ,t) as follows:

FL~ j ,t ![Trb@U jq8~L,t !r jb~0!U jq
† ~L,t !#

5sin u j~q!sin@V j~q!t#sin u j~q8!sin@V j~q8!t#

1cos@V j~q!t#cos@V j~q8!t#

1cosu j~q!sin@V j~q!t#cosu j~q8!sin~V j~q8!t !

2
i

2
tanh~bv j !sin@2V j~q!t#

3$cosu j~q!2cosu j~q8!%. ~6.6!
ve
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Notice that the effect of finite temperature only appears
the imaginary part of the decohering factor. In general
speed of decoherence characterized by the n
) j 51

N uFL( j ,t)u of FL(N,t) depends on temperature and the
is not a global time scale characterizing the coherence de
ing.

In the weakly coupling limit, it is not difficult to see tha

FL~ j ,t !.12 1
2 $u j~q!2u j~q8!%2sin2@v j t#

2~ i /4!tanh~bv j !sin@2v j t#@u j
2~q!2u j

2~q8!#

or

FL~ j ,t !.12
gj

2

2v j
2 $j~q!2j j~q8!%2sin2~v j t !2

1
ig j

2

4v j
2 $j j

2~q!2j j
2~q8!%tanh~bv j !sin~2v j t !.

~6.7!

This result can be rewritten as the following exponent
form:

FL~ j ,t !5expS 2
gj

2

2v j
2 $j~q!2j j~q8!%2sin2~v j t !D

3expS ig j
2

4v j
2 $j j

2~q!2j j
2~q8!%

3tanh~bv j !sin~2v j t !D , ~6.8!

where we have used the approximationu11«1 i eu5uexp@«
1ie#u5e«.11« for real infinitesimale and «. In the case
that the series( j (gj

2/2v j
2)$j(q)2j j (q8)%2sin2(vjt)] con-

verges to a linear functiongt of time t, the decoherence time
is td51/g by definition. This reveals the novel fact that,
an environment weakly interacting with the qubit system,
decoherence time does not depend on temperature, as a
of the temperature-independent norm ofFL( j ,t). Thus in
this case thermal fluctuation plays a role in quantum com
tation only through affecting the phases of the off-diago
elements of the reduced density matrix.

In conclusion, in the weakly coupling and low temper
ture limit, there exists an interesting universality in respec
the behavior of decoherence of a qubit system. In ot
words, under certain conditions the decoherence time or
speed of decoherence is independent of the adopted mo
of environment and the temperature of environment.

VII. DISCUSSION

From the above discussions about decoherence in q
tum computation, we have seen, at least in the weakly c
pling limit, that for a quantum register withL qubits the
relevant coherence may experience a decay characterize
the factor exp(2@L2/td#t) wheretd is the typical decoherenc
time for a single bit. Thus, in general, if a quantum algorith
calls forK elementary computation steps and each step ta
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time t on the average, in order that the algorithm could
feasible we should have the condition

L2tK,td . ~7.1!

Generally speaking, this would impose a strong restriction
L and K. We need to develop proper quantum erro
correction schemes to cope with this difficulty caused
decoherence, which is unavoidable in the quantum kingd
Along this line there has been some progress. Neverthe
there is another severe problem which may endanger the
sumed great utility of quantum computers. In the Appen
we have shown that environment may affect the efficiency
a quantum algorithm. Although our discussion is not soph
ticated enough it indeed gives us frustrating informatio
This problem, deeply rooted in the quantum kingdom, see
to have been ignored. We think it is now time to face
seriously.

Even if one can effectively control the speed of decoh
ence owing to the existence of a universality, so that
above condition is satisfied, there is still another stubb
problem to handle. Though different environments may le
to the same decoherence time, the decoherence proc
may be quite different, characterized by different phase
decohering factors. This will make it almost impossible
bring a quantum computation under control in different e
vironments. To be more precise, let us take Shor’s pr
factorization algorithm as an example. In this case, as re
mulated in the Appendix, the effect of decoherence is
flected in the probability

p8~c,k!5
1

q2 (
a,a8

q21

expS 2p i ~a2a8!c

q DF~a,a8!, ~7.2!

with which the machine ends in a particular sta
uc,xkmod(n)&[uc,k(x;n)& ~for the notations and their mean
ings see the Appendix!. Here, the decohering factor
F(a,a8)5F(a,a8;t) are usually complex. It is easily see
that the probability closely depends on both their norms
their phases. Since this probability is at the core of Sho
prime factorization algorithm, the phases of decohering f
tors play a crucial role here. At present as far as we kn
how to control the influences of different phases due to
ferent environments is still an open problem in quant
computation.
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APPENDIX: DECOHERENCE IN THE SHOR
FACTORIZATION ALGORITHM

In this appendix we illustrate the possible influence
environment on the validity of a quantum algorithm throu
the example of Shor’s prime factorization algorithm. In th
case, we recall, the so-called quantum computer has two
isters in use. According to Shor’s method@6#, to factorize a
numbern one should first of all choose a numberx. Then the
first step is to put the first register in the uniform superpo
e
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tion of q statesua& (a50,1, . . . ,q21) and the second on
in a single stateu0&. This leaves the machine in the state

uf~0!&5
1

Aq
(
a50

q21

ua& ^ u0&. ~A1!

Next, one computesxqmod(n) in the second register, leavin
the machine in the state

uf~ t !&5
1

Aq
(
a50

q21

ua& ^ uxamod~n!&[
1

Aq
(
a50

q21

ua,xamod~n!&.

~A2!

Then one performs a Fourier transformAq on the first regis-
ter. This leaves the machine in the state

ufF~ t !&5
1

q (
a50

q21

(
c50

q21

expS 2p iac

q D uc,xamod~n!&.

~A3!

Finally one observes the machine. One easily finds that
probability that the machine ends in a particular st
uc,xkmod(n)&[uc,k(x;n)& is

p~c,k!5
1

q2U (
a:xa5xkmod~n!

q21

expS 2p iac

q DU2

. ~A4!

Shor shows that ifc lies in a particular region one can dete
mine a nontrivial factor ofn from the value ofc. Denote the
one-try-success probability of this method byps . Then one
has the following result:

ps>rf~r !p~c,k!>1/ln n>1/3 ln n, ~A5!

wherer is the least integer such thatxr[1(modn) andf is
Euler’s quotient function.

Now let us take the influence of environment into accou
to some extent. Assume that the environment consists oN
particles. In this case we denote byf8(0),fF8 (t),p8(c,k),
andps8 the correspondences off(0),fF(t),p(c,k), andps ,
respectively. Then we have

uf8~0!&5
1

Aq
(
a50

q21

ua& ^ u0& ^ ue&, ~A6!

where ue&5ue1& ^ ue2& ^ •••^ ueN& is the initial state of the
environment without correlation with the state of the m
chine. Here,uek& (k51,2, . . . ,N) denotes the initial state o
an individual particle in the environment. Accordingly,

uf8~ t !&5
1

Aq
(
a50

q21

ua& ^ uxamod~n!& ^ ue@a#&

[
1

Aq
(
a50

q21

ua,xamod~n!& ^ ue@a#&, ~A7!

whereue@a#&5Ua(t)ue& andUa(t) is the effective evolution
operator of the environment correlated with the stateua&. For
simplicity we do not consider the influence of environme
in the process of the Fourier transformAq . Thus we have
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ufF8 ~ t !&5
1

q (
a50

q21

(
c50

q21

expS 2p iac

q D uc,xamod~n!& ^ ue@a#&.

~A8!

As the only difference between the present model and
original one is the involvement of the environment variab
ue@a#& in the entanglement, to proceed along with the d
cussion we should consider the reduced density matrix

r~ t !5Tre@ ufF~ t !&^fF~ t !u#

5
1

q2 (
a50

q21

(
c50

q21

(
a850

q21

(
c850

q21

expS 2p i ~ac2a8c8!

q D
3^e@a8#ue@a#&uc,xamod~n!&^c8,xa8mod~n!u.

~A9!

Here we have traced over the environment variables.
notice that the contribution of environment is given by t
decohering factor

F~a,a8![^e@a8#ue@a#&5 ^euUa8
†

~ t !Ua~ t !ue&.
~A10!

Now it directly follows that

p8~c,k!5Tr$r~ t !uc,k&^c,ku%

5
1

q2 (
a,a8:xa5xkmod~n!5xa8

q21

expS 2p i ~a2a8!c

q DF~a,a8!.

~A11!

This general expression directly shows the effect of envir
ment on Shor’s algorithm. Both the norms and the phases
crucial to the success of Shor’s algorithm. We have arg
that the norms decide the decoherence time while the ph
can affect the probability in the text.

We are now in a position to consider two extreme cas
For the first case, suppose that the qubit system is comple
isolated. In this case we haveUa85Ua for a8Þa, so
^e@a8#ue@a#&51. As a result we get

p8~c,k!5
1

q2U (
a:xa5xkmod~n!

q21

expS 2p iac

q DU2

5p~c,k!.

~A12!

For the second case, suppose that the environment cau
complete decoherence. If we indexed the elements of
reduced density matrix bya anda8, then this means that it
off-diagonal elements vanish completely. Such a case
peared in the dynamical theory as a consequence of a ce
factorizable structure of the effective evolution operator.
fact, if Ua can be factorized as

Ua~ t !5)
j

N

Ua
j ~ t !, ~A13!

whereUa
j (t) only concerns thejth particle in the environ-

ment, the decohering factor can be expressed asN-multiple
product
e
s
-

e

-
re
d
es

s.
ly

s a
e

p-
ain

F~a,a8!5)
j

N

^ej uUa8
j †

~ t !Ua
j ~ t !uej&[)

j

N

uF j~a,a8!

~A14!

of the decohering factorsF j (a,a8)5^euUa8
j †(t)Ua

j (t)ue& with
norms less than unity. In the macroscopic limitN→`, it is
possible thatF(a,a8)→0, for a8Þa, namely,^e@a8#ue@a#&
5daa8 . Then we have

p8~c,k!5
1

q2
@~q212k!/r #<

1

q2

q

r
5

1

qr
~A15!

and

p8~s!5rf~r !p8~c,k!5f~r !/q<f~r !/n2<1/n.
~A16!

Let us proceed to discuss the possible influence of e
ronment on the efficiency of Shor’s algorithm. Genera
speaking, a deterministic algorithm is said to be efficien
the number of the computation steps taken to execute it
creases no faster than a polynomial function of lnN whereN
is the input. For a randomized algorithm this definitio
should be modified to fit in the probability character. Su
pose the one-try-success probability of a randomized a
rithm A is s, thenA is said to be efficient if;«.0,' p(x)
such that;N(12s)p(ln N),«, wherep(x) is a polynomial.
Obviously, the polynomialp(x) here should have real coe
ficients and satisfyp(ln N).0. All the polynomials appear-
ing in the following are tacitly assumed to have this proper
It is also clear that in quantum computations all algorith
should be randomized ones.

Let A be a quantum algorithm. Suppose for an inputN the
one-try-success probability ofA is f (N) where f is a real
continuous function defined on the real line. Then we ha
the following lemma.

Lemma. If there exists a polynomial p(x) such that

lim
N→`

@12 f ~N!#p~ ln N!,1 ~A17!

then A is efficient. Conversely, if for an arbitrary polynomi
p(x) we have

lim
N→`

@12 f ~N!#p~ ln N!>1 ~A18!

A is not efficient.
Proof. Let p(x) be a polynomial such that limN→`@1

2 f (N)#p(ln N),1. Then;«.0,'a(«) such that$ limN→`@1
2 f (N)#p(ln N)%a(«),«. Namely, limN→`@12 f (N)#p(ln N)a(«)

,«. Defining

p8~x![a~«!p~x!

we come to the conclusion that there exists someN0 such
that ;N.N0, @12 f (N)#p8(ln N),«. It is now evident that
one can choose a suitable polynomialq(x) such that;N,
@12 f (N)#q(ln N),«. This proves the first part of the lemma

For the second part of the lemma, if the conclusion w
not true,;«.0, there would exist a polynomialp«(x) such
that ;N, @12 f (N)#p«(ln N),«. Thus we would have
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limN→`@12 f (N)#p«(ln N)<«, leading to the contradiction 1
<«. The lemma is consequently proved.

Before concluding this Appendix let us takeA to be
Shor’s prime factorization algorithm and return to the abo
mentioned two extreme cases. For the first case, we h
f (N).1/3 lnN. As a result,

lim
N→`

@12 f ~N!#3 ln N< lim
N→`

@121/~3 ln N!#3 ln N51/e,1.

~A19!

So according to the lemma,A is efficient. For the second
on

. J

.

k,

c

ys

.

e
ve

case, we havef (N)<1/N. It is easy to prove limN→`(1
21/N) lnmN51 for all integersm so for all polynomialsp(x),
limN→`(121/N)p(ln N)51. Consequently, for all polynomial
p(x)

lim
N→`

@12 f ~N!#p~ ln N!> lim
N→`

~121/N!p~ ln N!51.

~A20!

This means that the algorithm is no longer efficient in th
case.
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