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Evolution of the wave function in a dissipative system
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For a dissipative system with Ohmic friction, we obtain a simple and exact solution for the wave
function of the system plus the bath. It is described by the direct product in two independent Hilbert
spaces. One of them is described by an effective Hamiltonian, the other represents the effect of the
bath, i.e., the Brownian motion, thus clarifying the structure of the wave function of the system
whose energy is dissipated by its interaction with the bath. No path-integral technology is needed
in this treatment. The derivation of the Weisskopf-Wigner linewidth theory follows easily.

PACS number(s): 03.65.Bz

The simplest example of a dissipative system, a har-
monic oscillator coupled to the environment, which is a
bath of harmonic oscillators, has been the subject of ex-
tensive studies [1-15]. We shall show in the present pa-
per that in a special case, the Ohmic case (to be defined
later), the dissipative system can be exactly treated both
classically and quantum mechanically, thereby clarifying
the sense in which the wave function is describable by
an effective Hamiltonian. In this treatment path-integral
technology is not needed, and our presentation is self-
contained.

We consider the problem discussed by Caldeira and
Leggett (CL) [1], a harmonic-oscillator system (the dissi-
pative system) with coordinate g, mass M, and frequency

(w?+ Aw?)!/?, interacting with a bath of IV harmonic os- -

cillators of coordinates x;, mass m;, and frequency wj,
where Aw? is a shift induced by the coupling already
discussed by CL. The Hamlltoman of the system and the
bath is

H‘—_—,W—i— M(w0+Aw )e -{-q}J:chJ

+Z (sz wza:2> . (1)

The dynamic equation for operators in the Heisenberg
representation leads to the following set of equations of
motion:

Mi=—-Muwiq— MAw?q — Zc,mj, 2)

3j

mjd; = =mjwit; —cjg (=1,2,...,N). (3)
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Now, applying the Laplace transform [2] (the bars are
our notations for the Laplace transform, s is the Laplace
transform of time ¢), Egs. (2) and (3) can be used to
eliminate bath variables &; to obtain the equation for g,

M(s*q— sq0 — Go) = —Muw2§ — MAW?*G
_ Z 8Zj0 + Zjo + a:JO
32 4 w

3
- G 4

where qo, o, Tjo, £jo are the initial values of the re-
spective operators in the Heisenberg representation. As-
suming the number of bath oscillators is large enough so
that we can replace the sum over j by an integration over
wj, the coefficient of the last term can then be separated

into two terms:
p(w;) dw;
o [T L, )
mjws (s +“")

(chde
L

where p(w;) is the bath oscillator density. Following an
argument similar to the one pointed out by CL [1], the
requirement that the system becomes a damped oscillator
with frequency wo and damping rate 7 in the classical
limit, known as the “Ohmic friction” condition, leads to
the following constraint:

2nM mjiwj2 (6)
T

plw;) =

By observing Eqgs. {4) and (5), it can be shown that the
second term of Eq. (5) leads to damping with the damp-
ing constant 7, while the first term of Eq. (5) represents
a frequency shift. If the frequency renormalization con-
stant Aw? is chosen to satisfy

MAW? = f

0
the frequency is shifted to wg. Then Eq. (4) is simpli-
fied, and its inverse Laplace transform gives the quantum

plwj)cidw;
SR R (7)
m_., OJJ -
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Langevin equation, valid at time ¢ > 0+4:
§+ng+wha = f(t) , (8)
with the Brownian motion driving force

. sinw;t
f(t):—ch(mjg coswjt-l—mjo ij ) . (9)

i

During the derivation, in order to carry out the integral
in Eq. {5), we used the requirement of the inverse Laplace
transform that s must pass all the singular points from
the right of the complex plane, and hence Re(s) > 0.

Equations (8) and (9) are the equations of a driven
damped harmonic oscillator, the solution of which is well
known as a linear combination of the initial values at qq,
do, Tjo0, and Ljo :

g(t) = ai(t)go + a2(t)do
+ Z [651(t)zj0 + bja(t)Zj0] , (10)

j

zi(t) = an(t)go + az(t)do

+ > (Bij1(&)zj0 + Biga(t)Ejo) , (11)
j
with
ue—ut - 'u‘e‘—ut ) e—;l,t . e—l{i o
ay(t) = YV —a az(t) = = (12)
u=g+wi and I/=g—wi, (13)

and here w = (w2 — n?/4)1/? is the frequency shifted by
damping. (All formulas are correct whether w is real or
imaginary. To avoid a minor detail of the initial-value
problem, we have redefined the initial time as t = 0+.)
The explicit expressions for b;1, bj2, a1, 42, Bij1, and
B:j2 are well known in basic physics.

We emphasize that the use of the Laplace transform
instead of the Fourier transform allows us to express g(t)
and z;(t) explicitly in terms of the initial values, as in
Egs. (10) and (11).

Equations (10) and (11) serve as the starting point
of subsequent discussions. We will proceed to find the

v

. Green's function of the full system, and hence the solu-

tion of the wave function in the Schrédinger representa-
tion. The result tells us in what sense the damped oscil-
lator is described by an effective Hamiltonian without the
bath variables and gives its specific form; it also shows
that under this condition, the wave function can be fac-
torized, and the main factor relevant to the damped os-
cillator is a solution of the Schrédinger equation with an
effective Hamiltonian.

Equations (10) and (11) are correct both in classical
mechanics and in quantum mechanics in the Heisenberg
representation. We notice that ¢(f) and xz;(¢) are both
linear superpositions of qo, do, Zjo0, £jo With c-number
coeflicients. The commutation rules between g(#), (t),
z;(t), 2;(t) are [q(2),4(t)] = 35, [=;(8), 25(8)] = ,’fj,
and operators ¢(t) and ¢(t) commute with x;(t) and
#;(t). One can prove these commutation rules by two
ways. (a) By direct computation, using the fact that at
t = 0, they are correct. (b) By the general principle that
q(t), 4(t), z;{t), £;(t) are related by a unitary transfor-
mation to go, go, zj0, and ;.

Equations (10) and (11) show that the operators g(t)
and z;(t) can each be written as a sum of two terms:

at)= QW+ &), (14)

zi(t) = Gi(t) + Z X5t , (15)

where Q(t) and ¢;(t) are linear in gg and ¢y and indepen-
dent of xjo and #jo, and &; and X;;(¢) are linear in z ;g
and Z;g, and independent of go and ¢g. Thus Q(t) and
€i(t) are operators in one Hilbert space Sg, while £;(¢t)
and X;;(t) are in an independent Hilbert space Sx, and
the full Hilbert space is a direct product Sg ® Sx.

We shall first analyze the structure of Sg. We write
that
. o ih 0O
Q(t) = a1Qo +a2Q0 = a1Qo — a2 MTQO . (16)

To explicitly show that we are discussing the Sg space,
we define Qo = go, Qo = go. The eigenfunction of Q(t)
with an eigenvalue denoted by @i, in the (Jg representa-
tion, is easily calculated to be

int 2 .
u’Q1 (QO’ t) (M‘)—e"> exp {_'2%?2—2 [ang _‘2Q0Q1 + d’(le t)]:| ] (17)

2k sinwt

with ¢ as an arbitrary phase, i.e., a real number. This eigenfunction is related to the Green’s function G(Q1, Qo;t,0) =
g

(Q1|Uq(#)|Q0), by uq, (Qo,1)

= (QolUél(t)|Q1) = (QdUé(t)[Ql) = G*(Q1, Qo;t,0), where we denote the evolution

operator by U(¢), which is unitary when we choose the eigenvectors of Q(¢) to be orthonormal. Thus we have

27h sin wt

G(Q1,Qoit,0) = ( Muwe:"" )

M
[Zh [a:Q5 — 2Q0Q1+¢(Q1,t)]:| . (18)

Next, we shall determine the arbitrary phase ¢(Q1,%), which is the phase of the eigenvectors of Q(¢). Using Eq.

(16), we find the commutation rule for Q and OQ:
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—nt

e
M

= [Q,Q] = (a182 — @182)[Qo, Qo] = e "[Qo, Qo] =

Thus we define the canonical momentum P(t) as

ik . (19)

. .2 , . th 0
M ™(a:1Qo + @2Q0) = @1Q0 — 4231 50
and get the commutation rule [Q(t) P(t)] = ih. The eigenfunction of P(t) can be calculated in two ways. (a) We can
calculate the eigenvector of P(t) in the Qg representation using Eq. (20) and then use the Green’s function Eq (18)
to transform it into the Q(t) representation. (b) The commutation rule [Q(t), P(t)] = ih requires that P(t) = —ih 25 55>

so the eigenfunction of P(t) with eigenvalue P is exp[i%Q]. By comparing these two solutions, the arbitrary phase
#(Q1,t) in the Green’s function is determined to within a phase ¢(t), which is independent of Q. ¢(t) is an arbitrary
real function of time, except that ¢(0) = 0 so that it satisfies the condition that at { = 0, the Green’s function becomes

P(t) = Me™Q(t) = (20)

§(Q1—

2tk sin wt

gt \ ?
G(Q1, Qo3 £,0) = ( Mwei? )

It is then straightforward to derive the Hamiltonian
Hg using the following relation:

g
ot
and remembering that the matrix elements of Ug and

Ug 1 are the Green’s function and its conjugate. The
result is

Hg =ik

Ual , A (22)

, P? .
I S MUt QP+ d(t) (23)
Since ¢ is arbitrary except that ¢(0) = 0, we can take
¢(t) = 0. Therefore we have derived the well known
effective Hamiltonian for the dissipative system. We em-
phasize that the expression for Hg is here derived, while
in usual literature it is introduced by more or less heuris-
tic arguments.

Next, we shall analyze the effect of the bath. Similar
to Eq. (17) we obtain the eigenfunctions 6, (zjo,t) for
;. Using Dirac’s notation we have Qlug,) = Q1lug,),
510¢,,) = €5110¢;,)- Thus Jug) []; ®|6¢,) is an eigenvec-
tor of g(t), with eigenvalue of @ +3_; ;. In other words,

Hop=e™"

the eigenvector of g(¢) with eigenvalue ¢ is |g, {£;}) =

lug—y, ¢;) I1; ®10¢;)-

If 1mt1a.lly the wave function is |¥o) = |to) [, ®|x;0),
to calculate the wave function at time ¢, we should ex-
pand ¥y in terms of the elgenvectors Iq, {& 1), ie., we
should calculate _ T

$(Q.1) = <ua[¢o>"=f/ s (90)o(g0)dd0 (24)

X3(66:0) = G ) = [ 05, (@solxaoleso)dao - (25)

Then the wave function in the Schrédinger representation
at time ¢ is

(g, {&i}t) =g, {&}H¥o)

-2 Gt ] [Ixi(,t) - (26)

[2;\4 (21Q3 + 32¢™QF — 2Q0Q1) —

Qo). Thus we obtain the Green’s function in the Sg space:

z¢fgt)] . (21)

-

Notice that ¥(Q, 1) of Eq. (24) is the wave function in
the Schrédinger representation with the effective Hamil-
tonian Eq. (23). Hence we have connected the effective
Hamiltonian approach to the dissipative system problem
with the other approaches that take both the system
and the bath into account. We also notice that even
though our ¥(g,{¢;},%) is in a different representation
from that of ¥ (g, {z;},t), the usual probability interpre-
tation is still valid: [ [ ... [|®(q, {&;},1)|2[1;dé; is the
probability density of finding the particle at g. Since
this solution is very simple, it provides a simple way to
analyze other complicated problems, e.g., studying the
influence of Brownian motion on interference, which we
shall not elaborate because of space.

Under certain conditions, e.g., at low temperature
and when the system ¢ is in highly excited states so
the range of ¢ is large enough that for all the values .
of £; which do not have vanishingly small probability,
g > | 32;;l, we can approximately write ¥(g, {¢;},¢) =
¥(g,t) I1; xj(&;,t). That is, the wave function is factor-
ized, the dissipative system g can be described by the
wave function (g, %) only, and the Brownian motion can
be ignored. Therefore it is interesting to examine the
width of the argument of the wave function ¥, due to
the Brownian motion, i.e., the mean value of (Z fJ)
at time ¢. It can be calculated using its expression in
the Heisenberg representation as introduced by (10) and
(18). At temperature T, this width is

2

(S0 >

_Z 2mw

x cot (ZkT) . (27)

This width is zero initially, then approaches its final equi-
librium value in a time interval of the order of 1/5. At
the low-temperature limit, the equilibrium width is sim-
plified to

‘b.vl () + w?{ba(t)]?]
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o2t = 00) = — [g-l—a.rctan (:—E)] . (28)

2rmw

If the damping rate # is much smaller than the frequency
of the oscillator wyp, this width happens to become the
same as the width of the ground state of the system
h/(2mw).

Finally, it is interesting to see the distribution of
the dissipated energy of the harmonic oscillator in the
bath, and check if it agrees with the Weisskopf-Wigner
linewidth theory [16]. For simplicity, we assume zero
temperature. To calculate the energy dissipated by the
system into the jth bath oscillator, we use Eq. (11) and

its derivative to obtain the expression of z;(t) and p; = - -

m;&;(t), which are then substituted into the expression

2
of the energy of the jth oscillator: h; = ;nj? + %mjwfzf

We then calculate the expectation value of hj, assuming
initially the system is in the nth excited state, and the
bath oscillators in the ground state. We calculate the
contribution to the expectation value of h; from the sys-
tem, by keeping only terms which depend on ¢p and gp.
The result is then the energy disspation by the system
into the jth oscillator. When multiplied by the density of
states p(w;) Eq. (6), it gives the dissipated energy spec-
trum. It is a function of w;, with a narrow peak near the
resonance w; = w, if the damping is small, i.e., if n € w.

It is oscillatory with a frequency of 2w;. Its time average
over a period is

1
Bj=(n+ }hw 2 Awy), (29)
’ T (- wy)?

where A(w;) varies slowly near the resonance, i.e., over
the width 77/2 of the peak it changes very little. There-
fore, we can replace w; by w near the peak, and the re-
sult is simplified to A(w) = 1. Thus Eq. (29) shows that
the dissipated energy has a Lorentzian distribution near
the resonance, in agreement with the Weisskopf-Wigner
linewidth theory.

We thank Professor C. N. Yang for drawing our atten-
tion to the problem of dissipative systems, for spending
his valuable time in many sessions of stimulating discus-
sions on this subject, and for many suggestions which are
critically important for the ideas of this paper. The part
of the work by L.H.Y. was performed under the auspices

~of the U.S. Department of Energy under Contract No.

DE-AC02-76CH00016. The part of the work by C.-P.S.
was supported in part by the Cha Chi Ming Foundation
through the CEEC program at the State University of
New York at Stony Brook, and in part by the NSF of
China through the Northeast Normal University.

[1] A.O. Caldeira and A.J. Leggett, Ann. Phys. 149, 374
(1983); Physica 121A, 587 (1983).

[2] A.O. Caldeira, Helv. Phys. Acta 61, 611.(1988).

[3] E. Kanai, Prog. Theor. Phys. 3, 440 (1948).

[4] S. Nakajima, Prog. Theor. Phys. 20, 948 (1958).

[5] R. Zwanzig, J. Chem. Phys. 33, 1338 {1960).

[6] L.R. Senitzky, Phys. Rev. 119, 670 (1960).

{7] R.P. Feynman and F.L. Vernon, Ann. Phys. 24, 118
(1963).

[8] G.W. Ford, M. Kac, and P. Mazur, J. Math. Phys. 6, 504
(1965).

[9] M. D. Kostin, J. Chem. Phys. 57, 3589 (1972).

[10] W.H. Louisell, Quantum Statistical Properties of Radia-
tion (Wiley, New York, 1973).

[11] M. Sargent III, M.O. Scully, and W.E. Lamb, Laser
Physics (Addison-Wesley, Reading, MA, 1974).

[12] K. Yasue, Ann. Phys. 114, 479 (1978).

[13] R.H. Koch, D.J. Van Harlingen, and J. Clarke, Phys.
Rev. Lett. 45, 2132 (1980).

[14] H. Dekker, Phys. Rep. 80, 1 (1981).

[15] R. Benguria and M. Kac, Phys. Rev. Lett. 46, 1 (1981).

[16] V.F. Weisskopf and F.P. Wigner, Z. Phys. 83, 54 {1930);
65, 18 (1930).



