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We study the enantiospecific state transfer for gaseous symmetric-top chiral molecules by constructing a
four-level model. This model is formed by coupling the electric dipole transitions among four appropriate
rovibrational states with three electromagnetic fields. It includes two cyclic three-level substructures, where the
overall phases of the coupling strengths differ by π with enantiomers and reflect the chirality dependence of the
molecules. Based on this four-level model, two dynamic ways are proposed to achieve the approximately perfect
enantiospecific state transfer for gaseous symmetric-top chiral molecules when all the molecules are initially in
the ground state of the system.
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I. INTRODUCTION

A chiral molecule is not superposable on its mirror im-
age through pure translation and/or rotation. The left- and
right-handed chiral molecules (called enantiomers) coexist in
many biologically active compounds and may have significant
differences in physiological effects, pharmacological effects,
and biological processes [1–3]. Only one enantiomeric form
is biologically beneficial, while the other one may be harmful
or fatal. Thus, the enantiodetection, enantioseparation, and
enantioconversion of chiral molecules are important and chal-
lenging tasks [4–14].

In the past few decades, the research of chiral molecules
based on a cyclic three-level configuration via electric dipole
transitions [15–34] has become remarkable in the physics of
atomic, molecular, and optical physics. For natural atoms,
such a cyclic three-level system is forbidden, because three
electric dipole transitions cannot coexist due to the elec-
tric dipole selection rules. However, the cyclic three-level
system can exist in chiral molecules and other symmetry-
broken systems [35–37]. Due to the intrinsic property of chiral
molecules, the product of the corresponding three electric
dipoles of the enantiomer in the cyclic three-level model
differs in sign. So the overall phase of the product of three
coupling strengths in the cyclic three-level model of the enan-
tiomer differs by π . The chirality dependence of the overall
phase makes the dynamics of enantiomers different. Based on
this fact, theoretical methods for enantiospecific state trans-
fer [18–24], enantiodetection [25–32], and enantioseparation
[33,34] of chiral molecules were proposed.

For gaseous molecules, the rotational degrees of freedom
of the molecule should be involved [38–56]. Chiral molecules
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can be assumed to be rigid enough to describe their rotation
by the Hamiltonian of the symmetric or asymmetric top [38].
Due to the magnetic degeneracy of the molecular rotational
states, the ideal single-loop cyclic three-level model in the
original schemes [15–34] is generally replaced by a compli-
cated multiple-loop three-level model, where each level may
be composed of multiple degenerate levels with different mag-
netic quantum numbers [39,40]. Some experimental groups
have utilized such a multiple-loop three-level model to realize
enantiospecific state transfer [40] (as well as enantiodetection
[40–48]) for gaseous chiral molecules. It was pointed out
[40] that this multiple-loop three-level configuration limits the
experimental efficiency. Therefore, in order to improve the
efficiency of enantiospecific state transfer (as well as enan-
tiodetection), it is necessary to select a real few-level model,
where each level does not consist of degenerate levels with
different magnetic quantum numbers.

For gaseous asymmetric-top chiral molecules, further in-
vestigations [49,50] pointed out that the ideal single-loop
cyclic three-level model can be formed by applying three
appropriate electromagnetic fields. In such an ideal single-
loop cyclic three-level model, recently the enantiospecific
state transfer has been achieved experimentally [51] for
asymmetric-top molecules with much better enantiomer en-
richment compared with previous works [40,41] by depleting
the thermal population in one of the excited levels of the cyclic
three-level model. In addition, in order to realize the enan-
tiospecific state transfer of asymmetric-top chiral molecules
initially distributed over magnetic degenerate states, the
theoretical method of synchronizing several isolated cyclic
three-level subsystems was proposed [52].

Different from the case of asymmetric-top chiral
molecules, for gaseous symmetric-top chiral molecules,
it is impossible to form the ideal chirality-dependent
single-loop cyclic three-level model due to their electric
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dipole selection rules [39]. Note that the controllability of
rotational dynamics of symmetric-top chiral molecules was
recently studied theoretically [53,54]. The controllability
could take an important role in the rotational state-selective
excitation of chiral molecules [53,54]. However, Refs. [53,54]
focused on studying the controllability of rotational
dynamics of symmetric-top chiral molecules, instead
of constructing specific chirality-dependent single-loop
few-level models and achieving the enantiospecific state
transfer (or enantioseparation) for symmetric-top chiral
molecules.

In this paper, for gaseous symmetric-top chiral molecules,
we construct a simple chirality-dependent four-level model
to achieve the approximately perfect enantiospecific state
transfer. Our four-level model includes two cyclic three-
level substructures, formed by selecting appropriately the
rovibrational states and the corresponding three electromag-
netic fields based on the electric dipole selection rules of
symmetric-top chiral molecules. In each cyclic three-level
substructure, the product of the corresponding three electric
dipoles changes sign with enantiomers. That is, the overall
phase of the coupling strengths in each cyclic three-level
substructure differs by π with enantiomers, which reflects
the chirality dependence of this model and shows different
dynamics for enantiomers. Thus, enantiospecific state transfer
(as well as enantiodetection and enantioseparation) can be
achieved by using such dynamical differences. For simplic-
ity, under the large-detuning condition, we further reduce the
four-level model to an effective two-level one with the same
detuning but different effective couplings for enantiomers.
Then we realize the approximately perfect enantiospecific
state transfer for symmetric-top chiral molecules in two dy-
namic ways. Thereby, enantiopure molecules can be further
spatially separated from the initial chiral mixture by a variety
of energy-dependent processes [33,34,57].

The structure of the article is as follows. In Sec. II
we introduce the electric dipole rovibrational transition of
symmetric-top chiral molecules. In Sec. III the four-level
model with two cyclic three-level substructures is realized
for symmetric-top chiral molecules by applying three electro-
magnetic fields. In Sec. IV, taking the D2S2 molecule as an
example, we show how to choose the vibrational wave func-
tions of the working states. In Sec. V, based on the four-level
model, two dynamic ways are used to achieve the enan-
tiospecific state transfer for symmetric-top chiral molecules.
A summary and conclusions are given in Sec. VI.

II. ELECTRIC DIPOLE ROVIBRATIONAL TRANSITION
OF SYMMETRIC-TOP CHIRAL MOLECULES

The rotational Hamiltonian for a chiral molecule reads
(h̄ = 1) [38]

Ĥrot = AĴ2
z + BĴ2

x + CĴ2
y , (1)

with three rotational constants A, B, and C. In the following,
we focus on the prolate symmetric-top chiral molecules (A >

B = C). Here Ĵx,y,z are angular momentum operators along
the principal axes of the moment of inertia, respectively. The
eigenstates of the rotational Hamiltonian (1) are |J, K, M〉
with the total angular momentum number J , the quantum

number K (−J � K � J), and the magnetic quantum num-
ber M (−J � M � J). Here K and M are the projections of
the angular momentum on the molecule-fixed z axis and the
space-fixed Z axis, respectively. The corresponding eigenen-
ergies are εJ,K = CJ (J + 1) + (A − C)K2 [38].

In the following discussion, we suppose that the coupling
among vibration, rotation, and electronic wave functions of
the molecule can be neglected. To elucidate our scheme
simply, we assume all the working states are in the elec-
tronic ground state and omit it later. Then the full wave
function of the chiral molecule can be described by the ba-
sis {|l〉 = |vl〉 ⊗ |Jl , Kl , Ml〉}, with |vl〉 the vibrational wave
functions.

On the other hand, an electromagnetic field can be written
in the linear combination Es = Re{∑σ=0,±1 es

σ Es
σ e−i(ωt+ϕσ )}.

The symbol s indicates the space-fixed frame; Es
σ , ω, and

ϕσ are the field amplitude, the frequency, and the initial
phase of the electromagnetic field, respectively; σ indi-
cates the helicity component of the electromagnetic field
with es

0 = es
Z and es

±1 = (ies
Y ± es

X )/
√

2; and es
X , es

Y , and es
Z

correspond to the unit vectors of axes of the space-fixed
frame.

For the electric dipole-allowed transition between a lower
level |l〉 and an upper level | j〉, the interaction Hamiltonian
V̂ s = μ̂ · Es is obviously written as V̂ s = � jl e−iωt | j〉〈l| +
H.c. ( j > l) [39,49], where μ̂ is the electric dipole operator
and � jl is the coupling strength

� jl = 1

2

∑
σ=0,±1

Es
σ e−iϕσ 〈 j|μ̂s

σ |l〉

= 1

2

∑
σ,σ ′=0,±1

√
(2Jj + 1)(2Jl + 1)〈v j |μ̂m

σ ′ |vl〉Es
σ

×(−1)σ+σ ′−Kl +Ml e−iϕσ W (σ )
Jj Mj ,Jl Ml

W (σ ′ )
Jj Kj ,Jl Kl

. (2)

Here μ̂s
σ = μ̂ · es

σ and μ̂m
σ ′ = μ̂ · em

σ ′ are the components of the
electric dipole in the space-fixed frame and the molecule-fixed
frame, respectively, σ ′ indicates the spherical components
of the electric dipole μ̂m

σ ′ in the molecule-fixed frame with
em

0 = em
z and em

±1 = (iem
y ± em

x )/
√

2, and em
x,y,z correspond to

the unit vectors of axes of the molecule-fixed frame. Here the
3 j symbol reads

W (σ )
JM,J ′M ′ =

(
J 1 J ′
M −σ −M ′

)
. (3)

We are interested in the condition that the coupling
strengths in Eq. (2) are nonzero. The 3 j symbols play a key
role in determining the electric dipole selection rules, that
is, �J = Jj − Jl = 0,±1, �M = Mj − Ml = σ , and �K =
Kj − Kl = σ ′ [39]. These electric dipole selection rules offer
the possibility of forming the four-level model of symmetric-
top chiral molecules.

III. CHIRALITY-DEPENDENT
FOUR-LEVEL CONFIGURATION

In this section we realize the chirality-dependent four-
level model of symmetric-top chiral molecules by choosing
appropriate states |J, K, M〉 according to the electric dipole se-
lection rules. For simplicity, we focus on the subspace J � 1.
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FIG. 1. Four-level model of the symmetric-top molecule. Two
cyclic three-level substructures |1〉 → |2〉 → |3+〉 → |1〉 and |1〉 →
|2〉 → |3−〉 → |1〉 coexist under the interaction with three electro-
magnetic fields. Here σ = 0 corresponds to the linearly Z polarized
electromagnetic field with the polarization vector es

0 = es
Z ; σ = 1

(σ = −1) corresponds to the circularly polarized electromagnetic
field rotating about the Z axis in the right-handed (left-handed)
sense with the polarization vector es

1 = (ies
Y + es

X )/
√

2 [es
−1 =

(ies
Y − es

X )/
√

2].

The working states are selected as

|1〉 ≡ |v1〉 ⊗ |0, 0, 0〉,
|2〉 ≡ |v2〉 ⊗ |1, 0,−1〉,

|3+〉 ≡ |v3〉 ⊗
[

1√
2

(|1, 1, 0〉 + |1,−1, 0〉)

]
,

|3−〉 ≡ |v3〉 ⊗
[

1√
2

(|1, 1, 0〉 − |1,−1, 0〉)

]
. (4)

Here, since the rotational constants for the prolate symmetric-
top chiral molecules meet B = C, the state |1, 1, 0〉 and the
state |1,−1, 0〉 are degenerate. Therefore, |3+〉 and |3−〉,
which are the superposition states of |1, 1, 0〉 and |1,−1, 0〉,
are degenerate.

Correspondingly, we select the three electromagnetic fields

Es
12 = Re

{
es
−1Es

12e−i(ω12t+ϕ12 )
}
,

Es
23 = Re

{
es

1Es
23e−i(ω23t+ϕ23 )},

Es
13 = Re

{
es

0Es
13e−i(ω13t+ϕ13 )

}
. (5)

Because |3+〉 and |3−〉 are degenerate, two cyclic three-level
substructures |1〉 → |2〉 → |3+〉 → |1〉 and |1〉 → |2〉 →
|3−〉 → |1〉 coexist in the presence of the three electro-
magnetic fields. Thereby, the four-level model with two
cyclic three-level substructures is formed (see Fig. 1) for the
symmetric-top chiral molecule. Note that the working states
and the electromagnetic fields used here are different from
those for asymmetric-top chiral molecules in Refs. [49,50].
In particular, it is necessary to involve the circularly polarized
electromagnetic fields for the symmetric-top chiral molecules
here, but not for the asymmetric-top chiral molecules in
Refs. [49,50].

The corresponding Hamiltonian reads

H = ω1|1〉〈1| + ω2|2〉〈2| + ω3(|3+〉〈3+| + |3−〉〈3−|)
+ [�3+2e−iω23t |3+〉〈2| + �3+1e−iω13t |3+〉〈1|
+�3−2e−iω23t |3−〉〈2| + �3−1e−iω13t |3−〉〈1|
+�21e−iω12t |2〉〈1| + H.c.], (6)

with the coupling strengths

�21 =
√

3

6
Es

12e−iϕ12〈v2|μ̂m
z |v1〉,

�3+2 = 1

4
Es

23e−iϕ23〈v3|μ̂m
x |v2〉,

�3−2 = i

4
Es

23e−iϕ23〈v3|μ̂m
y |v2〉,

�3+1 = i

√
3

6
Es

13e−iϕ13〈v3|μ̂m
y |v1〉,

�3−1 =
√

3

6
Es

13e−iϕ13〈v3|μ̂m
x |v1〉. (7)

The chirality dependence of the four-level model can be
seen from Eq. (7). For example, in the cyclic three-level
substructure |1〉 → |2〉 → |3+〉 → |1〉, the product of three
transition electric dipole moments in the molecule-fixed frame
(〈v2|μ̂m

z |v1〉〈v3|μ̂m
x |v2〉〈v3|μ̂m

y |v1〉) of the enantiomer differs
in sign and reflects the chirality [40–45,47]. Hence, it is
convenient to observe the chirality dependence of the four-
level model due to the choice of the working states |3+〉
and |3−〉. In addition, the transition electric dipole moments
in the molecule-fixed frame should be nonzero. Thus, we
need to choose three suitable vibrational wave functions |vl〉
(l = 1, 2, 3) for the working states in Eq. (4).

IV. VIBRATIONAL WAVE FUNCTION FOR THE D2S2

MOLECULE

For the D2S2 molecule, since two of its three
rotational constants are almost equal (A/2π = 76.15 GHz,
B/2π = 6.401 GHz, and C/2π = 6.399 GHz) [58], the
states (|1, 1〉 + |1,−1〉)/

√
2 and (|1, 1〉 − |1,−1〉)/

√
2 of

(J, K )-level structures are approximately degenerate. Then
the D2S2 molecule can be treated approximately as the prolate
symmetric-top (accidentally symmetric) chiral molecules
[39]. In what follows, we take the D2S2 molecule as an
example of symmetric-top chiral molecules to introduce how
to choose the vibrational wave functions of the working states
in the four-level model. It must be ensured that all the transi-
tion electric dipole moments in the molecule-fixed frame in
Eq. (7) are nonzero and the product of three transition electric
dipole moments of each cyclic three-level substructure differs
in sign with enantiomers of the D2S2 molecule.

We are interested in the potential energy surface of the
configuration space as a function of the following two coor-
dinates introduced in Ref. [58]. One coordinate is the dihedral
angle τ between two DSS planes, which describes the twist
around the SS bond. The other coordinate is the asymmetric
S-D stretching motion χ = R1 − R2 (R1 and R2 are the lengths
of two S-D bonds, respectively). The potential energy surfaces
for τ and χ are in the form of a two-dimensional double
well. The coordinate τ reflects the chirality. The left-handed
states (expressed by the superscript L) are localized on the
left-handed part (0 � τ < π ) of the potential energy surface
and the right-handed states (expressed by the superscript R)
are localized on the right-handed part (π � τ < 2π ). In the
following, we only consider the chiral states.
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We use |m̃〉Q
τ and |ñ±〉χ to represent the eigenstates for

the degrees of freedom τ and χ , respectively. Here Q = L, R
represents the chirality and is related to the range of τ . In addi-
tion, m̃ and ñ are the non-negative integers and increase in unit
steps. Further, |ñ+〉χ (|ñ−〉χ ) refers to the state with even (odd)
parity for χ . Moreover, it is reasonable to assume that the
eigenstates |m̃〉Q

τ and |ñ±〉χ are dynamically decoupled [58];
then the vibrational wave functions can be written as a product
of |m̃〉Q

τ and |ñ±〉χ , i.e., |v〉Q ≡ |m̃〉Q
τ ⊗ |ñ±〉χ . The transition

electric dipole in the molecule-fixed frame in Eq. (7) can be
demonstrated as the integral over the surface of configuration
space

χ 〈ñ±| ⊗ Q
τ 〈m̃|μ̂m

σ ′ |m̃′〉Q
τ ⊗ |ñ′±〉χ

=
∫∫

ψ
Q∗
m̃,ñ± (τ, χ )μm

σ ′ (τ, χ )ψQ
m̃′,ñ′± (τ, χ )dτ dχ, (8)

with μm
σ ′ (τ, χ ) = 〈τ, χ |μ̂m

σ ′ |τ, χ〉 the component of μ̂m
σ ′ in

the representation of |τ, χ〉 and ψ
Q
m̃,ñ± (τ, χ ) = 〈τ, χ |m̃〉Q

τ ⊗
|ñ±〉χ the wave function of the state |m̃〉Q

τ ⊗ |ñ±〉χ in the
representation of |τ, χ〉.

The symmetrical relationships of μm
σ ′ (τ, χ ) and

ψ
Q
m̃,ñ± (τ, χ ) with respect to the coordinate χ are [58]

μm
z (τ, χ ) = μm

z (τ,−χ ),

μm
x,y(τ, χ ) = −μm

x,y(τ,−χ ),

ψ
Q
m̃,ñ+ (τ, χ ) = ψ

Q
m̃,ñ+ (τ,−χ ),

ψ
Q
m̃,ñ− (τ, χ ) = −ψ

Q
m̃,ñ− (τ,−χ ). (9)

Due to the symmetrical relationships in Eq. (9), the selection
of |ñ+〉χ or |ñ−〉χ plays a key role in determining whether
the transition electric dipoles in the molecule-fixed frame
〈v j |μ̂m

σ ′ |vl〉 in Eq. (7) are zero. All the nonzero transition
electric dipoles in the molecule-fixed frame are

χ 〈ñ+| ⊗ Q
τ 〈m̃|μ̂m

z |m̃′〉Q
τ ⊗ |ñ′+〉χ 
= 0,

χ 〈ñ−| ⊗ Q
τ 〈m̃|μ̂m

z |m̃′〉Q
τ ⊗ |ñ′−〉χ 
= 0,

χ 〈ñ+| ⊗ Q
τ 〈m̃|μ̂m

x,y|m̃′〉Q
τ ⊗ |ñ′−〉χ 
= 0. (10)

Thus, a suitable set of vibrational wave functions for the
working states can be selected, such as |v1〉Q = |0〉Q

τ ⊗ |0+〉χ ,
|v2〉Q = |1〉Q

τ ⊗ |0+〉χ , and |v3〉Q = |1〉Q
τ ⊗ |0−〉χ .

The symmetrical relationships of μm
σ ′ (τ, χ ) and

ψ
Q
m̃,ñ± (τ, χ ) with respect to τ are

μm
z (π − τ, χ ) = −μm

z (π + τ, χ ),

μm
x,y(π − τ, χ ) = μm

x,y(π + τ, χ ),

ψL
m̃,ñ+ (π − τ, χ ) = ψR

m̃,ñ+ (π + τ, χ ),

ψL
m̃,ñ− (π − τ, χ ) = ψR

m̃,ñ− (π + τ, χ ). (11)

The symmetrical relationships in Eq. (11) determine the
chirality dependence of the transition electric dipole in the
molecule-fixed frame in Eq. (7), that is,

L〈v2|μ̂m
z |v1〉L = −R〈v2|μ̂m

z |v1〉R,

L〈v3|μ̂m
x,y|v1〉L = R〈v3|μ̂m

x,y|v1〉R,

L〈v3|μ̂m
x,y|v2〉L = R〈v3|μ̂m

x,y|v2〉R. (12)

Therefore, the chirality dependence of chiral molecules
reflects in the coupling strengths in Eq. (6),
that is,

�L
3+1 = �R

3+1 = �3+1, �L
3−1 = �R

3−1 = �3−1,

�L
3+2 = �R

3+2 = �3+2, �L
3−2 = �R

3−2 = �3−2,

�L
21 = −�R

21 = �21. (13)

Here we have added the superscript L or R to denote the
left-handed or right-handed chiral molecule. In the following,
when referring to left-handed (right-handed) chiral molecules,
we will add the superscript. When there is no superscript, we
refer to general molecules. Hence, when enantiomers couple
with the same electric fields, the related coupling strengths
±�21 reflect the chiral difference.

V. ENANTIOSPECIFIC STATE TRANSFER

In the above four-level model described by Eq. (6) (see
Fig. 1), the one-photon process |1〉 → |2〉 is chirality de-
pendent, while the two-photon process |1〉 → |3+〉 → |2〉 or
|1〉 → |3−〉 → |2〉 is chirality independent. Then the inter-
ference between the one-photon process and the two-photon
process in the cyclic three-level substructure is chirality
dependent. Such chirality-dependent interferences give rise
to the chirality-dependent dynamics for the enantiomer to
achieve the enantiospecific state transfer (or the enantiodetec-
tion and enantioseparation).

Since the dynamics of the four-level model of symmetric-
top chiral molecules is different from that of the cyclic
three-level model, the schemes [18–24] of the enantiospecific
state transfer based on the cyclic three-level models may no
longer be applicable. Based on the four-level model, we will
introduce two dynamic ways to achieve the enantiospecific
state transfer for symmetric-top chiral molecules.

Under the three-photon resonance condition ω12 + ω23 −
ω13 = 0, the Hamiltonian (6) can be rewritten in the time-
independent form in the interaction picture as

H ′ = �12|2〉〈2| + �13(|3+〉〈3+| + |3−〉〈3−|)
+ [�21|2〉〈1| + �3+2|3+〉〈2| + �3+1|3+〉〈1|
+�3−2|3−〉〈2| + �3−1|3−〉〈1| + H.c.], (14)

with the detunings �l j ≡ (ω j − ωl ) − ωl j . We now consider
the case that the electromagnetic field Es

12 is resonant with the
transition |1〉 ↔ |2〉, i.e., �12 = 0. Then the other two electro-
magnetic fields Es

23 and Es
13 are in two-photon resonance, i.e.,

�23 = �13 = �. Therefore, the enantiospecific state transfer
can be realized by adjusting the electromagnetic fields (the
field amplitudes and the phases) and the detuning.

A. Effective two-level model

In what follows, for the sake of simplicity, we assume the
large-detuning condition

|�| � |�3+1| ∼ |�3+2| � |�21|,
|�| � |�3−1| ∼ |�3−2| � |�21| (15)

so that the four-level model can reduce to an effective
two-level one by eliminating adiabatically the excited levels
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Left-handed: Right-handed:

FIG. 2. Effective two-level model with the same effective detun-
ings �1 − �2 and the chirality-dependent effective couplings �L =
�eff + �21 for the left-handed chiral molecules and �R = �eff − �21

for the right-handed chiral molecules.

|3+〉 and |3−〉. To this end, we decompose the Hamiltonian
as H ′ = H0 + H1 + H2 with the zeroth-order Hamiltonian
H0 = �(|3+〉〈3+| + |3−〉〈3−|), the first-order term H1 =
�3+2|3+〉〈2| + �3+1|3+〉〈1| + �3−2|3−〉〈2| + �3−1|3−〉〈1| +
H.c., and the second-order term H2 = �21|2〉〈1| + H.c. By
the unitary transformation exp(S) with the anti-Hermitian
operator S = (�3+2|3+〉〈2| + �3+1|3+〉〈1| + �3−2|3−〉〈2| +
�3−1|3−〉〈1| − H.c.)/� [33,36,59,60], we can obtain
the effective Hamiltonian Heff = exp(−S)H ′ exp(S) �
H0 + [H1, S]/2 + H2, which reads

Heff = �1|1〉〈1| + �2|2〉〈2| + [(�eff + �21)|2〉〈1| + H.c.]

+�(|3+〉〈3+| + |3−〉〈3−|) + (�′
eff|3+〉〈3−| + H.c.),

(16)

with the energy shifts �1 = −(|�3+1|2 + |�3−1|2)/� and
�2 = −(|�3+2|2 + |�3−2|2)/� and the effective cou-
plings �eff = −(�3+1�

∗
3+2 + �3−1�

∗
3−2)/� and �′

eff =
(�∗

3+1�3−1 + �∗
3+2�3−2)/�. In addition, the nonzero �eff

requires the vibrational wave functions of the working state
to satisfy the condition of |v1〉 
= |v2〉.

In Eq. (16), the states |3+〉 and |3−〉 are decoupled from the
states |1〉 and |2〉. That means we get an effective two-level
model in the subspace {|1〉, |2〉}. Then, according to the chi-
rality dependence of chiral molecules in Eq. (13), the effective
Hamiltonian for the enantiomer in the subspace {|1〉Q, |2〉Q}
(Q = L, R) reads

H eff
12,Q = 1

2 (�1 − �2)(|1〉QQ〈1| − |2〉QQ〈2|)
+ (�Q|2〉QQ〈1| + H.c.), (17)

with the same effective detunings �1 − �2 and chirality-
dependent effective couplings �L = �eff + �21 (�R=�eff −
�21) for the left-handed (right-handed) chiral molecules (see
Fig. 2).

B. Dynamics of the enantiospecific state transfer

It is assumed that all the molecules are initially in the
ground state of the system, i.e., |(0)〉Q = |1〉Q. Then the
possibility of exciting them into state |2〉Q can be solved an-
alytically according to the Schrödinger equation i∂t |(t )〉Q =
H eff

12,Q|(t )〉Q as

PQ
2 (t ) =

∣∣∣∣�Q

�̃Q

∣∣∣∣
2

sin2(�̃Qt ). (18)

FIG. 3. Dynamic ways of the enantiospecific state transfer for
symmetric-top chiral molecules based on Eq. (17) for (a) the first
way with �21 = −�eff = −2π × 0.10 MHz and (b) the second way
with �21 = 3�eff = 2π × 0.30 MHz. The probability occupying the
state |2〉L (|2〉R) of the left-handed (right-handed) chiral molecules,
PL

2 (t ) [PR
2 (t )], is denoted by the red solid (blue dashed) line.

Here �̃Q = √|�Q|2 + (�1 − �2)2/4 and 2�̃Q is the Rabi
oscillation frequency of the probability of occupying the
state |2〉Q. The corresponding Rabi oscillation period is TQ =
π/�̃Q.

By adjusting the effective detunings and the chirality-
dependent effective couplings, enantiomers prepared initially
in the same energy levels can be evolved to different en-
ergy levels, i.e., the achievement of the enantiospecific state
transfer. In what follows, we will show two dynamic ways
of achieving the enantiospecific state transfer. For simplicity,
we will choose �1 = �2. That means �̃Q = |�Q| and TQ =
π/|�Q|.

For the first way, the left-handed chiral molecules always
remain in the initial state |1〉L while the right-handed chiral
molecules experience a half-integer period of its Rabi oscilla-
tion. Then the perfect enantiospecific state transfer is achieved
at t = (N + 1/2)TR, with N a natural number. For this pur-
pose, the three electromagnetic fields should be appropriately
adjusted so that

�21 = −�eff. (19)

Figure 3(a) illustrates an example of the first way with
the parameters �21 = −�eff = −2π × 0.10 MHz based on
Eq. (17). It shows that the perfect enantiospecific state transfer
is achieved at t = 1.25 μs. Similarly, the right-handed chiral
molecules always remain in the initial state |1〉R while the
left-handed chiral molecules experience a half-integer period
of its Rabi oscillation. At t = (N + 1/2)TL , the perfect enan-
tiospecific state transfer is realized.

For the second way, when the left- and right-handed chiral
molecules simultaneously experience half-integer and integer
periods of their corresponding Rabi oscillations, i.e.,

NLTL = (
NR + 1

2

)
TR, (20)

with NL,R a natural number, the perfect enantiospecific state
transfer is achieved at t = NLTL. For this purpose, the three
electromagnetic fields should be appropriately adjusted. Tak-
ing the case of �21 > �eff > 0 as an example, we could adjust
the three electromagnetic fields to meet

�21 = 2NL + 2NR + 1

2NL − 2NR − 1
�eff. (21)
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Figure 3(b) illustrates an example of the second way
with the parameters �21 = 3�eff = 2π × 0.30 MHz based on
Eq. (17). It shows that the perfect enantiospecific state transfer
is achieved at t = 1.25 μs. Similarly, when (NL + 1/2)TL =
NRTR, the left-handed chiral molecules experience half-integer
periods and simultaneously the right-handed chiral molecules
experience integer periods of its Rabi oscillation. Then the
perfect enantiospecific state transfer is realized at t = NRTR.

The above two ways of perfect enantiospecific state trans-
fer are based on Eq. (17), which is obtained by adiabatically
eliminating the excited states |3+〉 and |3−〉 in the original
Hamiltonian (14). Thus, these two dynamic ways to achieve
the enantiospecific state transfer for symmetric-top chiral
molecules are approximately perfect.

VI. CONCLUSION

We have focused on achieving the enantiospecific state
transfer for gaseous symmetric-top chiral molecules. We took
the D2S2 molecule, which can be treated approximately as
the prolate symmetric-top (accidentally symmetric) chiral
molecules [39], as an example to demonstrate our method. In
fact, our model and method are also applicable for the oblate
symmetric-top chiral molecules (A = B > C), though we have
just investigated the case of the prolate symmetric-top chiral
molecules (A > B = C).

In conclusion, according to the electric dipole selection
rules between the rovibrational states of symmetric-top chi-
ral molecules, we selected the appropriate working states
as well as corresponding three electromagnetic fields and
then constructed a real four-level model via electric dipole
transitions. Such a four-level model reflects different dy-
namics for enantiomers, which guarantees the achievement
of the enantiospecific state transfer, enantiodetection, and
enantioseparation. Further, we reduced the four-level model
to the effective two-level one with the same effective de-
tuning but the chirality-dependent effective couplings under
the large-detuning condition. Then we used two dynamic
ways to achieve the approximately perfect enantiospecific
state transfer for symmetric-top chiral molecules when all
the molecules are initially in the ground state of the system.
The investigations of enantiodetection, enantioseparation, and
enantioconversion [15–34] of chiral molecules are always
meaningful and challenging tasks. Our four-level model will
play an important role in future investigations of these issues
for symmetric-top chiral molecules.
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