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Coherence distillation is a basic information-theoretic task in the resource theory of coherence. In this paper,
we present the necessary and sufficient conditions under which a mixed state can be distilled into a pure coherent
state via stochastic incoherent operations (sIOs). With the help of this result, we further show the following: (i)
Any two-dimensional coherent state is distillable via sIOs if and only if it is a pure coherent state; (ii) a state ρ is
n-distillable via sIOs if and only if it is 1-distillable; and (iii) the set of distillable states via stochastic maximally
incoherent operations is identical to the set of distillable states via sIOs. Finally, we analyze the reason why sIO
is stronger than stochastic strictly incoherent operations when we use them to distill a coherent state.
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I. INTRODUCTION

Quantum coherence is an important feature of quantum
mechanics which is responsible for the departure between the
classical and quantum world. It is an essential component in
quantum information processing [1], and plays a central role
in various fields, such as quantum computation [2,3], quan-
tum cryptography [4], quantum metrology [5], and quantum
biology [6]. Recently, the resource theory of coherence has
attracted a growing interest due to the rapid development
of quantum information science [7–9]. The resource theory
of coherence not only establishes a rigorous framework to
quantify coherence but also provides a platform to understand
quantum coherence from a different perspective.

Any quantum resource theory is characterized by two fun-
damental ingredients, namely, the free states and the free
operations [10]. For the resource theory of coherence, the free
states are quantum states which are diagonal in a prefixed
reference basis. The free operations are not uniquely specified.
Motivated by suitable practical considerations, several free
operations were presented [9], such as maximally incoherent
operations (MIOs) [7], incoherent operations (IOs) [8], and
strictly incoherent operations (SIOs) [11,12].

In the resource theory of coherence, much effort has been
devoted to investigate the coherence distillation [10]. The
coherence distillation is the process that extracts pure coherent
states from a mixed state via free operations, and various co-
herence distillation protocols were proposed. These protocols
can be divided into two different settings: the asymp-
totic regime [11,13–16] and the one-shot regime [17–34].
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With the above protocols, the coherence distillation under
SIO is well understood. Specifically, in Refs. [14–16], the
necessary and sufficient conditions for asymptotic distillabil-
ity are presented. The deterministic coherence distillation is
completed in Refs. [17–20], and the probabilistic coherence
distillation is completed in Refs. [17,20–24]. However, this is
not the case for IO. Although the coherence distillation via IO
is well understood in the asymptotic case [11], “less progress
has been made for the single copy transformations of mixed
coherent states and only isolated results are known” [9]. A
fundamental question of them is, given a mixed coherent state
ρ, can we transform it into a pure coherent state ϕ via some
IO with nonzero probability?

In this paper, we solve the above question. In other words,
we find the necessary and sufficient conditions under which
a coherent state can be distilled into a pure coherent state via
stochastic incoherent operations (sIOs). This result can help
us examine some consequences and solve some other open
questions: (1) We show that any two-dimensional coherent
state is distillable via sIO if and only if it is a pure coherent
state. (2) We show that a state ρ is n-distillable via sIO if and
only if it is 1-distillable, which is an interesting problem in the
resource theories. (3) We show that the set of distillable states
via stochastic maximally incoherent operations is identical to
the set of distillable states via sIO, which is an open question
in Refs. [27,35]. Finally, we analyze the reason why sIO is
stronger than stochastic strictly incoherent operations when
we use them to distill a coherent state.

This paper is organized as follows. In Sec. II, we recall
some notions of the resource theory of coherence. In Secs. III
and IV, we present the necessary and sufficient conditions
under which a mixed state can be distilled into a pure coherent
state via sIO and give the explicit distillation protocol. In
Sec. V, we present three corollaries about the necessary and
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sufficient conditions. Section VI contains our remarks and
conclusions.

II. RESOURCE THEORY OF COHERENCE

Let H be the Hilbert space of a d-dimensional quan-
tum system. A particular basis of H is denoted as {|i〉, i =
1, 2, . . . , d}, which is chosen according to the physical
problem under consideration. Coherence of a state is then
measured based on the basis. A state is incoherent if it is
diagonal in the basis, i.e., has the form δ = ∑

i δi|i〉〈i|. Any
state which cannot be written as a diagonal matrix is defined
as a coherent state. For the sake of simplicity, we will denote
|ϕ〉〈ϕ| as ϕ for a pure state |ϕ〉, i.e., ϕ := |ϕ〉〈ϕ|, and denote
|φd〉 = 1√

d

∑d
i=1 |i〉 as a d-dimensional maximally coherent

state.
For the resource theory of coherence, the most fundamental

requirement for the free operations is that any free opera-
tion can only map an incoherent state to an incoherent state.
With this requirement and other considerations, several free
operations were proposed. We recall three classes of them:
maximally incoherent operations (MIOs) [7], incoherent op-
erations (IOs) [8], and strictly incoherent operations (SIOs)
[11,12], which will be considered in this paper. The MIO is
defined to be all operations �(ρ) = ∑N

n=1 KnρK†
n such that

�(δ) ∈ I for every δ ∈ I, where I is the set of incoherent
states. An incoherent operation [8] is a completely positive
trace-preserving (CPTP) map, expressed as

�(ρ) =
N∑

n=1

KnρK†
n , (1)

with KnIK†
n ⊂ I for all Kn, i.e., each Kn transforms an in-

coherent state into an incoherent state. Hereafter, we will
refer to such a Kn as an incoherent operator, while a strictly
incoherent operation [11,12] is a CPTP map satisfying not
only KnIK†

n ⊂ I but also K†
nIKn ⊂ I for all Kn, i.e., each Kn

as well K†
n transforms an incoherent state into an incoherent

state. Hereafter we will refer to such a Kn as a strictly inco-
herent operator. If we use SMIO, SIO, and SSIO to represent
the sets of MIO, IO, and SIO, respectively, then they have the
inclusion relationships

SSIO ⊂ SIO ⊂ SMIO. (2)

With the notions of MIO, IO, and SIO, we further recall
the notions of stochastic MIO (sMIO) [27], stochastic IO
(sIO) [33], and stochastic SIO (sSIO) [36]. We just recall sIO
here, since sMIO and sSIO can be defined similarly. A sIO is
constructed by a subset of incoherent operators. Without loss
of generality, we denote the subset as {K1, K2, . . . , KL}. Oth-
erwise, we may renumber the subscripts of these incoherent
operators. Then, a sIO, denoted as �s(ρ), is defined by

�s(ρ) =
∑L

n=1 KnρK†
n

Tr
(∑L

n=1 KnρK†
n
) , (3)

where {K1, K2, . . . , KL} satisfies
∑L

n=1 K†
n Kn � I . Here,

we emphasize that the stochastic transformation with∑L
n=1 K†

n Kn � I means that a copy of �s(ρ) may be obtained
from a copy of ρ with probability P = Tr(

∑L
n=1 KnρK†

n )(�1).

That is, the stochastic transformation runs the risk of failure
with certain probability. However, the deterministic transfor-
mation with

∑N
n=1 K†

n Kn = I corresponds to the case P = 1,
i.e., without running any risk of failure. Supposing we use
SsMIO, SsIO, and SsSIO to represent the sets of sMIO, sIO,
and sSIO, respectively, then they will have the inclusion
relationships

SsSIO ⊂ SsIO ⊂ SsMIO. (4)

III. DISTILLATION CRITERION UNDER sIO

To present the main theorem clearly, we first collect the
following useful facts and an example:

(i) We say a coherent state ρ is distillable via sIO if we can
transform it into some pure coherent state ϕ via some sIO �s

with nonzero probability. In other words, there is

�s(ρ) = |ϕ〉〈ϕ|. (5)

(ii) We define the coherence support of |ϕ〉, denoted as
c-supp(ϕ), as the set of incoherent states {|i〉} which have
nonzero overlap with |ϕ〉, i.e., c-supp(ϕ) := {|i〉| 〈i|ϕ〉 �= 0}.
For example, the coherence support of |ϕ〉 = 1√

2
(|1〉 + |2〉) is

{|1〉, |2〉}, i.e., c-supp(ϕ) = {|1〉, |2〉}.
(iii) Lemma. If we want to see whether a mixed state can

be transformed into a pure coherent state via some �s(ρ),
we only need to consider the sIO with the form of (see the
Appendix for the proof of the Lemma)

�1
s (ρ) = KρK†

Tr(KρK†)
. (6)

(iv) Let ρ be a density matrix. Then, we can uniquely write
ρ as ρ = ⊕

μ pμρμ with each ρμ being irreducible [37,38].
Here, ρμ is said to be irreducible if we cannot transform it into
a block-diagonal matrix by using some permutation operation.

With the above facts, let us begin with a simple example to
illustrate the general idea of Theorem 1.

(v) Example. Consider a three-dimensional state

ρ = 1

3

⎛
⎝1 0 1

0 1 0
1 0 1

⎞
⎠. (7)

We first express ρ as ρ = 2
3ρ1 ⊕ 1

3ρ2 with ρ1 = 1
2 (|1〉 +

|3〉)(〈1| + 〈3|) and ρ2 = |2〉〈2|, where both ρ1 and ρ2 are
irreducible. Second, the spectral decompositions of ρ1 and
ρ2 are ρ1 = |λ〉〈λ| with |λ〉 = 1√

2
(|1〉 + |3〉) and ρ2 = |2〉〈2|,

respectively. We note that ρ1 is not of full rank and ρ2 is
of full rank. Third, since ρ1 is not of full rank, then there
is a pure state |ψ〉, such as |ψ〉 = 1√

2
(|1〉 − |3〉), in the null

space of ρ1. We note that there is c-supp(ψ )
⋂

c-supp(λ) �= ∅,
where c-supp(ψ ) = {|1〉, |3〉} = c-supp(λ). Then, the sIO can
be chosen as �s(ρ) = KρK†/Tr(KρK†) with

K = 1√
2

(|1〉〈1| + |2〉〈3|). (8)

By direct calculations, we obtain �s(ρ) = |φ2〉〈φ2| with
|φ2〉 = 1√

2
(|1〉 + |2〉) and Tr(KρK†) = 1

3 .
With the above discussions, we then present the main result

of this paper:
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Theorem 1. A coherent state ρ is distillable via sIO if and
only if ρ has the form

ρ =
⊕

μ

pμρμ, (9)

where each ρμ is irreducible and at least one ρμ is not of full
rank.

Proof. We first present a criterion for the coherence distil-
lation via sIO.

Suppose there is a sIO �(·) realizing the transformation ρ

into a pure coherent state ϕ. Then, we have

KρK† = p|ϕ〉〈ϕ|, (10)

where p = Tr(KρK†) is nonzero. Let {pμ, ϕμ} be an ar-
bitrary pure-state ensemble decomposition of ρ, i.e., ρ =∑

μ pμ|ϕμ〉〈ϕμ|. We then obtain

K

(∑
μ

pμ|ϕμ〉〈ϕμ|
)

K† = p|ϕ〉〈ϕ|. (11)

From Eq. (11) and p = Tr(KρK†) being nonzero, there is
|ϕ〉〈ϕ| = ∑

μ

pμ

p K|ϕμ〉〈ϕμ|K†. For each K|ϕμ〉〈ϕμ|K†, there

are two cases to consider. The first case is K|ϕμ〉〈ϕμ|K† = 0
and the second is K|ϕμ〉〈ϕμ|K† �= 0. For the latter case, since
pure states are extreme points of the set of states [39], there
are K|ϕμ〉〈ϕμ|K† = qμ|ϕ〉〈ϕ|, where qμ = Tr(K|ϕμ〉〈ϕμ|K†).
Here, we should note that, since p �= 0 in Eq. (11), there is
K|ϕμ〉〈ϕμ|K† = qμ|ϕ〉〈ϕ| with qμ �= 0 for some μ, i.e., qμ

cannot be zero at the same time. Thus, there are

K|ϕμ〉〈ϕμ|K† = qμ|ϕ〉〈ϕ| or K|ϕμ〉〈ϕμ|K† = 0, (12)

where qμ = Tr(K|ϕμ〉〈ϕμ|K†) �= 0 and 0 is the null matrix
for all μ. The relations in Eq. (12) provide a criterion for the
distillability of ρ.

With the above criterion, we next prove the if part of the
theorem, i.e., if the state ρ satisfying the conditions in the
theorem, then it is distillable via sIO.

To see this, let us first recall the structure of incoherent
operators. For an incoherent operator, there is at most one
nonzero element in each column of K [11,19,40]. Thus, it
is direct to obtain that if K is an incoherent operator, then
there is

K =
∑

i

|i〉〈φi|, (13)

where {|φi〉} has the disjoint coherence support. Let ρ =⊕
μ pμρμ with each ρμ being irreducible and suppose ρμ,

one of {ρμ}, is not of full rank. Let ρμ = ∑
j λ

μ
j |λμ

j 〉〈λμ
j | be

the spectral decomposition of ρμ and let
⋃

j c-supp(λμ
j ) =

{|iμ1 〉, . . . , |iμnμ
〉}, where nμ is the number of the elements of

the set {|iμ1 〉, . . . , |iμnμ
〉}. Since ρμ is not of full rank, there is

some |ψ〉 ∈ span{|iμ1 〉, . . . , |iμnμ
〉} in the null space of ρμ [41].

In other words, let |ψ〉 = c1|iμ1 〉 + ∑nμ

l=2 cl |iμl 〉. Then there are

c-supp(ψ )
⋂[ ∪ j c-supp

(
λ

μ
j

)] �= ∅ (14)

and 〈
λ

μ
j

∣∣ψ〉 = 0 (15)

for all j. Furthermore, we should note that since ρμ is an irre-
ducible matrix, |ψ〉 cannot be an incoherent state. To see this,
let |ψ〉 = |iμl 〉 be an incoherent state. Then, from the relations
in Eq. (15), we obtain that c-supp(iμl )

⋂
[
⋃

j c-supp(λμ
j )] = ∅.

This implies that ρμ is not irreducible and we arrive at a
contradiction.

Without loss of generality, suppose that there is c1 �= 0. Let
|λμ

j 〉 = ∑nμ

s=1 c j
s |iμs 〉. Then, 〈λμ

j |ψ〉 = 0 for all j implies that∑nμ

l=1 c j
l

∗
cl = 0 for all j, i.e., there are c j

1
∗
c1 = −∑nμ

l=2 c j
l

∗
cl

for all j. Let us consider the incoherent operator

K = c1|1〉〈iμ1 ∣∣ − |2〉〈ψ1|, (16)

where |ψ1〉 := ∑nμ

l=2 cl |iμl 〉. From Eqs. (15) and (16),

we immediately obtain, for all j, K|λμ
j 〉 = c j

1
∗
c1|1〉 −∑nμ

l=2 c j
l

∗
cl |2〉 = c j

1
∗
c1(|1〉 + |2〉), i.e., there are

K
∣∣λμ

j

〉〈
λ

μ
j

∣∣K† = pμ
j |φ2〉〈φ2|, (17)

where pμ
j = Tr(K|λμ

j 〉〈λμ
j |K†) and |φ2〉 = 1√

2
(|1〉 + |2〉).

Since ρμ is irreducible and
⋃

j c-supp(λμ
j ) = {|iμ1 〉, . . . , |iμnμ

〉},
we could obtain that pμ

j �= 0 for some j. To see this, let pμ
j = 0

for every j. Then, from Eq. (17), there are K|λμ
j 〉〈λμ

j |K† =
0. This further implies that, for every j, there are
c j

1
∗
c1 = 0. Since c1 �= 0, there are c j

1
∗ = 0, i.e., c j

1 = 0 for
all j. This means that 〈iμ1 |ρμ|iμ1 〉 = 0. Since ρμ is a positive-
semidefinite matrix, then 〈iμl |ρμ|iμ1 〉 = 0 = 〈iμ1 |ρμ|iμl 〉 for all
l = 1, . . . , nμ. However, this is impossible since ρμ is irre-
ducible.

The above discussions imply that, for a state ρ =⊕
μ pμρμ, if there is a ρμ satisfying the conditions in the the-

orem, then we can always transform it into a two-dimensional
maximally coherent state via the K in Eq. (16) with nonzero
probability. This completes the if part of the theorem.

Finally, we prove the only if part of the theorem, i.e., for
ρ = ⊕

μ pμρμ, if each irreducible ρμ is of full rank, then ρ is
not distillable via any sIO.

To this end, we will show that if we can transform such
a state into a pure coherent one via some sIO, then we can
transform an incoherent state into a pure coherent state. To see
this, from Eq. (12), if we can transform ρ, with a pure-state en-
semble decomposition ρ = ∑

j p j |ϕ j〉〈ϕ j |, into |ϕ〉 via some
sIO, we then obtain

K|ϕ j〉〈ϕ j |K† = q j |ϕ〉〈ϕ|, (18)

where q j = Tr(K|ϕ j〉〈ϕ j |K†) with
∑

j q j �= 0. If there is an-
other ρ ′ = ∑

i p′
i|ψi〉〈ψi| with the same range as ρ, then there

are |ψi〉 = ∑
j ci j |ϕ j〉 for all i. Here, the range of a matrix A,

denoted as R(A), is R(A) = {|y〉 : |y〉 = A|x〉} [38]. Thus, by
using the relations in Eq. (18), we derive

K|ψi〉 = K
∑

j

ci j |ϕ j〉 =
∑

j

ci jK|ϕ j〉

=
∑

j

ci j
√

q je
iθ j |ϕ〉 = c′

i|ϕ〉, (19)

where c′
i := ∑

j ci j
√

q jeiθ j and θ j are some global phase fac-
tors from Eq. (18). Since R(ρ) is identical with R(ρ ′), we also
obtain that there are |ϕ j〉 = ∑

i d ji|ψi〉. These relations imply
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that at least one c′
i is nonzero, since otherwise all the q j in

Eq. (18) are zero.
Suppose ρμ = ∑nμ

j=1 λ
μ
j |λμ

j 〉〈λμ
j | is the spectral decompo-

sition of ρμ. Since ρμ is irreducible and is of full rank, then
the state

ρ ′
μ = 1

nμ

nμ∑
j=1

∣∣λμ
j

〉〈
λ

μ
j

∣∣ (20)

is an incoherent state and has the same range as ρμ. Thus,
if the state ρμ is distillable via some sIO, then, by the above
discussions, this means that ρ ′

μ is also distillable via the same
sIO. This is impossible since an incoherent operator cannot
transform an incoherent state into any coherent state. Hence,
if an irreducible ρμ is of full rank, then it is not distillable. This
further implies that given ρ = ⊕

μ pμρμ with each ρμ being
irreducible and being of full rank, then it is not distillable. This
completes the only if part of the theorem. �

IV. ELEMENTARY STEPS AND EXAMPLES

With Theorem 1, one can directly examine whether a given
mixed state is distillable or not via sIO. To this end, we need
to carry out the following three steps:

(i) Transform ρ into the form ρ = ⊕
μ pμρμ with each ρμ

being irreducible.
To this end, we could use the connection between a matrix

and its directed graph in Ref. [38] and the numerical algorithm
presented in Ref. [42]. By this algorithm, we could write ρ as⊕

μ pμρμ with each ρμ being irreducible.
(ii) Examine whether each ρμ is of full rank or not.
To this end, we just express each ρμ in terms of spectral

decomposition. If there is some ρμ that is not of full rank,
then ρ is distillable. If all ρμ are of full rank, then ρ is not
distillable under sIO.

(iii) Construct the sIO.
To this end, suppose ρμ is not of full rank. Then, there is a

pure coherent state ψ in the null space of ρμ. Without loss
of generality, let |ψ〉 = c1|iμ1 〉 + ∑nμ

l=2 cl |iμl 〉 which satisfies
Eqs. (14) and (15). Then the sIO can be chosen as �s(ρ) =
KρK†/Tr(KρK†) with K = c1|1〉〈iμ1 | − |2〉∑nμ

l=2 cl〈iμl |.
In the following, we give an example to illustrate how to

use Theorem 1 and the above steps.
Example. Let us consider the four-dimensional state

ρ =

⎛
⎜⎜⎜⎜⎝

1
4 0 1

2
√

5
1

4
√

5

0 1
4 − 1

4
√

5
1

2
√

5
1

2
√

5
− 1

4
√

5
1
4 0

1
4
√

5
1

2
√

5
0 1

4

⎞
⎟⎟⎟⎟⎠. (21)

By step (i), it is straightforward to examine that ρ is ir-
reducible. By step (ii), ρ = 1

2 (|λ1〉〈λ1| + |λ2〉〈λ2|) is the
spectral decomposition of ρ, where

|λ1〉 = 1

5
√

2
(4, 3,

√
5, 2

√
5)t , (22)

|λ2〉 = 1

5
√

2
(−3, 4,−2

√
5,

√
5)t . (23)

This implies that the rank of ρ is 2 (<4). Thus, the state ρ is
irreducible and is not of full rank. By step (iii), we can find a

vector

|ψ〉 = (
√

0.5, 0,−
√

0.4,−
√

0.1)T , (24)

satisfying c-supp(ψ )
⋂

[∪2
j=1c-supp(λ j )] �= ∅ and |ψ〉 ∈

null(ρ), where c-supp(ψ ) = {|1〉, |3〉, |4〉} and c-supp(λ1) =
c-supp(λ2) = {|1〉, |2〉, |3〉, |4〉}. Then, by Eq. (16), the
corresponding incoherent operator is

K =
√

0.5|1〉〈1| +
√

0.4|2〉〈3| +
√

0.1|2〉〈4|. (25)

By direct calculations, we obtain �s(ρ) = |φ2〉〈φ2| and
Tr(KρK†) = 1

4 .

V. SOME CONSEQUENCES OF THEOREM 1

Theorem 1 provides the necessary and sufficient conditions
for a state to be distillable via sIO. In the following, we present
several corollaries of the Theorem 1.

(1) It is direct to obtain that a two-dimensional coherent
state is distillable via sIO if and only if it is a pure coherent
state. To see this, let ρ be a two-dimensional state. Then, the
rank of ρ is 1 or 2. If the rank of ρ is 1, then it is a pure
coherent state and it is distillable. If the rank of ρ is 2, then
it is a state of full rank. By using Theorem 1, it cannot be
distillable via any sIO.

(2) The second one is the relation between n-distillability
and 1-distillability of a coherent state via sIO. Here, we say
that a state ρ is n-distillable if we can transform n copies
of ρ, ρ⊗n into a pure coherent state with nonzero probabil-
ity. We should note that, for a general resource theory, the
n-distillability of a state is not necessary equivalent to the
1-distillability, such as entanglement [43]. However, for the
resource theory of coherence, n-distillability is equivalent to
the 1-distillability both in the asymptotic case and in proba-
bilistic case. On the one hand, as shown in Ref. [11], in the
asymptotic case, the distillable coherence of ρ via IO is

Cd (ρ) = S(	ρ) − S(ρ), (26)

where S(ρ) := −Tr(ρ ln ρ) is the von Neumann entropy, the
logarithm is to base 2, and 	(·) = ∑

i |i〉〈i|(·)|i〉〈i| is the
completely dephasing channel. Since Cd (ρ) is additivity, i.e.,
Cd (ρ1 ⊗ ρ2) = Cd (ρ1) + Cd (ρ2), we immediately obtain that
n-distillability is identical to 1-distillability in the asymptotic
case. On the other hand, from Theorem 1, we obtain that
n-distillability and 1-distillability of a coherent state via sIO.
To see this, it is direct to examine that if ρμ is of full rank if
and only if ρ⊗n is also of full rank. By Theorem 1, we then
have the following:

Corollary 1. A state ρ is n-distillable via sIO if and only if
it is 1-distillable.

(3) The third one is the set of distillable states via sMIO is
identical to the set of distillable states via sIO. The necessary
and sufficient condition for a state to be distilled via sMIO has
attracted much attention [27,35]. Although a necessary condi-
tion for a state to be distillable via sMIO is provided [27,35]
which says that it is impossible to distill a full-rank coherent
state via sMIO, the necessary and sufficient condition for a
state to be distilled via sMIO is still an open question. With
Theorem 1, we can provide an answer to this open question.
This arrives at the following corollary:

032448-4



CRITERION FOR A STATE TO BE DISTILLABLE VIA … PHYSICAL REVIEW A 105, 032448 (2022)

Corollary 2. A coherent state ρ is distillable via sMIO if
and only if the state ρ has the form ρ = ⊕

μ pμρμ, where
each ρμ is irreducible and at least one ρμ is not of full rank.

We now prove Corollary 2. Since there isSsIO ⊂ SsMIO, we
obtain that any state can be distilled via sIO can also be dis-
tilled via sMIO. This implies if ρ has the form ρ = ⊕

μ pμρμ,
where each ρμ is irreducible and at least one ρμ is not of full
rank, then it is distillable under sMIO. On the other hand,
since it is impossible to distill a full-rank coherent state via
sMIO, this completes the proof of the only if part. �

VI. REMARKS AND CONCLUSIONS

Before concluding, we analyze the reason why sIO is
stronger than stochastic strictly incoherent operations when
we use them to distill a coherent state.

The operational difference between sIO and sSIO has at-
tracted much attention in Refs. [17,24,33]. From Theorem
1 and a result in Ref. [22] which says that a coherent state
ρ is distillable via sSIO if and only if it contains a rank-
one submatrix with its dimension greater than or equal to 2,
we obtain that the coherence distillation via sIO is in sharp
contrast with the coherence distillation via sSIO. Here, we
provide a reason why sIOs are generally stronger than sSIOs
in coherence distillation.

To this end, we first recall the mathematical structure of
them: An incoherent operator has the form

K =
∑

i

|i〉〈ψi|, (27)

where {|ψi〉} have the disjoint coherence support, while a
strictly incoherent operator has the form [11]

Ks =
∑

i

|i〉〈π (i)|, (28)

where π is a permutation. To compare the difference between
sIO and sSIO, we further assume that |ψi〉 in Eq. (27) are
not incoherent states at the same time. Suppose we obtain
a pure coherent state from ρ = ∑

μ pμ|ϕμ〉〈ϕμ| via K and
Ks, respectively. Then, from the analysis around Eq. (12), we
obtain

K|ϕμ〉〈ϕμ|K† = pμ|ϕ〉〈ϕ| or K|ϕμ〉〈ϕμ|K† = 0, (29)

and similarly, we can also get that

Ks|ϕμ〉〈ϕμ|K†
s = pμ|ϕ〉〈ϕ| or Ks|ϕμ〉〈ϕμ|K†

s = 0. (30)

From the condition K|ϕμ〉〈ϕμ|K† = 0 and the form of K
Eq. (27), we then obtain 〈ψi|ϕμ〉 = 0 for all i. Since {|ψi〉}
have the disjoint coherence support, it is direct to obtain that
there is at least one pure coherent state |ψ〉 ∈ null(K ) unless
K is a strictly incoherent operator. This implies that if there is
a |ϕμ〉 such that K|ϕμ〉〈ϕμ|K† = pμ|ϕ〉〈ϕ|, then any state that
has the same range as

span{|ϕμ〉, |ψ〉} (31)

can be distilled via the sIO �s(ρ) = KρK†/Tr(KρK†). How-
ever, for a strictly incoherent operator, this is not the case. To
see this, suppose Ks|ϕμ〉〈ϕμ|K†

s = 0. Then, as Ks has the form

in Eq. (30), we immediately derive

c-supp(ϕμ)
⋂

{π (i)} = ∅. (32)

Thus the condition Ks|ϕμ〉〈ϕμ|K†
s = pμ|ϕ〉〈ϕ| implies the

rank of PπρPπ is one, where Pπ = ∑
i |π (i)〉〈π (i)|. From

the proof of Theorem 1 and the above discussions, it is the
difference between the null space of the incoherent operator
and the null space of the strictly incoherent operator that leads
to their different ability in coherence distillation.

The difference between the null space of incoherent op-
erators and strictly incoherent operators also demonstrates
the difference between IO and SIO in distinguishing a set of
orthogonal states {|ψi〉}. (See also Ref. [12], where the authors
discussed the case when {|ψi〉} is a basis). Here, we say that
we can distinguish a set of orthogonal states {|ψi〉} via a set of
measurement operators {Mn} with

∑
n Mn = I if, for any |ψi〉,

there is an Mn such that

〈ψi|Mn|ψi〉 = 1 and 〈ψ j |Mn|ψ j〉 = 0 with j �= i.

(33)

Thus, if there is c-supp(ψi )
⋂

c-supp(ψ j ) �= ∅ for i �= j, then
we cannot distinguish them via SIO. However, this task can
be achieved by using IO. We may just construct the following
measurement operators Mn = K†

n Kn with

Kn = |n〉〈ψn|. (34)

It is straightforward to examine that Mn can distinguish the set
of states {|ψi〉} by using Eq. (33). From the above discussions,
we infer the following corollary.

Corollary 3. For a set of orthogonal states {|ψi〉},
we can always distinguish them via IO. However, we
can distinguish them via SIO if and only if there is
c-supp(ψi)

⋂
c-supp(ψ j ) �= ∅ for all i �= j.

To summarize, we have presented the criterion for a state
to be distillable under sIO. The main finding is presented
as Theorem 1. Theorem 1 gives the necessary and sufficient
conditions under which a mixed state can be distilled into a
pure coherent state via sIO. With the help of this result, we
further show that a state ρ is n-distillable via sIO if and only
if it is 1-distillable in Corollary 1, and the set of distillable
states via sMIO is identical to the set of distillable states via
sIO in Corollary 2. Finally, we analyze the reason why sIO is
stronger than sSIO when we use them to distill a pure state.
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APPENDIX

In this Appendix, we show that if we want to see whether a
mixed state can be transformed into a pure coherent state via
some �s(ρ), we only need to consider the sIO with the form
of �1

s (ρ) = KρK†/Tr(KρK†).

032448-5



C. L. LIU, D. L. ZHOU, AND C. P. SUN PHYSICAL REVIEW A 105, 032448 (2022)

To see this, suppose we could transform a mixed state
ρ into a pure coherent state ϕ via some sIO �s. Then
there is �s(ρ) = ∑L

n=1 KnρK†
n /Tr(

∑L
n=1 KnρK†

n ) = ϕ. Since
pure states are extreme points of the set of states [39],
there are KnρK†

n = pnϕ for all n = 1, . . . , L, where pn =
Tr(KnρK†

n ). Furthermore, since we must transform ρ into ϕ

via �s with nonzero probability, there is at least one pn �=
0. This means that there must be KnρK†

n /Tr(KnρK†
n ) = ϕ

for some n. On the other hand, if we have realized the
transformation �1

s (ρ) = KnρK†
n /Tr(KnρK†

n ) = ϕ, then there
is a sIO realizing the transformation �s(ρ) = ϕ since �1

s (·)
is a sIO.
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