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Inside a closed many-body system undergoing the unitary evolution, a small partition of the whole system
exhibits a local relaxation. If the total degrees of freedom of the whole system is a large but finite number,
such a local relaxation would come across a recurrence after a certain time, namely, the dynamics of the local
system suddenly appears random after a well-ordered oscillatory decay process. It is found in this paper, among
a collection of N two-level systems (TLSs), the local relaxation of one TLS inside has a hierarchy structure
hiding in the randomness after such a recurrence: similar recurrences appear in a periodical way, and the later
recurrence brings in stronger randomness than the previous one. Both analytical and numerical results that we
obtained well explains such hierarchy recurrences: the population of the local TLS (as an open system) diffuses
out and regathers back periodically due to the finite-size effect of the bath [the remaining (N − 1) TLSs]. We
also find that the total correlation entropy, which sums up the entropy of all the N TLSs, approximately exhibit a
monotonic increase; in contrast, the entropy of each single TLS increases and decreases from time to time, and
the entropy of the whole N-body system keeps constant during the unitary evolution.
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I. INTRODUCTION

When an open system is in contact with an infinitely large
bath, the open system would approach a certain steady state
after a long time relaxation. However, such an irreversible
behavior cannot be seen in the dynamics of one- or few-body
systems. Thus the macroscopic irreversibility seems contra-
dicted with the microscopic reversibility [1–5].

One useful way to look at this problem is to study the
system relaxation in contact with a finite bath, namely, the
bath contains a finite number of degrees of freedom (DoF),
and then consider its transition to the thermodynamics limit
[6–9]. The open system and the bath as a whole isolated sys-
tem always follows the unitary evolution and keeps a constant
entropy as the initial state, while the open system itself seems
to relax towards a certain steady state, thus such relaxation
behavior of the open system itself is called the local relaxation
[6–8].

Due to the finite-size effect of the bath, the local relaxation
of the open system would come across a recurrence after
a certain time: at first the system dynamics shows a well-
ordered oscillatory decay behavior, but then suddenly appears
“random”1 [6–8,10,11]. With the increase of the DoF number

1Rigorously speaking, “quasirandomness” would be a more precise
description. The “randomness” here means the dynamics appears
“random” compared with the well-ordered decay behavior at the
beginning, and our discussion below indeed gives a deterministic
description. Here we still adopt the description random as in previous
literatures.

in the bath, such a recurrence time appears much later, thus
it does not show up in practice. And it is worth noticing that
such relaxation behavior does not require any average from
disorder or time.

In this paper we find that, for a simple many-body system
without disorder, in the region after such a recurrence, indeed
there exists a hierarchy structure hiding in the randomness:
similar recurrences appear in a periodical way, and the later
recurrence brings in stronger randomness than the previous
one, therefore we call them hierarchy recurrences.

Here we study the dynamics of a chain of N two-level sys-
tems (TLSs). One of the TLSs is treated as the open system,
and all the other (N − 1) TLSs make up a finite bath. We
obtain a Bessel function expansion for the system dynam-
ics, which well explains the appearance of such hierarchy
recurrences. Furthermore, we also find the physical reason
for the appearance of such hierarchy recurrences: when time
increases, the population of the open system diffuses out and
propagates in the finite bath (the periodic TLS chain); once the
population regathers back to the open system, the interference
between the backward and outward propagations gives rise to
such a recurrence, and this process happens again and again,
leading to the hierarchy recurrences. Therefore, this property
could also exist in some other many-body systems with certain
proper propagation interferences.

We also study the dynamics of the total correlation entropy
of the N-body system, which sums up the entropy of all the
NTLSs [12–15]. It turns out the total correlation entropy ap-
proximately exhibits a monotonic increasing behavior, and the
increasing curve becomes more and more “smooth” with the
increase of the bath size. Thus the total correlation entropy
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exhibits a quite similar behavior as the irreversible entropy
increase in the standard thermodynamics [16–19]. In contrast,
the whole N-body system always keeps a constant due to
the unitary evolution, and the entropy of each single TLS
increases and decreases from time to time.

The paper is arranged as follows. In Sec. II we study the
local relaxation dynamics of a chain of N TLSs. In Sec. III
we show the hierarchy recurrences in the relaxation process
and discuss its origin. In Sec. IV we show the dynamics of the
total correlation entropy in this system, and then discuss its
connection with the standard thermodynamics in Sec. V. The
summary is drawn in Sec. VI.

II. LOCAL RELAXATION

We consider a chain of N TLSs. They have equal on-site
energies (ω � 0), and exchange energy with the nearest neigh-
bors (interaction strengths 0 < g � ω):

Ĥ =
N−1∑
n=0

1

2
ωσ̂ z

n + g(σ̂+
n σ̂−

n+1 + σ̂−
n σ̂+

n+1). (1)

Here σ̂+
n := (σ̂−

n )† = |e〉n〈g|, σ̂ z
n := |e〉n〈e| − |g〉n〈g|, and

|e〉n, |g〉n are the excited and ground states of the nth TLS.
Here site 0 is regarded as an open “SYSTEM,” while all

the other (N − 1) TLSs make up a finite “BATH.” Initially,
the SYSTEM (site 0) starts from the excited state ρ̂0(t = 0) =
|e〉0〈e| as its initial state, and all the TLSs in the BATH start
from a thermal state ρ̂ (T )

n = n̄T |e〉n〈e| + (1 − n̄T )|g〉n〈g| ∼
exp[−ω

2 σ̂ z
n/T ], with temperature T and n̄T := 1/(1 + eω/T ) ∈

[0, 1
2 ) as the initial population.

Now we study the dynamics of the open SYSTEM. The
Hamiltonian (1) is a quantum XX model [20], and the dy-
namics of the whole chain is exactly solvable. Applying
the Jordan-Wigner transform, the Hamiltonian (1) becomes a
fermionic one,

σ z
n = 2ĉ†

nĉn − 1, σ̂+
n = ĉ†

n

n−1∏
i=0

( − σ̂ z
i

)
,

Ĥ =
N−1∑
n=0

ωĉ†
nĉn + g(ĉ†

nĉn+1 + ĉ†
n+1ĉn). (2)

Under the periodic boundary condition, it can be
further diagonalized by the Fourier transform ĉn =∑N−1

k=0 exp(i 2π
N

nk) b̂k/
√

N, which reads Ĥ = ∑
εkb̂†

kb̂k ,
with the eigenmode energy εk = ω + 2gcos 2πk

N
.

The N-body chain as a whole isolated system follows the
unitary evolution. From the above transformations, the above
initial condition gives 〈ĉ†

0ĉ0〉(t=0) = 1, and 〈ĉ†
mĉn〉(t=0) =

n̄T δmn for the other m, n, and that gives the following
dynamics:

〈ĉ†
mĉn〉(t ) =

N−1∑
k,q=0

1

N
ei 2π

N nq−i 2π
N mk〈b̂†

k (0)eiεkt b̂q(0)e−iεqt 〉

=
∑
kq,xy

〈ĉ†
x ĉy〉(0)

N2
ei 2πq

N (n−y)−i 2πk
N (m−x)+i(εk−εq )t

:= (1 − n̄T )
[
�(N)

m (2gt )
]∗

�(N)
n (2gt ) + n̄T δmn, (3)

FIG. 1. (a) Demonstration for the NTLSs and their initial states.
(b) The coherence function Re[�(N=100)

0 (τ )], compared with the
Bessel functions. (c) The scaling behavior of Re[�(N)

0 (τ )] with the
site number N.

where we call �(N)
n (2gt := τ ) as the coherence function, and2

�(N)
n (τ ) := 1

N

N−1∑
k=0

exp

[
−iτ cos

2πk

N
+ i

2π

N
kn

]
(4a)

N→∞−→
∫ 2π

0

dx

2π
e−iτ cos x+inx = (−i)nJn(τ ). (4b)

In the thermodynamics limit N → ∞, �(N)
n (τ ) becomes the

Bessel function Jn(τ ), which approaches zero when τ → ∞
[6–8,10,11].

It can be seen from Eqs. (2) and (3) that each site al-
ways keeps a diagonal density state ρ̂n(t ) = pn,e(t )|e〉n〈e| +
pn,g(t )|g〉n〈g|, where pn,e(t ) := 〈σ̂+

n σ̂−
n 〉(t ) = 〈ĉ†

nĉn〉(t ) is the
excited population of site n. Therefore, if the BATH is in-
finitely large (N → ∞), all the NTLSs would reach and stay
at the same thermal state ρ̂n(t → ∞) ∼ exp[−ω

2 σ̂ z
n/T ] after

long time relaxation (here the limit N → ∞ is taken before
t → ∞).

III. SCALING BEHAVIOR OF RECURRENCES

If the BATH is a finite one composed of (N − 1) TLSs, due
to the finite-size effect, the above coherence functions �(N)

n (τ )
exhibit a recurrence behavior3 [solid blue line in Fig. 1(b)]:

2Utilizing exp[−iτ cos x] = ∑∞
n=−∞(−i)nJn(τ )e±inx .

3Precisely speaking, the recurrence behavior of the open system
here is different from the Poincaré recurrence usually discussed in
chaotic dynamics.
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(1) Within the time 0 � t � trec := N/2g, �(N)
n (τ ) exhibits a

well-ordered oscillatory decay towards zero, and it fits the
above Bessel function (4b) quite closely. (2) After t � trec,
�(N)

n (τ ) shows a “sudden bump,” and then starts to appear
random, without showing any regular feature explicitly. Thus,
such a sudden change around trec ≡ N/2g was called a recur-
rence in previous studies [6–8,10,11].

Therefore, based on the local observation within a finite
time smaller than trec, we may conclude the open SYSTEM itself
is relaxing towards a certain steady state, but indeed the full
N-body state always keeps a pure state during the unitary evo-
lution. With the increase in the size of N, the recurrence time
trec ≡ N/2g becomes larger and larger, thus such a recurrence
behavior does not show up in practice.

When looking at the scaling behavior for different sizes
N, the “randomness” of �

(N)
0 (τ ) after the recurrence appears

more explicit [see the bottom right patterns in Fig. 1(c)].
Moreover, besides the above recurrence appearing around
t � trec ≡ N/2g, it is worth noting that some well-organized
recurrence patterns also appear in the region t � trec: simi-
lar recurrences also appear periodically around t � q trec for
q = 2, 3, 4, . . . [see the arrows in Fig. 1(c)]. Moreover, each
recurrence seems to bring in a stronger randomness to �

(N)
0 (τ )

than the previous one, which forms a hierarchy structure, thus
we call them hierarchy recurrences.

We find that the appearance of such hierarchy recurrences
can be explained by the following expansion of �(N)

n (τ )
[Eq. (4a)], that is footnote 2,

�(N)
n (τ ) = 1

N

N−1∑
k=0

[ ∞∑
m=−∞

(−i)mJm(τ )e−im 2πk
N

]
ei 2π

N kn

=
∞∑

m=−∞
(−i)mJm(τ )

1

N

N−1∑
k=0

ei 2πk
N (n−m)

=
∞∑

q=−∞
(−i)n+qNJn+qN(τ ). (5)

Here we used the relation
∑N−1

k=0 ei 2πk
N (n−m) = Nδn−m, qN, with q

as an arbitrary integer.
For example, site 0 (n = 0) gives a simple Bessel function

series [using J−n(τ ) = (−1)nJn(τ )]4

�
(N)
0 (τ ) = J0(τ ) + (−i)N[1 + (−1)N]JN(τ )

+ (−i)2N[1 + (−1)2N]J2N(τ ) + · · · . (6)

For a large N, the Bessel function JN(τ ) � 0 in the area 0 �
τ � N, and starts to exhibit significant oscillations after τ � N

[see J100(τ ) in Fig. 1(b)]. Therefore, in the above expansion of
�

(N)
0 (τ ), each term JqN(τ ) contributes a sudden bump around

τ � qN, and this is just why the above recurrences appear
around t � q trec (q = 1, 2, 3, . . . ).

Besides, in Fig. 2(b), the population dynamics of all the N

TLSs is shown (the BATH temperature is set as T → 0+), i.e.,
pn,e(t ) = 〈σ̂+

n σ̂−
n 〉(t ) = |�(N)

n (2gt ≡ τ )|2, and a propagation

4When N → ∞, the function series {�(N)
0 (τ )} converges pointwise

to J0(τ ) but not uniformly.

FIG. 2. (a) The coherence function �
(N)
0 (τ ) and site-0 population

p0,e(t ). (b) The population evolution of each TLS. (c) The entropy
dynamics of site 0. (d) The entropy of each TLS. (e) The total
correlation entropy CT(t )/N. The dashed blue lines in (c) and (e) are
C(N)

max/N. Here the site number is N = 40. In all the above results, the
initial BATH temperatures are set as T → 0+.

pattern is clearly seen. Initially, the population distribution
of the N TLSs forms a “cusp” around site 0 [p0,e(t ) = 1,
and pn,e(t ) = 0 for n = 0 ]. Within the time t � trec, the
initial population cusp on site 0 propagates towards the two
directions of the periodic chain, and the propagation “speed”
is almost a constant [21,22]. This constant speed also can
be seen from the leading terms of pn,e(t ) = |�(N)

n (2gt )|2 �
|J|n|(2gt )|2 + · · · [for −N/2 < n < N/2, see Eq. (5)]: the lead-
ing Bessel function indicates that the first sudden bump of site
n appears around t � |n|/2g, which linearly depends on the
distance |n| to site 0 [here site (−n) and site (N − n) are the
same one due to the periodic boundary condition].

The two-side propagations would meet each other at the
periodic boundaries at n ∼ ±N/2, and then regathers back to
site 0 again. Notice that this is just the moment that �

(N)
0 (2gt )

exhibits its first recurrence (t � trec ≡ N/2g, see the dashed
vertical lines in Fig. 2). The propagation regathered back
would be superposed with the original one, which makes the
system dynamics appear more random. Clearly, since such
propagation and regathering happens again and again, the
SYSTEM (site 0) experiences the above hierarchy recurrences
periodically around t � q trec.

Thus, it is also expectable that similar recurrence behaviors
also exist in more many-body systems if there exists a certain
superposition between a propagating wave and its reflections.
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Indeed similar propagation patterns as Fig. 2(b) also have
been found in some other many-body systems, such as the
Heisenberg chain [22] and Hubbard model [23,24], where it
is called the quantum carpet [25,26].

Again we remark that all the above discussions are based
on the exact unitary evolution, which is deterministic. Com-
pared with the well-ordered decay behavior at the beginning,
the dynamics in the recurrence region looks random.

IV. TOTAL CORRELATION ENTROPY

Now we consider the entropy dynamics in this system.
The N-body chain as a whole isolated system follows the
unitary evolution, thus its von Neumann entropy S[ρ̂(t )] =
−tr[ρ̂ ln ρ̂] always keeps the same as the initial state. Espe-
cially, we focus on the situation that initially the BATH has
a zero temperature T → 0+ and n̄T = 0, thus the entropy of
the whole system always keeps at zero. Besides, the thermal
entropy đQ/T in the standard thermodynamics diverges when
T → 0+ and thus cannot be used here [27].

Indeed, in practical observations, the full N-body state is
usually not directly accessible for local measurements, and
it is the few-body observables that can be directly measured
[5,19,28]. Therefore, instead of the entropy of the whole sys-
tem, here we consider the dynamics of the total correlation
entropy of the N-body state ρ̂(t ), that is [12–15],

CT[ρ̂(t )] :=
N−1∑
n=0

S[ρ̂n(t )] − S[ρ̂(t )], (7)

where ρ̂n are the reduced one-body states. CT[ρ̂] measures the
total amount of all the correlations inside the N-body state
ρ̂ [12,14]. For bipartite systems (N = 2), it just returns the
mutual information, which measures the bipartite correlation
[17–19,29].

It turns out the entropy of each single TLS increases and
decreases from time to time, and they also have the above
recurrence behavior [Figs. 3(c) and 3(d)]. In contrast, their
summation as the total correlation entropy CT(t ) approxi-
mately exhibits a monotonic increasing behavior [except still
carrying small fluctuations, see Fig. 2(e)]. Moreover, with the
increase of the chain size N, the increasing curve of CT(t )
appears more and more smooth [Figs. 3(a)–3(c)]. Clearly this
is quite similar to the behavior of the irreversible entropy
production during the relaxation process in the standard ther-
modynamics [30–33].

Now we consider the correlation maximum that CT(t )
might achieve [34]. With the help of Lagrangian multipliers,
under the constraints (1) pn,g + pn,e = 1 (probability nor-
malization) and (2)

∑
n pn,e = 1 (excitation number conser-

vation), the maximum of CT[{pn,e(g)}] = ∑
n −pn,e ln pn,e −

pn,g ln pn,g is obtained as

C(N)
max = N ln

N

N − 1
+ ln(N − 1). (8)

The maximum is achieved when all the NTLSs have the same
populations p̃n,e = 1/N.

Under the scaled time 2gt/N, the correlation evolutions
CT(t )/N for different sizes Nappear quite similar to each other
[Figs. 3(a)–3(c)]. They all approach their upper bound C(N)

max/N

FIG. 3. (a)–(c) Evolution of the total correlation entropy CT(t )/N

with the scaled time 2gt/N for N = 20, 100, 1000. The blue dashed
lines are the correlation maximum C(N)

max/N. (d) The relative error
ηN between max{CT(t )} (around t � trec/2) and the maximum C(N)

max

decreases with the site number N. In all the above results, the initial
BATH temperatures are set as T → 0+.

closely, and come across a sudden bump around half of the
recurrence time t � trec/2 (indeed this is just the moment the
two-side propagations meet each other at n ∼ ±N/2).

We denote ηN := 1 − max{CT(t )}/C(N)
max as the relative er-

ror between max{CT(t )} and the correlation maximum C(N)
max.

With the increase in the size of N, the error ηN decays slowly
towards zero [approximately ηN ∝ N−α with α � 0.062, see
Fig. 3(d)]. In the thermodynamic limit N → ∞, we may ex-
pect CT(t ) could reach the maximum C(N)

max.
In this sense, the above correlation maximization effec-

tively gives a pseudoequilibrium state ρ̃eq ≡ ⊗
n �̃n, where

�̃n := 1
N
|e〉n〈e| + (1 − 1

N
)|g〉n〈g|, and the whole N-body state

ρ̂(t ) “looks” like approaching this pseudoequilibrium state
during the unitary evolution [6]. But we emphasize indeed
ρ̂(t ) and ρ̂n(t ) never have any steady states when t → ∞, and
ρ̂(t ) always keeps a pure state.

The increasing rate of the above total correlation entropy
(7) also can be rewritten in the form of relative entropy
[30,35–37]

∂tCT(t ) = ∂t D[ρ̂(t ) ‖ ⊗
n ρ̂n(t )], (9)

where D[ρ‖�] = tr[ρ(ln ρ − ln �)] is the relative entropy.
Approximately, the reference state

⊗
n ρ̂n(t ) here can be re-

placed by the pseudoequilibrium state ρ̃eq ≡ ⊗
n �̃n. Again,

we emphasize that the pseudoequilibrium state ρ̃eq here is
determined by the above correlation maximization, and it is
different from a canonical state like ρ̂th ∼ exp[−Ĥ/T ].
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V. CONNECTION WITH THE STANDARD
THERMODYNAMICS

Here we show that the increase of the above total corre-
lation entropy CT(t ) is closely connected to the irreversible
entropy production in the standard thermodynamics.

In open system problems, the bath is often modeled as a
collection of many noninteracting degrees of freedoms ĤB =∑

k Ĥk , which initially starts from a thermal equilibrium state
ρ̂B(0) ∝ exp(−ĤB/T ) [38,39]. In most practical cases, if the
system-bath interaction is quite weak, the bath state gives
approximately [17–19,40,41]

∑
k

S[�̂k (t )] � S[ρ̂B(t )] := SB, (10a)

∂t SB = −tr[ ˙̂ρB(t ) ln ρ̂B(t )] � −tr[ ˙̂ρB(t ) ln ρ̂B(0)], (10b)

and the bath entropy becomes

∂t SB � −tr
[

˙̂ρB(t ) ln e−ĤB/T
] = 1

T
∂t 〈ĤB〉 � − Q̇

T
. (11)

Therefore, the changing rate of the total correlation entropy
becomes ∂tCT = ∂t [SS + SB] � ṠS − Q̇/T , and this is just
equivalent to the entropy production rate dS−đQ/T in the
standard thermodynamics [17–19]. In this sense, the irre-
versible entropy production in the standard thermodynamics
also can be understood as the increase of the correlation be-
tween the system and the bath.

Another analogy with the standard thermodynamics is the
Boltzmann entropy increase in an isolated classical gas com-
posed of Nparticles. Since the full ensemble state ρ( �P, �Q) of
the N-body system follows the Liouville theorem, its Gibbs
entropy SG[ρ( �P, �Q)] never changes [16,19]; on the other hand,
because of the particle collisions, the distribution �(pn, xn)
of each single particle approaches the Maxwell distribution
as the steady state, with its entropy increasing monotoni-
cally (Boltzmann H theorem) [42]. Therefore, the increase
of the total correlation entropy CT = ∑

n SG[�(pn, xn)] −
SG[ρ( �P, �Q)], which measures all the particle-particle cor-
relations in the N-body system, just gives the irreversible
entropy increase in the standard macroscopic thermodynamics
[16,19,43,44].

In principle, the thermal entropy đQ/T in the standard
thermodynamics applies only for equilibrium states with a
well-defined temperature T . When T → 0+, đQ/T diverges
and does not apply well here. Moreover, notice that the above
dynamics of �(N)

n (τ ) [Eq. (3)] remains unchanged even if
the initial populations in the BATH are reversed (setting 1

2 <

n̄T � 1), which indicates the BATH has a negative temperature
[42,45]. If all the TLSs in the BATH start from the excited
state, effectively the BATH has a temperature T → 0−. In these
situations, the application of the thermal entropy đQ/T is
questionable, while the total correlation entropy CT(t ) still
applies and could be a meaningful generalization for the stan-
dard thermodynamics.

VI. SUMMARY

In this paper we study the local relaxation process of an
open system in contact with a finite bath. We find that, due
to the finite-size effect of the bath, the local relaxation of
the open system exhibits hierarchy recurrences periodically,
which makes the system dynamics appear more and more
random. Essentially that is because the energy diffuses out of
the open system and regathers back from the finite bath again
and again. During the unitary evolution, the open system and
the bath as a whole isolated system keeps a constant entropy,
and the entropy of each single TLS increases and decreases
from time to time, while the total correlation entropy approx-
imately exhibits a monotonic increasing behavior, which is
similar to the irreversible entropy increase in the standard ther-
modynamics [16–19]. We emphasize throughout the above
discussions that there is no average on time or any random
configurations. The quantum XX model here could be real-
ized in many physical systems, such as optical lattices [46],
superconducting circuits [47,48], and ion trap arrays [49,50].
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