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Atom-photon bound states and non-Markovian cooperative dynamics
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We study the properties of atom-photon bound states and single-photon cooperative dynamics in a waveguide
system which consists of a finite-bandwidth channel with model dispersion and an ensemble of two-level atoms
whose size is ignorable when compared with the lattice constant. The bound states are formed by all atoms and
a localized photonic excitation. We find that the effect of atomic collection is equivalent to the case of one atom
by rescaling the coupling strength with the square root of the atom number, as far as the eigenenergy equation is
concerned. Besides, it is found there is a quantum phase transition when more than one type of atom are present.
The characteristic lengths and wave functions are analyzed near the phase transition point. The exact analytical
results for the cooperative dynamics at the single excitation level are obtained and we point out the dark state in
this system leads to a universal population trapping in the time evolution process. This type of trapping obeys a
simple law that is only associated with the atom number. A direct conclusion that results from the trapping law
is that the single-photon cooperative emission is suppressed when the number of atoms is large enough.
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I. INTRODUCTION

With the experimental progress in quantum communica-
tion, quantum computation, and quantum information pro-
cesses, there has been a growing interest in the study of
light-matter interaction in waveguiding structures in recent
years [1–7]. Because of the dimensional reduction and the
confined modal dispersion, the photon-qubit interaction can
be significantly increased while the system’s dissipation can
be decreased in a waveguide geometry [8,9]. Strong photon-
atom coupling has been achieved by restricting the photons
in a high-quality microcavity in the past decade [10,11].
Recently, the systems consisting of quantum emitters and one-
dimensional waveguides such as optical fibers, microwave
transmission lines, and coupling-cavity arrays have been
widely studied [12–25] and many quantum devices have been
proposed based on the rich physics in these systems, such as
the controllable light quantum switches [2,14], photon mem-
ory device [13], controllable single-photon routers [18,19],
and frequency converters [20].

The inhibition of electromagnetic wave propagation in
waveguides provides us a way to control the time evolution
of excited atoms. For that the coupled-resonator waveguide
(CRW) with good scalability and integrability has become
available [26–28], the interest in this type of waveguide sys-
tems has been growing. This system provides an appropriate
platform for photon manipulation and storage, as well as
the quantum simulation of many-body systems. The nearest-
neighbor coupling structure gives rise to a finite-energy band.
In a one-dimensional CRW coupled by a two-level quantum
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emitter (atom for brevity), which is known as one of the
general Fano-Anderson models, it has been demonstrated that
there are localized photon states around the emitter whose
energies go beyond the band [29,30]. These localized bound
states lead to the fractional trapping of incident photons in
the scattering process [31–34] and also result from the spon-
taneous emission of atom experiences from exponential decay
to Rabi oscillations as the coupling strength goes from weak
to strong [35,36]. Besides, in a two-dimensional coupled-
resonator system, exotic quantum dynamics from both indi-
vidual and collective behavior emerges, such as exponential
relaxation followed by overdamped oscillations, directional
spontaneous emission, and remarkable superradiant and sub-
radiant behavior [37,38]. The cooperative dynamics of atoms
with one excitation were early investigated in a cavity [39–42]
and in free space [43]. It has been re-explored in free space
with spatial anisotropy of the emitted radiation in recent
theoretical and experimental studies [44–51].

In this paper, we study the CRW, which is coupled to
an ensemble of two-level atoms. The size of the atomic
ensemble is much smaller than the resonator lattice constant.
The atom-photon bound states in this system are analyzed
in the presence of both one and two types of atoms based on
the time-independent Schrödinger equation. Specifically, the
eigenvalue equation, position population, and characteristic
length are calculated. As far as the eigenvalue equation is
concerned, we find the effect of a collection of identical atoms
with atomic number M is equivalent to that of one atom by
rescaling the coupling strength V with

√
M times. Unlike the

case of one type of atom where there are always two bound
states, there is a change of the energy level structure in the
presence of two types of atoms when the coupling strengths
and relative positions of the atom’s transition frequencies from
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the band become different, which reveals there is a quantum
phase transition in this process. We also use a nonperturbative
method to analyze the single-photon cooperative dynamics
of the system and found that the atomic population in the
excited state can exhibit a nonzero decay caused by system’s
dark states. Unlike the population trapping regime caused by
atom-photon bound states [52,53], this type of trapping takes
place only when more than one atom is present.

The paper is organized as follows. In Sec. II, we introduce
the model of coupled-resonator waveguide coupled by an
atomic ensemble. In Sec. III, we calculate the system’s atom-
photon bound states and single-photon cooperative dynamics
in the presence of one type of atom. In Sec. IV, the bound
states and dynamics are analyzed in the case of two types
of atoms. Finally, we summarize the results and give the
conclusions in Sec. IV.

II. MODEL

The system we consider consists of a coupled-resonator
waveguide with different types of two-level atoms coupled at
site x = x0. The jth atom in type i is characterized by ground
state |gi

j〉 and excited state |ei
j〉. Denote ax (a†

x ) as the bosonic
annihilation (creation) operator for the cavity field at position
x, and then the Hamiltonian of the system can be written as
(with h̄ = 1) [2]

H =
∑

x

ωa†
xax −

∑
x

J (a†
x+1ax + a†

xax+1)

+
∑

i

∑
j

�i

∣∣ei
j

〉〈
ei

j

∣∣

+
∑

i

∑
j

Vi
(
σ i+

j ax0 + σ i−
j a†

x0

)
, (1)

where the first two terms describe the waveguide field and ω

is the on-site energy of each resonator. J is the hopping energy
of photon between two neighbor lattices. The third term
describes the two-level atoms. Here, we set the ground energy
of atoms to be zero as reference and the resonant transition
frequency of type-i atoms are represented by �i. The last
term is the interaction between field and atoms. σ i+

j = |ei
j〉〈gi

j |
(σ i−

j = |gi
j〉〈ei

j |) is the raising (lowering) operator acting onto
the jth atom and Vi is the coupling strength between field
modes and type-i atoms. Here, l is the lattice constant so
that the system’s total length is L = Nl . For simplicity, we
assume l to be unity in the following. Such coupled-resonator
devices are now realizable [54–57]. In these experiments,
typical values for the coupling strength Vi and hopping energy
J go up to a few hundred megahertz. The photon dissipative
rate γc and atomic dissipative rate γa are in the kilohertz
regime and are thus very small in comparison with Vi, J , �i,
and ω [57], so we neglect the system’s dissipation.

The first line of Eq. (1) represents the free photon Hamilto-
nian which can be diagonalized by imposing periodic bound-
ary conditions. We introduce the Fourier transform

ak = 1√
N

∑
x

e−ikxax, (2)

where k is the wave number within the first Brillouin zone and
k ∈ [−π, π ] by assuming N → ∞, the free photon Hamilto-
nian is written as

∑
k ωka†

kak with the dispersion relation

ωk = ω − 2J cos (k). (3)

This mode frequency captures the feature of the energy band
with a finite bandwidth which is centered at the on-site en-
ergy ω, i.e., ωk ∈ [ω − 2J, ω + 2J]. Close to the band edges
ω ± 2J , ωk can be approximately expanded as the quadratic
relation. For example, ωk ≈ ω − (2J − Jk2) for the lower
edge when |k| << 1. In the middle, ωk can be written as
the linear relation, for example, for |k − π/2| << 1, ωk ≈
ω + 2J (k − π/2). Photons propagate in the waveguide with
group velocity vg(k) = 2J sin(k), which gets to its maximum
value at the middle of band and becomes zero at the band
edges.

In the momentum space, the Hamiltonian in Eq. (1) can be
rewritten as

H = H0 + HI (4)

with

H0 =
∑

k

ωka†
kak +

∑
i

∑
j

�i

∣∣ei
j

〉〈
ei

j

∣∣ (5)

and

HI =
∑

i

∑
j,k

Vi√
N

(
σ i+

j ak + σ i−
j a†

k

)
. (6)

Here, for simplicity, we take the site x0 as zero point. The
finite-width energy band allows one to explore the situation in
which the transition frequencies of atoms are in or out of the
band. In this paper, the physics we investigate are restricted to
the single excitation subspace.

III. CASE OF ONE TYPE OF ATOMS

We first consider the situation in which there is one type
of atoms. According to the Fano-Anderson model, it is known
that the system has two types of excitation spectra: (1) con-
tinuous spectra corresponding to the scattering states whose
energies lie inside the finite band and (2) discrete excitation
spectra corresponding to the atom-field dressed states whose
energies lie outside the band. In this section, we investigate
the discrete atom-field dressed states and dynamics when one
type of atoms whose number is M are present.

A. Atom-photon bound states

Since the Hamiltonian in Eq. (4) commutes with the to-
tal excitation number of photons and excited atoms Ne =∑

k a†
kak + ∑

j |e j〉〈e j | (here the atom-type index i is omit-
ted), the eigenstate of H can be discussed separately within
the subspace of each given excitation number. For the single
excitation case, i.e., Ne = 1, the eigenstate can be written as

|φ〉 =
∑

j

α j |e j, 0〉 +
∑

k

βka†
k |g, 0〉, (7)

where the state |g, 0〉 indicates that there is no photon in the
waveguide and all the atoms are in their ground states while
|e j, 0〉 means that jth atom stays in its excited state, others
stay in ground states, and no photon exists. By taking this
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FIG. 1. Spectrum of atom-photon bound states as a function of
the atom-photon coupling strength V with different atom number
M. The on-site photon energy ω/J = 4, and the atom’s transition
frequency �/J = 4.

ansatz into the Schrödinger equation H |φ〉 = E |φ〉, one can
obtain the equations for the amplitude coefficients α j and βk

�α j + V√
N

∑
k

βk = Eα j , (8)

ωkβk +
∑

j

V√
N

α j = Eβk . (9)

By using the second equation to eliminate βk in the first one,
we acquire the energy equation for atom-photon bound state

E − � − MV 2

(E − ω)
√

1 − 4J2

(E−ω)2

= 0. (10)

Here, the condition |E − ω| > 2J for the atom-photon bound
states is used in the calculation [35]. The result shows that
there are only two bound states in this system. One’s energy
E+ is above the scattering band [ω − 2J , ω + 2J], and the
other’s E− is below it. In Fig. 1, we plot the coupling strength
V dependence of bound-state energy E± with different atom
number M by numerically solving Eq. (10). It is shown that
as M or V increases, the E+ and E− move away from the
scattering band. Besides, from Eq. (10), it can be seen that
the effect of M atoms is equivalent to that of one atom by
rescaling the coupling strength V with

√
M times. However,

this relation is not satisfied in the wave functions (see the
following).

If we take E+ and E− into Eqs. (8) and (9), then the
corresponding bound-state wave functions can be derived as

|φ±〉 = α(E±)

⎛
⎝∑

j

σ+
j +

∑
k

MV√
N

E± − ωk
a†

k

⎞
⎠|g, 0〉, (11)

where α(E±) ≡ {M + V 2M2/[(E± − ω)2(1 − 4J2/(E± −
ω)2)3/2]}−1/2 is the normalized factor. With the Fourier
transform a†

k = (1/
√

N )
∑

x eikxa†
x , the expressions of the two

wave functions are transformed into the positional space

|φ±〉 =
∑

x

α(E±)MV ϕ(E±)e−|x|/λ±

(E± − ω)
√

1 − (
2J

E±−ω

)2
|g, x〉

+
∑

j

α(E±)|e j, 0〉, (12)

FIG. 2. Coupling strength dependence of the lengths λ+ (a) and
λ− (b) with different numbers of atoms. Other parameters are
�/J = 4, ω/J = 3.

where ϕ(E±) = (−1)|x|θ (E±−ω) and θ (y) is the step function
which is one when y > 0 and is zero when y < 0. The
amplitudes of the wave functions in positional space drop
exponentially as e−|x|/λ±

when the distance from the atoms
increases. The size of the localized amplitude is reflected by
the length λ± = −1/ log({1 −

√
1 − [2J/(E± − ω)]2}|E± −

ω|/2J ). As the energy difference |E± − ω| decreases, the
length λ± increases and the amplitudes become more nonlo-
calized. When the value of |E± − ω| decreases to 2J , λ± tends
to infinity and the wave functions are no longer localized.
In Fig. 2, we plot the length λ± as a function of coupling
strength V with different atom number M. It can be seen
that as V decreases, both λ+ and λ− become large. Further
research shows that λ+ and λ− will be infinite when V tends
to zero. Comparing with the case of one atom, the local-
ization of the bound states is enhanced due to the presence
of more than one atom. Besides, as long as the frequency
� is greater than the band’s center ω and no matter how
many atoms are present, |φ+〉 will be more localized than
|φ−〉 and vice versa. In Fig. 3, we show the probability
distribution of bound states as a function of position with
different detuning δ = � − ω and atom number M. In the
case of resonance, |〈x|φ+〉| and |〈x|φ−〉| have the symmetric
distribution. As the detuning δ becomes large, |φ+〉 gets more
localized and |φ−〉 gets more nonlocalized, while both |φ+〉
and |φ−〉 get more localized when M increases. Further-
more, the total position probability

∑
x |〈x|φ+〉|2 will become

small and the total probability on excited atoms M|α(E+)|2
will increase with δ as increases, which is contrary to the
case of |φ−〉.
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FIG. 3. Position populations of wave functions |φ+〉 for (a1),
(a2), (a3) and |φ−〉 for (b1), (b2), (b3). The coupling strength
V/J = 0.5.

B. Universal trapping induced by dark states

To investigate the dynamics of the system when one of
the atoms is initially excited and the radiation field is in the
vacuum state, we start from the time-dependent Schrödinger
equation

i
∂

∂t
|ψ (t )〉 = H |ψ (t )〉. (13)

The wave function |ψ (t )〉 of the system at time t has the form
in single excitation subspace |ψ (t )〉 = ∑

j A j (t )|e j, 0〉 +∑
k Ck (t )a†

k |g, 0〉, where Aj (t ) ( j = 1, 2, . . . , M ) and Ck (t )
are the probability amplitudes for |e j, 0〉 and a†

k |g, 0〉, respec-
tively. Taking it into the Schrödinger equation, we obtain the
relations about Aj (t ) and Ck (t ):

i
∂Aj (t )

∂t
= �Aj (t ) + V√

N

∑
k

Ck (t ), (14)

i
∂Ck (t )

∂t
= ωkCk (t ) + V√

N

∑
j

A j (t ). (15)

To go beyond the Wigner-Weisskopf approximation and
Markovian perturbation theory, which leads to the result that
the atomic population reveals exponential decay or the popu-
lation decay is complete [38], we take a Laplace transform of
Eqs. (14) and (15). It gives

i[−Aj (0) + sĀ j (s)] = �Ā j (s) + V√
N

∑
k

C̄k (s), (16)

i[−Ck (0) + sC̄k (s)] = ωkC̄k (s) + V√
N

∑
j

Ā j (s). (17)

By denoting the initial excited atom as j0, i.e., with the initial
amplitudes Aj0 (0) = 1, Aj (0) = 0 ( j 
= j0), and Ck (0) = 0,

we derive the expression of Ā j0 (s)

Ā j0 (s) = i
is − � − (M − 1)V 2 f (s)

(is − �)[is − � − MV 2 f (s)]
, (18)

where f (s) ≡ (1/N )
∑

k 1/(is − ωk ). The amplitude on the
excited atom is given by the inverse Laplace transform
Aj0 (t ) = (1/2π i)

∫ σ+i∞
σ−i∞ Ā j0 (s)est ds. To evaluate this integral,

we consider the analytic behavior of Ā j0 (s) in the whole com-
plex plane except a branch cut along the imaginary axis from
−i(2J + ω) to i(2J − ω). With the residue theorem, we obtain
the final result after some complex but exact calculations

Aj0 (t ) = M − 1

M
e−i�t +

∑
m

est

M[G(s)]′
|s=x(1)

m

+ J

π

∫ 1

−1

4J
√

1 − y2V 2ei2Jyt

K (y) + M2V 4
dy, (19)

where G(s) ≡ s + i� + iMV 2 f (s) and K (y) ≡ 4J2(1 −
y2)(2Jy + �)2. Here, [G(s)]′ means the derivative of G(s)
with respect to s. x(1)

m is the roots of the equation G(s) = 0.
Compared with Eq. (10), it can be seen that G(−iE ) = 0
is nothing but the energy equation of atom-photon bound
state. In fact, the equation G(s) = 0 only has pure imaginary
roots whose imaginary parts correspond to the system’s
eigenenergies. According to the analysis based on Green’s
function method [35,58], it is known that the second term in
Eq. (19) comes from the contribution of system’s atom-photon
bound states with photonic excitation, and the third term
which vanishes when time tends to infinity comes from
the contribution of system’s scattering states. When only
one atom is present, Aj0 (∞) = ∑

m est/{M[G(s)]′}|s=x(1)
m

.
These pure imaginary roots in equation G(s) = 0 show that
the population on the excited atom is fractionally trapped
when time goes long enough. This type of trapping caused
by atom-photon dressed states was pointed out in photonic
crystal systems with quadratic dispersion relation [52,53]. In
Fig. 4, we plot the time evolution of |Aj0 (t )| with M = 1. It
is seen that more of the population on the excited atom is
trapped as the resonance frequency � is far away from the
center of energy band when time is long enough. Besides, it

Aj

FIG. 4. Time evolution of the population on the excited atom
with M = 1. The time is in units of 1/J . The coupling strength
V/J = 0.3.
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Aj A j

FIG. 5. Time evolution of the population on the excited atom
with different atom numbers. The coupling strength V/J = 0.25.

can be seen that when � lies in the vicinity of band center,
the decay is nearly complete.

Now we analyze the case of more than one atom when
the system’s parameters satisfy the condition that the value
of 1/{M[G(s)]′}|s=x(1)

m
is small enough that the second term

in Eq. (19) can be ignored. The final result of the amplitude
Aj0 (t ) in this case is

|Aj0 (∞)| = 1 − 1

M
, (20)

which is only related with the number of atoms. Unlike the
atom-photon bound state trapping regime, here we point out
this type of trapping is caused by the system’s dark state
in which all the excitation numbers focus on the atoms and
the populations of field modes are zero, which also satisfies
the time-independent Schrödinger equation with eigenenergy
E = � [59,60]. This type of trapping takes place when more
than one atom is present. It is associated with the collective
coherence of atomic clouds. In Fig. 5, we show the time
evolution of |Aj0 (t )| with different number of atoms when
δ = � − ω = 0. One sees that |Aj0 (∞)| tends to the value
1 − 1/M as time goes infinite.

IV. CASE OF TWO TYPES OF ATOMS

We now study the atom-field dressed states and dynamics
of the waveguide system when two types of atoms are present.
Unlike the case of one type of atoms in which there are always
two atom-field bound states whose energies are above the top
and below the bottom of the scattering energy band, the case
for two types of atoms is different. In this section, we will
show that how the quantum phase transition happens when
the coupling strengths VA and VB of the two types of atoms
change with different atom numbers MA and MB.

A. Bound states and quantum phase transition

In single excitation subspace, the system’s eigenstate is
assumed to be

|φ̃〉 =
∑

i

∑
j

αi
j

∣∣ei
j, 0

〉 + ∑
k

β̃ka†
k |g, 0〉, (21)

where αi
j (i = A, B) is the probability amplitude for the jth

atom in type i to be in an excited state with no photons in
the waveguide field and β̃k is the probability amplitude for
all atoms to be in their ground state with a photon having
frequency ωk . By taking |φ̃〉 into the Schrödinger equation
H |φ̃〉 = E |φ̃〉, we acquire

�iα
i
j + Vi√

N

∑
k

β̃k = Eαi
j , (22)

ωkβ̃k +
∑

i

∑
j

Vi√
N

αi
j = E β̃k . (23)

With these equations, the system’s eigenenergy equation is
obtained

(E − �A)(E − �B)

= MAV 2
A (E − �B) + MBV 2

B (E − �A)

(E − ω)
√

1 − 4J2

(E−ω)2

. (24)

It can be seen that the effect of Mi atoms is equivalent to that
of one atom in type i by rescaling the coupling strength Vi

with
√

Mi times. The number of roots in Eq. (24) depends
on the relative positions between �i and scattering energy
band. Without loss of generality, we assumed �A > �B in the
following. First, when the two resonance frequencies �A and
�B lie outside the energy band and are at the same side, i.e.,
�A, �B < ω − 2J or �A, �B > ω + 2J , Eq. (24) has three
roots. One is above the band and two are below, which corre-
sponds to the case �A, �B < ω − 2J , while two are above
the band and one is below, which corresponds to the case
�A, �B > ω + 2J . However, if �A, �B lie outside the band
and are at the different sides, i.e., �B < ω − 2J and �A >

ω + 2J , there will be two or three roots in the energy equa-
tion. It depends on the value of Y (MA, MB) ≡ (MAV 2

A �B +
MBV 2

B �A)/(MAV 2
A + MBV 2

B ). When |Y (MA, MB) − ω| < 2J ,
two roots exist in Eq. (24), or else there will be three roots.
Second, if one of the frequencies �A, �B lies inside the band
and the other lies outside, for example, �B ∈ [ω − 2J, ω +
2J] and �A > ω + 2J , there are also two different cases.
When Y (MA, MB) < ω + 2J , two roots exist; otherwise, the
equation has three roots. Finally, we analyze the situation
in which both �A and �B are inside the band. In this case,
because the values of Y (MA, MB) are always in the range of
scattering band, only two roots exist.

In Fig. 6(a), we plot the system’s eigenvalues as a function
of the coupling strength VB with different atom number MB in
the case where �B is in the range [ω − 2J, ω + 2J] and �A

is out. It can be seen that as the coupling strength VB varies
from small to large, E1 (E3) moves away from the top (bottom)
of the band from the beginning, but E2 appears only when
VB is greater than a fixed value which is determined by the
equation Y (MA, MB) = ω + 2J . This means that the number
of atom-photon bound states of the system changes from
two to three in this process. The change in the energy level
structure reveals that there is a quantum phase transition [61].
In Fig. 6(b), we plot the system’s eigenvalues as a function of
the atom number MA. One can see that as MA increases, E2

gets closer to the top of the band and disappears when MA is
greater than four while E1 and E3 get away from the band.
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FIG. 6. (a) Energies of atom-photon bound states as a function
of the coupling strength VB with different atom number MB, VA/J =
0.8, and MA = 2. (b) Energies as a function of the atom number
MA, VA/J = 0.7, VB/J = 0.6, and MB = 3. Other parameters are
�A/J = 3, �B/J = 1.5, and ω/J = 0.

Take the eigenvalues En into Eqs. (22) and (23), the corre-
sponding bound-state wave functions can be obtained as

|φ̃n〉 = αA
n

∑
j

∣∣eA
j , 0

〉 + αB
n

∑
j

∣∣eB
j , 0

〉

+ 1√
N

∑
k

MAVAαA
n + MBVBαB

n

En − ωk
a†

k |g, 0〉, (25)

where αA
n = {MA + MBV 2

B (En − �A)2/[V 2
A (En − �B)2] +

[MAVA + MBV 2
B (En − �A) / (VAEn − VA�B)]2 / [(En − ω)2

(1 − 4J2/(En − ω)2)3/2]}−1/2 and αB
n = αA

n VB(En −
�A)/[VA(En − �B)]. With the Fourier transform a†

k =
(1/

√
N )

∑
x eikxa†

x , the wave functions are transformed
into the positional space

|φ̃n〉 = αA
n

∑
j

∣∣eA
j , 0

〉 + αB
n

∑
j

∣∣eB
j , 0

〉

+
∑

x

ϕ̃(En)e−|x|/λn

(En − ω)
√

1 − (
2J

En−ω

)2
|g, x〉, (26)

where ϕ̃(En) = (MAVAαA
n + MBVBαB

n )(−1)|x|θ (En−ω)

and the characteristic length λn = −1/ log{(1 −√
1 − [2J/(En − ω)]2)|En − ω|/2J}. In Figs. 7(a), 7(b),

and 7(c), we show the VB dependence of the length λn with
different atom numbers MB. As VB decreases to zero, λ1 and
λ3 tend to be finite, but λ2 gets to infinity when VB decreases
to a fixed value which corresponds to the disappearance of the
bound state |φ̃2〉. As MB becomes large, this fixed value gets

MB

MB

MB

VB

MB

MB

MB

VB

MB

MB

MB

VB

MA

MA

MA

FIG. 7. [(a)–(c)] Coupling strength VB dependence of the length
λn with different atom number MB, VA/J = 0.8, and MA = 2. (d)
Position populations of wave function |φ̃2〉 with different atom num-
ber MA, VA/J = 0.32, VB/J = 0.3, and MB = 2. Other parameters are
�A/J = 3, �B/J = 1.5, and ω/J = 0.

small. In Fig. 7(d), it is shown the probability distribution of
bound state |φ̃2〉 as a function of position with different atom
numbers MA. It can be seen that |φ̃2〉 becomes nonlocalized as
MA increases and finally |φ̃2〉 will disappear when MA reaches
a certain point.

B. Dynamics and trapping by same type of atoms

We now consider the dynamics of the system with two
types of atoms. The wave function at time t in this situation
can be written as

|ψ̃ (t )〉 =
∑

i

∑
j

bi
j (t )

∣∣ei
j, 0

〉 + ∑
k

C̃k (t )a†
k |g, 0〉. (27)

With the Schrödinger equation i∂|ψ̃ (t )〉/∂t = H |ψ̃ (t )〉, the
relations about bi

j (t ) and C̃k (t ) are acquired:

i
∂

∂t
bi

j (t ) = �ib
i
j (t ) + Vi√

N

∑
k

C̃k (t ), (28)

i
∂

∂t
C̃k (t ) = ωkC̃k (t ) +

∑
i

∑
j

Vi√
N

bi
j (t ). (29)

Here we denote the initial excited atom with j0 and it is
assumed to belong to type A, i.e., bA

j0 (0) = 1, bA
j (0) = 0

( j 
= j0), and bB
j (0) = Ck (0) = 0. By taking a Laplace trans-

form of Eqs. (28) and (29) and use the inverse formula
bA

j0 (t ) = (1/2π i)
∫ σ+i∞
σ−i∞ b̃A

j0 (s)est ds, which are similar to the
steps in the case of one type of atoms, we finally derive the
expression of bA

j0 (t )

bA
j0 (t ) = MA − 1

MA
e−i�At

+
∑

m

i f (s)(is − �B)V 2
A est

(is − �A)[F (s)]′
|s=x(2)

m

+
∫ 1

−1

4J2
√

1 − y2(2Jy + �B)2V 2
A ei2Jyt

πL(y)
dy, (30)
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FIG. 8. Time evolution of the population on the excited atom
with different atom numbers MA when δA/J = (�A − ω)/J = 0.4
and δB/J = (�B − ω)/J = 1.5. Other parameters are VA/J = 0.3,
VB/J = 0.25, and MB = 2.

where F (s) ≡ (is − �A)(is − �B) − f (s)[(is − �A)MBV 2
B +

(is − �B)MAV 2
A ] and L(y) ≡ 4J2(1 − y2)(2Jy + �A)2(2Jy +

�B)2 + [(2Jy + �A)MBV 2
B + (2Jy + �B)MAV 2

A ]2. Here, x(2)
m

is the roots of the equation F (s) = 0. It can be seen that
F (−iE ) = 0 is the energy equation of atom-photon bound
states. The second term in Eq. (30) comes from the con-
tribution of atom-photon bound states which results in the
population trapping in the time evolution. The third term
which comes from the contribution of the scattering states
will become zero at last. If the value of i f (s)(is − �B)V 2

A /

(is − �A)[F (s)]′|s=x(2)
m

is small enough, which usually hap-
pens when both �A and �B are inside the scattering band,
bA

j0 (t ) will tend to

∣∣bA
j0 (∞)

∣∣ = 1 − 1

MA
, (31)

which is only related with the number of type-A atoms that
is the same as the type of the initial excited atom. In Fig. 8,
we plot the time evolution of |bA

j0 (t )| with different numbers
of atoms MA. It can be seen that |bA

j0 (∞)| tends to the value
of 1 − 1/MA when time is infinite. The small oscillation in
|bA

j0 (t )| after a sufficiently long time results from the contri-
bution atom-photon bound states which is small but not zero.
Here, the trapping is caused by the system’s dark state and

the excitation number focuses on the type-A atoms, and the
populations of type-B atoms and field modes are zero. The
dark state satisfies the time-independent Schrödinger equation
with eigenenergy E = �A. This type of trapping is associated
with the collective coherence of type-A atoms.

V. DISCUSSION AND CONCLUSION

In this paper, we have studied the energy structure and
single-photon cooperative dynamics of a one-dimensional
waveguide with model dispersion which is locally coupled
by ensembles of two-level atoms. While the bound states
and dynamics have been investigated in the condition that
the atoms are placed in different resonators [30,62], here
we focus on the situation in which the atomic ensemble is
much smaller than the resonator lattice constant, which is
achieved by putting atoms in the same resonator. Because
of the different distribution of atoms, the energy structure
and single-photon cooperative dynamics are very different. In
this system, the discrete bound-state eigenvalues are analyzed
by solving the time-independent Schrödinger equation. Both
the cases, where single and multiple atomic ensembles are
present, are discussed. While there are always two bound
states in the single-ensemble case, the number of bound states
in the two-ensemble case is not fixed and depends on the
coupling strengths and the relative positions of the atom’s
transition frequencies from the band. The change of energy
structure reveals that there is a quantum phase transition.
The characteristic length and wave function near the phase
transition are analyzed. By exactly solving the time-dependent
Schrödinger equation, an analytical expression for the sys-
tem’s single-photon cooperative dynamics is provided. Unlike
the trapping regime caused by atom-photon bound states, we
first point out the atomic population in the excited state cannot
decay to zero because of the existence of a dark state which is
particularly evident when the bound state trapping regime is
ignorable.
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