
PHYSICAL REVIEW A 100, 013825 (2019)

Quantum phase transition and interference trapping of populations
in a coupled-resonator waveguide
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We study the energy structure and dynamics of a V-type three-level emitter embedded in a one-dimensional
waveguide with model dispersion. Due to the presence of two different couplings between the upper levels and
the waveguide modes, we find that the bound states in this system are quite different from the case of a two-level
emitter. The energy structure is dependent on the relative position of the emitter’s transition frequencies from the
band with finite width. We obtain the phase diagrams through numerical analysis. The dynamics of spontaneous
emission of the system is calculated exactly in the general case by means of the Green’s function approach.
The emitted photon is characterized by two components: a localized part and a traveling part, and the average
frequency of the traveling part is different from that for resonant scattering. Through the quantum interference
between the emitter’s two transitions, it is found that the total excitation number of the localized photon and
emitter can be greatly enhanced in some case in the spontaneous-emission process.
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I. INTRODUCTION

Motivated by the experimental progress in quantum com-
munication, quantum computation, and quantum information
processes, much attention has been paid to the study of light-
matter interaction in waveguiding structures in recent years
[1–8]. These waveguiding structures can be realized in many
different ways, such as the surface plasmons confined on a
conducting nanowire coupled to a single two-level emitter [9],
a one-dimensional superconducting transmission line coupled
to a single artificial atom [10], or a photonic nanowire with an
embedded quantum dot [11]. For that the coupled-resonator
waveguide (CRW) with good scalability and integrability has
become available recently [12–16], light-matter interaction in
one-dimensional CRWs with different local coupled quantum
systems has extensively been studied, and many different
quantum devices have been proposed theoretically based on
the rich physics in these systems, such as the controllable
quantum switches [2,17–20], single-photon routers [21,22],
photon memory device [23], and controllable frequency con-
verters [24].

For the CRW locally coupled by a two-level system (TLS)
which is known as one of the general Fano-Anderson models,
it has been demonstrated that there are two bound states
localized near around the TLS, whose energies lie outside the
finite band of bath modes [25,26]. As the coupling strength
between TLS and waveguide mode increases, these bound
states’ energies get away from the band. Due to the presence
of atom-photon bound states, the excitation of TLS cannot
be transformed entirely into the field and thus exhibits a
fractional decay [27]. Some aspects of such bound states have
been discussed in the photon scattering problems [28–31].
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In the study of spontaneous emission, it was found that the
population in the excited state of TLS experiences from expo-
nential decay to Rabi oscillations when the coupling strength
becomes from weak to strong due to the existence of these
bound states [32] and there is an energy shift of the emitted
photon with respect to the energy required to excite the
TLS [33].

In this paper, we focus on the CRW which is locally
coupled by a three-level atom (TLA). The two upper levels
of the atom are coupled by the same waveguide mode to
the lower level. Different from the case of TLS that there
are always two bound states no matter whether the coupling
strength is weak or strong, we find that there is a transition of
the number of bound states when the two coupling strengths
between the TLA and the waveguide mode vary. The change
of the energy level structure reveals that there is a quantum
phase transition in this process. Because of the presence of
these bound states, the populations in the upper levels will
not totally decay to zero in the spontaneous emission process
[27]. Such population trapping exists in the form of a residual
oscillatory behavior of each excitation at long enough time
when at least two bound states go into effect and in the form
of an approximate constant without oscillation when only
one bound state plays the main role. We investigate how the
quantum interference between the two transitions of three-
level atom affects the time evolution of the populations. It is
found that the population trapping can be greatly enhanced
in four cases by controlling the initial state: (i) the energy
band is narrow; (ii) the two transition frequencies of atom are
much greater than scattering energy; (iii) the two transition
frequencies are equal to each other; (iv) the scattering energy
is much greater than the two transition frequencies.

The paper is organized as follows. In Sec. II, we intro-
duce the model of coupled-resonator waveguide coupled by a
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three-level atom. In Sec. III, we calculate the system’s sta-
tionary states, both the bound ones and the scattering ones,
through the method of the Green’s function. In Sec. IV, we
study the poles of the Green’s function and investigate the
system’s eigenvalues. In Sec. V, we use the bound and the
scattering states to study the atom’s spontaneous emission by
focusing on the time evolution of the population in the upper
levels. In Sec. VI, we use the bound and the scattering states
to study the atom’s spontaneous emission by focusing on the
time evolution of photon probability distribution and analyze
the localized radiation field. Finally, we summarize the results
and give the conclusions in Sec. IV.

II. MODEL

As shown in Fig. 1, the system we consider consists of a
coupled-resonator waveguide with a three-level atom coupled
at site x = x0. The atom is characterized by a ground state |g〉
and two excited states |e1〉, |e2〉. Denote a†

x (ax ) as the creation
(annihilation) operator of the waveguide mode at position x;
then the Hamiltonian of the system can be written as (with
h̄ = 1)

H =
N∑

x=1

ωa†
xax − J

N−1∑
x=1

(a†
x+1ax + a†

xax+1)

+
∑
i=1,2

[
�i|ei〉〈ei| + Vi

(
σ+

i ax0 + σ−
i a†

x0

)]
, (1)

where ω is the on-site energy of each resonator. J represents
the hopping energy of the photon between two neighbor sites.
Here, we set the ground energy of the atom to be zero as
reference and the resonant transition frequencies of two ex-
cited states are represented by �1 and �2. σ+

i = |ei〉〈g| (σ−
i =

|g〉〈ei|) is the raising (lowering) operator acting onto the atom.
V1 and V2 are the coupling strength between waveguide mode
and each excited state. Here, l is the lattice constant so that the
system’s total length is L = Nl . For simplicity, we assume l
to be unity in the following. When one of the atom’s transition
frequencies and its corresponding coupling strength are taken
to be the limit �i/J , Vi/J → 0 (i = 1 or 2), the Hamiltonian
will reduce to the case of a two-level atom [2].

By introducing the momentum representation of the anni-
hilation operator

ak = 1√
N

∑
x

eikxax, (2)

where k ∈ [−π, π ] is the wave number within the first
Brillouin zone, the free-photon Hamiltonian is written as

FIG. 1. Scheme of the system. A one-dimensional coupled-
resonator waveguide is coupled by a three-level atom.

∑
k ωka†

kak with the dispersion relation

ωk = ω − 2J cos(k). (3)

This mode frequency is inside a scattering energy band with
width 4J , which is centered around the on-site energy ω. Thus,
in the momentum space, the Hamiltonian in Eq. (1) can be
written as

H = H0 + V , (4)

with

H0 =
∑

k

ωka†
kak +

∑
i

�i|ei〉〈ei| (5)

and

V =
∑

i

Vi√
N

∑
k

(σ+
i ak + σ−

i a†
k ), (6)

which shows that the three-level atom is coupled to a finite
energy band of waveguide modes. Here, for simplicity, we
take the site x0 as zero point.

III. BOUND STATES AND SCATTERING STATES

The spectrum of the system contains a continuum of
scattering states whose energies lie inside a finite band and
discrete levels of bound states. The case of scattering states
has been studied in the literature [21,24]. In this section, we
show how to derive the bound states and scattering states
of the system with the Green’s function approach [34,35].
It is worth noting that the result of CRW coupled by a two-
level atom has been presented in the paper [32], which only
considers the case that a two-level atom is on resonance with
the zeroth cavity, i.e., the transition frequency of the two-level
atom coincides with on-site energy ω. Here, we consider the
general situation with a three-level atom.

The Green’s function is defined in terms of Hamiltonian H
as [35]

Ĝ(z) = 1

z − H
, (7)

where z is a complex energy variable. Ĝ(z) is an analytic
function in the complex z plane except at those points or
portions of the real z axis that correspond to the eigenvalues
of H . Besides, Ĝ(z) satisfies the resolvent equation [36]

Ĝ(z) = Ĝ0(z) + Ĝ0(z)V Ĝ(z)

= Ĝ0(z) + Ĝ(z)V Ĝ0(z). (8)

Here, Ĝ0(z) is the free Green’s function and is defined as

Ĝ0(z) = 1

z − H0
. (9)

The pole of Ĝ0(z) gives the eigenvalues of free
Hamiltonian H0.

A. Bound states

We will first calculate the matrix elements of Ĝ(z):
〈0, ei|Ĝ(z)|0, e j〉, 〈0, ei|Ĝ|k, g〉, and 〈p, g|Ĝ|k, g〉 (i, j = 1,
2), where |0, e j〉 represents that there is zero photon in the
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waveguide and the atom is in the excited state |e j〉, while
|k, g〉 indicates that the atom is in its ground state and one
photon with momentum k exists. Note that both |0, e j〉 and
|k, g〉 are the eigenvalues of H0. Since G0(z) is associated
with Hamiltonian H0, the matrix elements can be easily
calculated as

〈0, ei|Ĝ0(z)|0, e j〉 = δi, j

z − � j
, (10)

〈0, ei|Ĝ0(z)|k, g〉 = 0, (11)

〈p, g|Ĝ0(z)|k, g〉 = δp,k

z − ωk
. (12)

Here, 〈p, g|Ĝ0(z)|k, g〉 has a pole inside the band of the
eigenvalues of H0. Additionally, the identity operator in a
single excited sector is given by

I1=
∑

k

|k, g〉〈k, g| + |0, e1〉〈0, e1| + |0, e2〉〈0, e2|. (13)

By sandwiching the right side of Eqs. (8) with the identity
operator I1 and inserting the identity operator between V and
Ĝ, also using Eqs. (10), (11), and (12), one can obtain the
self-consistent equations

〈0, ei|Ĝ|k, g〉 =
∑

j

Vj〈0, ei|Ĝ|0, e j〉√
N (z − ωk )

, (14)

〈0, ei|Ĝ|0, e j〉 =
∑

k

Vj〈0, ei|Ĝ|k, g〉√
N (z − � j )

(i �= j), (15)

〈0, ei|Ĝ|0, ei〉 = 〈0, ei|Ĝ0|0, ei〉

+
∑

k

Vi〈0, ei|Ĝ|k, g〉√
N (z − �i )

, (16)

〈p, g|Ĝ|k, g〉 = δp,k

z − ωk
+

∑
i

Vi〈p, g|Ĝ|0, ei〉√
N (z − ωk )

. (17)

Taking Eqs. (15) and (16) into the expression of 〈0, ei|Ĝ|k, g〉
and after some calculation, 〈0, ei|Ĝ|k, g〉 can be exactly
solved as

〈0, ei|Ĝ|k, g〉 = Vi(z − �1)(z − �2)√
N (z − ωk )(z − �i )K (z)

, (18)

where K (z) = (z − �1)(z − �2) − (z − �1)V 2
2 I (z) − (z −

�2)V 2
1 I (z) and I (z) = ∑

k 1/[N (z − ωk )]. The function I (z)
is analytic in the whole complex plane except a branch cut
on the real axis from ω − 2J to ω + 2J . In this branch cut
region I (z) is divergent and not well defined. With this result
of 〈0, ei|Ĝ|k, g〉, the solutions to other matrix elements can be
derived

〈0, e1|Ĝ|0, e1〉 = z − �2 − V 2
2 I (z)

K (z)
, (19)

〈0, e1|Ĝ|0, e2〉 = V1V2I (z)

K (z)
, (20)

〈0, e2|Ĝ|0, e2〉 = z − �1 − V 2
1 I (z)

K (z)
, (21)

〈p, g|Ĝ|k, g〉 = δp,k

z − ωk
+ U (z)(z − �1)(z − �2)

N (z − ωp)(z − ωk )K (z)
, (22)

where U (z) = ∑
i V 2

i /(z − �i ). Note that |0, e j〉 and |k, g〉 are
the eigenvalues of H0 but not that of H . So the system’s bound-
state energy can be given out by the common poles of these
matrix elements of Ĝ [35]:

(E − �1)(E − �2)

= [
(E − �1)V 2

2 + (E − �2)V 2
1

]
I (E ). (23)

The stationary states |�n〉 associated with the discrete
eigenvalues En of H obey the Schrödinger equation H |�n〉 =
En|�n〉 . These eigenvalues are given by Eq. (23). According
to the properties of the Green’s function, the residue of matrix
elements 〈_|Ĝ(z)|_〉 with z = En corresponds to the matrix
elements 〈_|�n〉〈�n|_〉. Here, |_〉 can be chosen as |0, e j〉 or
|k, g〉 because these elements of Ĝ have been solved above. By
this relation, one can obtain the states |�n〉

|�n〉 =
{∑

k

√
(z − �1)(z − �2)√

N (z − ωk )
√

I (z)[K (z)]′
|k, g〉

+
√

(z − �2) − V 2
2 I (z)

√
[K (z)]′

|0, e1〉

+
√

(z − �1) − V 2
1 I (z)

√
[K (z)]′

|0, e2〉
⎫⎬
⎭|z=En , (24)

where [K (z)]′ means the derivative of K (z) with respect to z.

B. Scattering states

Now, we consider the photon scattering in the waveguide
system. As mentioned above, the scattering-state eigenvalue,
which is continuous spectrum, corresponds to a branch cut
of 〈p, g|Ĝ|k, g〉 and is inside the band (ω − 2J, ω + 2J). The
scattering state |�k〉 is related to the input state |k, g〉 via the
Lippmann Schwinger equation

|�k〉 = |k, g〉 + G+(ωk )V̂ |k, g〉, (25)

where G+(ωk ) = limδ→0+ G(ωk + iδ). With the solved matrix
elements of Ĝ in Eqs. (18)–(22), |�k〉 can be calculated as

|�k〉 = |k, g〉 +
∑

k′

ukk′

Fk
|k′, g〉

+ uke1√
NFk

|0, e1〉 + uke2√
NFk

|0, e2〉, (26)

where ukk′ = {V 2
1 (ωk − �2) + V 2

2 (ωk − �1)}/{N (ωk + iδ −
ωk′ )}, uke1 = V1(ωk − �2), uke2 = V2(ωk − �1), and

Fk = (ωk − �1)(ωk − �2) + i
uke1V1 + uke2V2

2J| sin(k)| . (27)

Inserting the identity operator I2=
∑

x |x, g〉〈x, g| +
|0, e1〉〈0, e1| + |0, e2〉〈0, e2| into the right side of Eq. (26),
the scattering state |�k〉 can be rewritten as

|�k〉 =
∑

x

ukx|x, g〉 + uke1√
NFk

|0, e1〉 + uke2√
NFk

|0, e2〉, (28)

013825-3



LEI QIAO, YA-JU SONG, AND CHANG-PU SUN PHYSICAL REVIEW A 100, 013825 (2019)

where ukx = 1√
N
{eikx + rkei|kx|} is the probability amplitude in

position space and

rk = −i
V 2

1 (ωk − �2) + V 2
2 (ωk − �1)

|2J sin(k)|Fk
(29)

is the photon reflection amplitude, while tk = 1 + rk repre-
sents the transmission amplitude. rk and tk satisfy the relation
|rk|2 + |tk|2 = 1.

IV. QUANTUM PHASE TRANSITION

For the case of the waveguide system with a two-level
atom, there are always two discrete poles in the Green’s
function which correspond to two bound states [25]. One is
above the top of the scattering energy band, while the other
is below the bottom of the band. However, the case for a
three-level atom is different. In this section, we will show that
how the quantum phase transition happens when the values
of coupling strength V1, V2 changes with different transition
frequencies �1, �2.

Now we investigate the poles of the Green’s function as
presented in Eq. (23). As mentioned above, the function I (z)
is not well defined when z is inside the scattering band.
However, when z is infinitely close to the range [ω − 2J, ω +
2J] from the whole complex plane, I (z) can be calculated as
I (z) = −2π i/

√
4J2 − z2 if limδ→0+ (z − iδ) ∈ [ω − 2J, ω +

2J], while I (z) = 2π i/
√

4J2 − z2 if limδ→0+ (z + iδ) ∈ [ω −
2J, ω + 2J]. With this limit equation, no solutions are found
in Eq. (23) except a special situation that the values of �1, �2

are equal, i.e., �1 = �2 = �. In this case, we found E = � is
the solution to Eq. (23). Now we focus on the region outside
the band. In this case, Eq. (23) is calculated as

(E − �1)(E − �2) = (E − �1)V 2
2 + (E − �2)V 2

1

(E − ω)
√

1 − 4J2

(E−ω)2

. (30)

The number of eigenvalues depends on the relative positions
between �1, �2 and the scattering band. Without loss of gen-
erality, we assume �1 > �2 in the paper. If the two transition
frequencies �1, �2 are outside the band and are in the same
side, i.e., �1, �2 > ω + 2J or �1, �2 < ω − 2J , the equation
always has three eigenvalues which correspond to three bound
states. However, if �1, �2 are outside the band and are in
the different side, i.e., �1 > ω + 2J and �2 < ω − 2J , there
will be two or three solutions to the equation. It depends on
the value of h(V1,V2) ≡ (�1V 2

2 + �2V 2
1 )/(V 2

1 + V 2
2 ). When

|h(V1,V2) − ω| < 2J , two roots exist in Eq. (30); otherwise,
there will be three roots. On another hand, if one of the
frequencies is inside the band and the other is outside, for
example, �2 ∈ [ω − 2J, ω + 2J] and �1 > ω + 2J , there are
also two different cases. When h(V1,V2) < ω + 2J , two roots
exist; otherwise, the equation has three roots. At last, we
discuss that both �1 and �2 are inside the band. In this
situation, due to the value of h(V1,V2) always being in the
region of the scattering band, only two roots exist in the
equation.

In Fig. 2(a), we plot the bound-state energies as a function
of the coupling strength V1 in the case that �2 is inside the
region [ω − 2J, ω + 2J] and �1 is outside. One can see that
the energies of bound states lie on both sides of the band. As

E� �2J

E� �2J

Bound states

Scattering continuum

E2

E1

E3

(a)

0.5 1.0 1.5 2.0 2.5 3.0
V1

�2

0

2

4

E

Phase I

Phase II

Two bound states

Three bound states

(b)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

V1

V
2

FIG. 2. (a) Energy spectrum as a function of the atom-photon
coupling strength V1. Another coupling strength V2 = 1. (b) Phase
diagram of the system in the V1-V2 plane. The transition frequencies
�1 = 3, �2 = 1.5 and the center energy of scattering band ω = 0.
All of the energies are in units of J .

the coupling strength V1 increases, E1 (E3) comes away from
the top (bottom) of the band. But E2 gets closer to the band
top. At about V1 = 1.42J , E2 disappears and the number of
bound states of the system becomes from three to two. Further
research shows that if the value of V1 is fixed, for example,
V1 = J , and the coupling strength V2 varies, other parameters
are the same as that in Fig. 2(a); we found that there are
two bound states when V2 is small (V2 < 0.89J ). When V2

increases and is greater than 0.89J , the middle bound state E2

appears and gets away from the top of the band. In Fig. 2(b),
we show the phase diagram of the system in the V1-V2 plane.
One can clearly see the different phase when V1, V2 change.

V. POPULATIONS IN THE TWO UPPER LEVELS

We now study the dynamics of the coupled-resonator
waveguide coupled by a three-level atom. To study the time
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evolution of the system’s wave function, we express the wave
function expanded by all the bound states and the scattering
states, which construct a set of complete basis

|�(t )〉 =
∑

k

Bke−iωkt |�k〉 +
∑

n

Bne−iEnt |�n〉. (31)

From the initial state |�(0)〉 = A1(0)|0, e1〉 + A2(0)|0, e2〉 +∑
k Ck (0)|k, g〉 with |A1(0)|2 + |A2(0)|2 = 1 and Ck (0) = 0,

we obtain

Bk = uke1 A1(0) + uke2 A2(0)√
NF ∗

k

(32)

and

Bn =
√

(z − �2) − V 2
2 I (z)A1(0)

√
[K (z)]′

∣∣∣∣
z=En

+
√

(z − �1) − V 2
1 I (z)A2(0)

√
[K (z)]′

∣∣∣∣
z=En

. (33)

With the expression of |�(t )〉, the system’s average energy
can be obtained as 〈H〉 = ∑

k |Bk|2ωk + ∑
n |Bn|2En. Accord-

ing to the energy conservation, 〈H〉 is always equal to the
initial total energy Etot = |A1(0)|2�1 + |A2(0)|2�2. It can be
seen that due to the presence of bound states, the energy
of the emitted field is different from the total energy Etot .
When the initial amplitude A2(0) is taken to be zero, i.e.,
Etot = �1, the amount of energy that transfers to the emitted
field will produce a shift from �1.

The population in the upper level |0, e1〉 is derived as

A1(t ) = 〈0, e1|�(t )〉

=
∑

n

(z − �2)A1(0) + I (z)U1(0)

[K (z)]′
e−izt

∣∣∣∣
z=En

+
∫ π

−π

[
uke1 A1(0) + uke2 A2(0)

]
uke1 e−iωkt

2π |Fk|2 dk,

(34)

where U1(0) = V1V2A2(0) − V 2
2 A1(0). The first term comes

from the bound states while the second term, which rep-
resents the nonlocalized photon, comes from the scattering
states. Similarly, the population in the upper level |0, e2〉 is
obtained as

A2(t ) = 〈0, e2|�(t )〉

=
∑

n

(z − �1)A2(0) + I (z)U2(0)

[K (z)]′
e−izt

∣∣∣∣
z=En

+
∫ π

−π

[
uke1 A1(0) + uke2 A2(0)

]
uke2 e−iωkt

2π |Fk|2 dk,

(35)

where U2(0) = V1V2A1(0) − V 2
1 A2(0). From the expression of

A1(t ) and A2(t ), one can see that the number and charac-
teristics of these eigenvalues En play important roles in the
dynamics of spontaneous emission. Also, it can be seen that
both A1(t ) and A2(t ) are associated with A1(0) and A2(0).
This relation reveals the quantum interference between the
two transitions of a three-level atom. Besides this type of

P1(t)
P2(t)

(a)

t

P1(t)
P2(t)
P1(t)+P2(t)

(b)

t

P1(t)
P2(t)
P1(t)+P2(t)

(c)

t

P1(t)
P2(t)
P1(t)+P2(t)

(d)

t

FIG. 3. Time evolution of the atom’s upper-level population
P1(t ) and P2(t ). The time is in units of 1/J . (a) �1 = 1.9J ,
�2 = 1.3J , V1 = 0.1J , V2 = 0.3J . (b) �1 = 1.9J , �2 = 1.3J , V1 =
1.0J , V2 = 0.8J . (c) �1 = 0.4J , �2 = 0.1J , V1 = 0.3J , V2 = 0.2J .
(d) �1 = 1.9J , �2 = 2.1J , V1 = 0.3J , V2 = 0.2J . The center energy
of scattering band ω = 0.

interference, there is another quantum interference that is
between different bound (scattering) states and also between
different bound and scattering states. These two types of
interference could lead to some new phenomena in the spon-
taneous emission process.

A. From complete decay to finite trapping

The time evolution of the populations in the two excited
states of the atom is determined by

P1(t ) = |A1(t )|2, P2(t ) = |A2(t )|2. (36)

Because A1(t ) and A2(t ) are associated with A1(0) and A2(0),
the population in one upper level can decay to the atom’s
ground state, and then jump to the other upper level by
absorbing the photon emitted in the previous decay process.
From Eqs. (34) and (35), we know that the amplitudes A1(t )
and A2(t ) are composed of two terms. The first term, which is
formed by localized bound states, presents no decay behavior
as time goes on, while the second term, which leads to the
formation of an unlocalized propagating field, vanishes as
time goes infinite. These two terms result that the spontaneous
emission is quite distinct from that in vacuum which is expo-
nential decay. Furthermore, it can be seen that if the two initial
amplitudes A1(0) and A2(0) are equal, for example, A1(0) =
A2(0) = 1/

√
2, the ratio of the amplitudes P1(t )/P2(t ) will be

independent of the initial state.
In Figs. 3(a) and 3(b), we study the time evolution of the

two upper-level populations with different coupling strengths.
The initial amplitudes are assumed as A1(0) = 1, A2(0) = 0.
One sees that when the coupling strengths V1, V2 are weak,
P1(t ) gradually decays to zero as time goes on and P2(t )
increases first, then also finally decays to zero as shown in
Fig. 3(a). In this situation, the role of bound states is not
important. However, as the coupling strengths V1, V2 increase,
the bound states could become important. In Fig. 3(b), it
is shown that P1(t ) decays fast at first, then increases and
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redecays, while P2(t ) increases first, then decays and rein-
creases. Finally, P1(t ) and P2(t ) tends to stable oscillation with
a nonzero value. The sum of P1(t ) and P2(t ) also tends to
stable oscillation as time goes infinite. This oscillation reveals
that a photon, which is localized near the atom, is cyclically
emitted and absorbed by the atom. It can be seen that due to
the existence of localized bound states, a fractional population
is trapped in the two upper levels.

Besides increasing the coupling strength, we find that the
difference between transition frequency �i (i, j = 1, 2) and
on-site energy ω also affects the trapping of population. In
Figs. 3(c) and 3(d), the time evolution of the two upper-level
populations is plotted with different transition frequencies.
Like that in Fig. 3(a), the two populations in Fig. 3(c) decay
to zero when �i is not far from the center energy ω. As
the value of |�i − ω| becomes large as shown in Fig. 3(d),
fractional populations are trapped in the excited states even
when the coupling strengths V1, V2 are weak. Further research
shows that the trapping can be obviously enhanced when the
transition frequency �i increased to outside the scattering
energy band.

Finally, we analyze the result when the time goes long
enough. In this case, the populations P1(t ) and P2(t ) tend to

P1(t ) =
∑

n

|αn|2 +
∑
n �=m

α∗
nαme−i(Em−En )t , (37)

P2(t ) =
∑

n

|βn|2 +
∑
n �=m

β∗
n βme−i(Em−En )t , (38)

where αn = (z − �2)A1(0) + I (z)U1(0)/[K (z)]′|z=En and
βn = (z − �1)A2(0) + I (z)U2(0)/[K (z)]′|z=En . The second
term in P1(t ) and P2(t ) represents the interferences between
different bound states. Usually, these interferences lead
to the oscillatory behavior of P1(t ) and P2(t ) when time
is enough long. This is why P1(t ) and P2(t ) in Fig. 3(b)
present periodic oscillation at last. However, we find that
in some situations, for example, the situation given by
Fig. 3(d), only one bound state plays the main role in the
spontaneous emission process and the other bound states
could be approximately neglected. In these situations, P1(t )
and P2(t ) will decay to a finite constant without oscillation
when time goes infinite. Specifically, for example, with the
given parameters in Fig. 3(d), the coefficient Bn in Eq. (31)
is obtained as |B1|2 = 0.650150, which is much greater
than |B2|2 = 0.000195 and |B3|2 = 0.000130 (B1, B2, B3

correspond to the eigenvalues E1, E2, E3, respectively, and
E1 > E2 > E3). So only the bound state with energy being
E1 plays a role and leads to the population trapping at long
enough time.

B. Interference trapping

From Fig. 3, we see that the populations in the two upper
levels will not decay to zero as time goes to infinity when
the coupling strengths are not weak or the frequencies are
relatively far from the center energy ω. This trapping effect
takes place due to the existence of localized bound states. We
call it bound-state trapping here. This type of trapping is also
found in the coupled-resonator waveguide with a two-level
atom [32] and also in traditional optical lattice system [27].

P (t) P (t) P (t)�P (t)

(a)

t
P (t) P (t) P (t)�P (t)

(b)

t

P (t) P (t) P (t)�P (t)

(c)

t

P (t) P (t) P (t)�P (t)

(d)

t

FIG. 4. Time evolution of the atom’s upper-level population
P1(t ) and P2(t ). (a) �1/ω = 0.2, �2/ω = 2.6, V1/ω = 1/(2

√
3),

V2/ω = √
2/

√
3, J/ω = 0.2. (b) �1/J = 7, �2/J = 8, V1/J =

1/
√

3, V2/J = √
2/

√
3, ω/J = 0. (c) �1/J = 1, �2/J = 1, V1/J =

1/
√

3, V2/J = √
2/

√
3, ω/J = 0. (d) �1/J = 1.9, �2/J = 1.3,

V1/J = 1/
√

3, V2/J = √
2/

√
3, ω/J = 6. For (a), the time is in units

of 1/ω. For (b)–(d), the time is in units of 1/J .

In the present system, we found that, by controlling the
initial amplitudes of |0, e1〉 and |0, e2〉, one can trap the
determined momentum mode. In the expression of A1(t )
and A2(t ) in Eqs. (34) and (35), both the integrands of
scattering items are proportional to uke1 A1(0) + uke2 A2(0). A
complete interference can result in uke1 A1(0) + uke2 A2(0) = 0
as A1(0)/A2(0) = −V2(ωk − �1)/[V1(ωk − �2)]. In this case,
the nonlocalized field will not include the momentum with
k mode. It can be seen more clearly in the expression of Bk

in Eq. (32). The initial amplitudes lead to Bk = 0; thus the
k-mode photon is not included in the propagation field. In ad-
dition, there are four cases in which almost all k-mode photons
can be trapped near to the three-level atom: (i) the width of
the scattering band is narrow so that ωk can be considered as
ωk ≈ ω; (ii) the two transition frequencies �1, �2 are much
greater than all ωk; (iii) the two transition frequencies �1, �2

are equal to each other; (iv) all ωk are much greater than �1

and �2. For case (i), if the initial amplitudes A1(0) and A2(0)
satisfy A1(0)/A2(0) = −V2(ω − �1)/[V1(ω − �2)], the coef-
ficient Bk with different k is approximately equal to zero, so
almost no nonlocalized photon is emitted in the spontaneous
emission process. For case (ii), if A1(0), A2(0) are provided as
A1(0)/A2(0) = −V2�1/(V1�2), Bk can also be approximately
seen as zero, so nearly no nonlocalized field is emitted. For
case (iii), when A1(0)/A2(0) = −V2/V1, the coefficient Bk is
exactly zero. In such condition, the amplitudes in the two
upper levels will always keep the initial state (see the fol-
lowing). For the last case, no nonlocalized photon is emitted
when A1(0), A2(0) satisfy the same relation as that in case (iii),
i.e., A1(0)/A2(0) = −V2/V1. Because this type of trapping is
associated with the interference between two upper levels to
the atom’s ground state, we call it interference trapping.

In Fig. 4, we investigate the time evolution of the popu-
lations of the atom’s upper levels for the four interference-
trapping cases. Figures 4(a), 4(b), 4(c), and 4(d) correspond
to the cases (i), (ii), (iii), and (iv), respectively. In Fig. 4(a),
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the initial amplitudes are assumed to be A1(0) = √
2/

√
3 and

A2(0) = 1/
√

3, which satisfy the condition A1(0)/A2(0) =
−V2(ω − �1)/[V1(ω − �2)]. It can be seen that, although
the probabilities P1(t ), P2(t ), and P1(t ) + P2(t ) tend to sta-
ble periodic multioscillation as time goes on, the maximum
value of P1(t ) + P2(t ) in the oscillation is close to one. This
shows that most of the photon is trapped near the atom. This
phenomenon is more obvious in the other three figures. In
contrast to the multioscillation process shown in Fig. 4(a), the
oscillation in Fig. 4(b) is simple. With the given parameters
in Fig. 4(b), we calculate the coefficient Bn in Eq. (31) and
find that |B1|2 = 0.277046 and |B2|2 = 0.722862, which are
much greater than |B3|2 = 1.418 × 10−6. So only the two
bound states with energy being E1 and E2 play a main role
in the time evolution process. It is worth noting that, when
the two transition frequencies �1, �2 are much greater than
all ωk , most of the probabilities P1(t ) and P2(t ) can still
remain and keep periodic oscillation with frequency being
E1 − E2 even when A1(0)/A2(0) �= −V2�1/(V1�2). This is
because the regime of bound-state trapping also plays an
important role in this situation. From Fig. 4(b), we see that
the rate of trapping can nearly become 100% under these
two trapping regimes. In Fig. 4(c), we research the situation
that the two transition frequencies �1, �2 are equal. It is
found that the amplitudes A1(t ) and A2(t ) can always keep
their initial values as long as the initial amplitudes satisfy
the relation A1(0)/A2(0) = −V2/V1. In Fig. 4(d), we discuss
the situation that ωk are much greater than �1 and �2 with
initial amplitudes A1(0)/A2(0) = −V2/V1. The evolution of
populations is similar to that in Fig. 4(b). In this situation,
the three coefficients are calculated as |B1|2 = 3.657 × 10−6,
|B2|2 = 0.808575, and |B3|2 = 0.190969. So the two bound
states with lower energy E2, E3 dominate the spontaneous
emission process and P2(t ) and P3(t ) oscillate periodically
with frequency being E2 − E3.

VI. EMITTED FIELD

From Eq. (31), one can see that the radiation field can be
written as a sum of two parts, which come from the two terms
in Eq. (31):

Cx(t ) = 〈x, g|�(t )〉 = Cl
x(t ) + Cp

x (t ). (39)

Here, Cl
x(t ) is associated with the discrete bound states and is

expressed as

Cl
x(t ) =

∑
n

(z − �2)A1(0) + I (z)U1(0)

V1I (z)(z − ω)[K (z)]′

× (z − �1)ϕ(z)√
1 − ( 2J

z−ω
)2

e−izt e−|x|/ln

∣∣∣∣
z=En

, (40)

where ϕ(z) = (−)|x|θ (z−ω) and θ (x) is the step function, which
is 1 when x > 0 and is zero when x < 0. The

∑
n in the

expression of Cl
x(t ) represents the sum of terms with different

discrete eigenvalues. The frequency of each term is En. The
amplitude of each term drops exponentially as e−|x|/ln when
the distance from the atom increases, but does not decay
with time. The size of the localized amplitude is determined
by the length ln = −1/ log{(1 −

√
1 − [2J/(En − ω)]2)

(a1)
Px

(b1)

Px

(c1)

Px

FIG. 5. Left panels are the radiation field distribution function
Px (t ) along the coupled-resonator waveguide at the large time t =
85(1/J ). The right panels are the space-time diagram of the radiation
field distribution function Px (t ). For (a1) and (a2), �1/J = 0.4,
�2/J = 0.7; for (b1) and (b2), �1/J = 1, �2/J = 1.3; for (c1) and
(c2), �1/J = 2, �2/J = 3. The other parameters are V1/J = 0.8,
V2/J = 0.2, ω/J = 0.

|En − ω|/2J}. When the relative energy |En − ω| decreases,
the localized length ln increases and the amplitude becomes
more nonlocalized. As the value of |En − ω| decreases to
2J , the localized length tends to infinity. In this case, the
amplitude is no longer localized. As mentioned above, the
population in the atom’s lower level can jump to the upper
levels by absorbing the localized photon. The existence of the
localized field leads to the trapping of fractional populations
in the upper levels.

Now we discuss the radiation field Cp
x (t ), which is

derived as

Cp
x (t ) =

∑
k

uke1 A1(0) + uke2 A2(0)

NF ∗
k

× [eikx + rkei|kx|]e−iωkt . (41)

Obviously, Cp
x (t ) represents a propagating field. This propa-

gating field travels away from the atom in the form of traveling
pulses.

In Fig. 5, we plot the photon probability distribution Px =
|Cx(t )|2 as a function of position and the space-time diagram
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of the radiation field with different transition frequency in
Figs. 5(a), 5(b) and 5(c). As time goes on, the radiation field
spread from the atom to the two sides with opposite group
velocities. After long enough time, part of the radiation field is
trapped near around the atom. Comparing Figs. 5(a), 5(b) and
5(c). one can see that, as the frequencies �1 and �2 increase
away from the center of the scattering energy band, the
trapping of the radiation field is enhanced, which is consistent
with the enhancement of the trapping of populations in the
upper levels.

VII. DISCUSSION AND CONCLUSION

In this paper, we have studied the energy structure of
a one-dimensional waveguide with model dispersion which
is locally coupled by a three-level atom and the excitation
transport dynamics in the spontaneous-emission process in
this system. The system’s discrete eigenvalues are given by the
poles of the Green’s function as shown in Eq. (30). Here, we
point out that the eigenvalue equation can also be obtained by
solving the time-independent Schrödinger equation H |�n〉 =
En|�n〉, which gives the same result as the poles of the
Green’s function. By numerical calculation, it is found that
the number of bound states in this system is not fixed and
depends on the coupling strengths and the relative position of
the atom’s transition frequencies from the band. The sudden
change of the system’s energy-level structure in the critical
point reveals that there is a quantum phase transition [37–39].
The time evolution of the population in the atom’s excited
states and the photon probability distribution function across
the waveguide are studied by expanding the system’s wave
function with the bound and scattering states. If one of the
atom’s transition frequencies and its corresponding coupling

strength are taken to be the limit �i/J , Vi/J → 0 (i = 1 or 2),
the result that comes from the waveguide coupled by a two-
level system will be recovered. It is worth emphasizing that
the time evolution expression as shown in Eq. (31) can also be
acquired by solving the time-dependent Schrödinger equation
ih̄d|�(t )〉/dt = H |�(t )〉. A detailed calculation through this
method will be presented elsewhere.

By investigating the system’s time evolution, we find that
the radiation field can be characterized by two components:
one is localized near around the atom and the other travels
away from the atom. The localized field is emitted and ab-
sorbed and reemitted by the atom similar to that in vacuum
Rabi oscillations; the difference is that not all population
in the atom’s excited take part in this oscillation. How the
quantum interference between the atom’s two transitions af-
fects the radiation field is investigated, and we found that by
controlling the initial amplitudes in the atom’s upper levels,
the determined k mode can be excluded in the emitted field.
Besides, when the scattering band’s width is narrow so that the
scattering energy can be approximately considered to be equal
to the center energy of the band or that the atom’s transition
frequencies are much greater than the scattering energy or the
scattering energy are much greater than the atom’s transition
frequencies or the atom’s transition frequencies are equal to
each other, the population in the excited states are greatly
trapped by controlling the initial amplitudes in this system.
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