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We investigate the measurement uncertainties of a triple of positive-operator-valued measures based on
statistical distance and formulate state-independent tight uncertainty inequalities satisfied by the three mea-
surements in terms of triplewise joint measurability. In particular, uncertainty inequalities for three unbiased
qubit measurements are presented with analytical lower bounds which relates to the necessary and sufficient
condition of the triplewise joint measurability of the given triple. We show that the measurement uncertainties
for a triple measurement are essentially different from the ones obtained by pairwise measurement uncertainties
by comparing the lower bounds of different measurement uncertainties.

DOI: 10.1103/PhysRevA.99.032107

I. INTRODUCTION

The uncertainty principle is arguably one of the most
famous features of quantum mechanics [1], which limits
the accuracy of measuring some properties of a quantum
system. The well-known Heisenberg-Robertson uncertainty
relation says that [2], for any observables A and B, �A�B �
1
2 |〈[A, B]〉|, where �� =

√
〈�2〉 − 〈�〉2 is the standard de-

viation for observable �, 〈·〉 denotes the expectation of
an operator with respect to a given state ρ, and [A, B] =
AB − BA. This state-dependent inequality implies the impos-
sibility of simultaneously determining the definite values of
noncommuting observables. Such uncertainty relations based
on the product form or summation form of deviation have
been generalized and studied [3–11]. The entropic uncer-
tainty relations [11–18] and measurement-probability-based
universal uncertainty relations [19–25], with or without quan-
tum memory, have been extensively investigated. In addition,
uncertainty relations based on measurement noise and dis-
turbance have been also derived and experimentally verified
[26–29].

Since the influence of the measurement on quantum sys-
tems is not always the reason for uncertainty [30], there
are uncertainty relations whose uncertainties are described
by the approximation error for probabilities of joint mea-
surements [23,24,31–35]. In [23,24] the approximation er-
ror for probabilities is quantified by the sum of relative
entropies, while in [31–35] the corresponding approxima-
tion error for probabilities is quantified by L1 distances. In
addition, in [23,24] multispin-1/2-component measurement
uncertainty relations were studied. In [31–35] two mea-
surement uncertainty relations were investigated. Since a
triple measurement uncertainty relation deduced from a two-
observable uncertainty relation [4] is usually not tight, triple

measurement uncertainty relations are essentially different
from the ones obtained by pairwise measurement uncertain-
ties: There exist genuinely incompatible triple measurements
such that they are pairwise jointly measurable, just like the
case of genuine tripartite entanglement or genuine nonlocal
correlations.

In this paper, based on statistical distance, we formulate
state-independent tight uncertainty relations satisfied by three
measurements in terms of their triplewise joint measurability.
By approximating a given triple of unbiased qubit measure-
ments to all possible triple measurements that are triplewise
jointly measurable, we show that the approximation error is
lower bounded by a quantity which relates to the necessary
and sufficient condition of the triplewise joint measurability
of the given triple. We also compare the different uncertainty
relations which are obtained by approximation of triplewise
jointly measurable measurements and pairwise jointly mea-
surable measurements, respectively. Examples are given to
illustrate the merit our uncertainty relation.

II. TRIPLE MEASUREMENT UNCERTAINTY RELATION

Consider three positive-operator-valued measures {Mi}3
i=1,

given by the semipositive measurement operators {Mi
k | Mi

k �
0,

∑
k Mi

k = I}, i = 1, 2, 3, where I stands for the identity
operator. Let {Ni

k | Ni
k � 0,

∑
k Ni

k = I}, i = 1, 2, 3, be an-
other set of three positive-operator-valued measures which
are triplewise jointly measurable. For an arbitrary given state
ρ, the measurement probabilities with respect to Mi

k (Ni
k)

are given by pMi

k = Tr(ρMi
k ) [pNi

k = Tr(ρNi
k )]. The approxi-

mation error between measurements Mi and Ni is given by
dρ (Mi; Ni ) := ∑

k |pMi

k − pNi

k |. By maximizing dρ over all ρ,
we obtain a state-independent approximation error, which is
the worst case for all states, between the triple measurements
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FIG. 1. Approximation of {Mi}3
i=1 to triplewise jointly measur-

able measurements {Ni}3
i=1.

{M1, M2, M3} and the triplewise jointly measurable measure-
ments {N1, N2, N3}, i.e.,

�(M1, M2, M3; N1, N2, N3) : = max
ρ

3∑
i=1

dρ (Mi; Ni ). (1)

Let �lb(M1, M2, M3) denote the minimal value of
�(M1, M2, M3; N1, N2, N3) over all possible triplewise
jointly measurable triples N1, N2, and N3. Then the quantity
�lb(M1, M2, M3) quantifies the degree of incompatibility of
the triple measurements {Mi}3

i=1 (see Fig. 1). It is apparent
that �lb(M1, M2, M3) = 0 if and only if M1, M2, and M3 are
triplewise jointly measurable.

Consider now three unbiased qubit measurements {Mi}3
i=1

described by positive-operator-valued measures

Mi
+ = I + �mi · �σ

2
, Mi

− = I − �mi · �σ

2
, i = 1, 2, 3,

where the three-dimensional vectors �mi satisfy |�mi| � 1, I is
the 2 × 2 identity matrix, and �σ is the vector with the Pauli
matrix σi as the ith entry. Let ρ be a qubit state with Bloch
vector representation ρ = (I + �r · �σ )/2(|�r| � 1). Maximizing∑3

i=1 dρ (Mi; Ni ) over all ρ, we obtain

�(M1, M2, M3; N1, N2, N3) = 2 max
�r

3∑
i=1

|�r · (�mi − �ni )|. (2)

For simplicity, in the following we define �m123 = �m1 + �m2 +
�m3, �mi j = �mi + �mj , �n123 = �n1 + �n2 + �n3, and �ni j = �ni + �n j .
It has been demonstrated in [36] that three unbiased qubit
measurements {Ni

± = (I ± �ni · �σ )/2}3
i=1 are triplewise jointly

measurable if and only if
4∑

k=1

|�pk − �pF | � 4, (3)

where �q1 = �n123, �q2 = �n1 − �n23, �q3 = �n2 − �n13, �q4 = �n3 −
�n12, and �qF is the Fermat-Torricelli point of {�qk}4

k=1 [37].
Minimizing �(M1, M2, M3; N1, N2, N3) under all triplewise
jointly measurable measurements {Ni}3

i=1 satisfying (3), we
have the following theorem,

Theorem. The approximation error of three unbiased qubit
measurements {Mi}3

i=1 to triplewise jointly measurable unbi-
ased qubit measurements {Ni}3

i=1 satisfies the inequality

�(M1, M2, M3; N1, N2, N3) � 1
2

(
4∑

k=1

|�pF − �pk| − 4

)
, (4)

where �p1 = �m123, �p2 = �m1 − �m23, �p3 = �m2 − �m13, �p4 =
�m3 − �m12, and �pF is the Fermat-Torricelli point of {�pk}4

k=1
Proof. By direct calculation we have the state-dependent

approximation error

3∑
i=1

dρ (Mi; Ni ) = 2
3∑

i=1

|�r · (�mi − �ni )|

= 2 ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|�r · (�m123 − �n123)| � |�m123 − �n123| := |�g1|
if [�r · (�m1 − �n1)][�r · (�m2 − �n2)] � 0 ∧ [�r · (�m12 − �n12)][�r · (�m3 − �n3)] � 0

|�r · (�m1−23 − �n1−23)| � |�m1−23 − �n1−23| := |�g2|
if [�r · (�m1 − �n1)][�r · (�m2 − �n2)] � 0 ∧ [�r · (�m1−2 − �n1−2)][�r · (�m3 − �n3)] � 0

|�r · (�m2−13 − �n2−13)| � |�m2−13 − �n2−13| := |�g3|
if [�r · (�m1 − �n1)][�r · (�m2 − �n2)] � 0 ∧ [�r · (�m1−2 − �n1−2)]�r · (�m3 − �n3)] � 0

|�r · (�m3−12 − �n3−12)| � |�m3−12 − �n3−12| := |�g4|
if [�r · (�m1 − �n1)][�r · (�m2 − �n2)] � 0 ∧ [�r · (�m1−2 − �n1−2)][�r · (�m3 − �n3)] � 0.

(5)

We show that G := 2 maxi |�gi|, i = 1, 2, 3, 4, in (5) can be
reached. Let ρ0, with �r = �r0, be the optimal state maximiz-
ing

∑3
i=1 dρ (Mi; Ni ). Without loss of generality, we assume

G = |�g1| > 0. Set �r0 = �g1/|�g1|, we have

[�r0 · (�n1 − �m1)][�r0 · (�n2 − �m2)]

= 1

|�g1|2 [|�n1 − �m1|2 + (�n23 − �m23) · (�n1 − �m1)]

× [|�n2 − �m2|2 + (�n13 − �m13) · (�n2 − �m2)] � 0,

(6)

where the inequality holds as (�n23 − �m23) · (�n1 − �m1) � 0
and (�n13 − �m13) · (�n2 − �m2) � 0, since |�g1| � |�g2| and |�g1| �
|�g3|. Similarly, from |�g1| � |�g4| and (�n12 − �m12) · (�n3 −
�m3) � 0 we have

[�r · (�n12 − �m12)][�r · (�n3 − �m3)]

= 1

|g1|2 [|�n3 − �m3|2 + (�n3 − �m3) · (�n12 − �m12)]

× [|�n12 − �m12|2 + (�n12 − �m12) · (�n3 − �m3)] � 0.

(7)

032107-2



UNCERTAINTIES OF GENUINELY INCOMPATIBLE … PHYSICAL REVIEW A 99, 032107 (2019)

Equations (6) and (7) are just the first constraints in (5).
Therefore, altogether we have

�(M1, M2, M3; N1, N2, N3)

= 2 max{|�g1|, |�g2|, |�g3|, |�g4|} := 2G. (8)

Noting that �gi = �pi − �qi and
∑4

k=1 |�qF − �qk| � 4, we have

�(M1, M2, M3; N1, N2, N3) = 2G

� 1

2

4∑
k=1

|�pk − �qk| = 1

2

4∑
k=1

|�pk − �qF + �qF − �qk|

� 1

2

4∑
k=1

[|�pk − �qF | − |�qF − �qk|]

� 1

2

[
4∑

k=1

|�pk − �pF | − 4

]
, (9)

where the second inequality is due to a triangle inequality
and the third one comes from the definition of the Fermat-
Torricelli point of {�pk}4

k=1 and the constraint of the triplewise
joint measurability for {Ni}3

i=1. �
Apparently, if the lower bound of (4) is zero, then M1, M2,

and M3 are triplewise jointly measurable. From the defini-
tion of �lb(M1, M2, M3) we then have �lb(M1, M2, M3) =
0 = 1

2 (
∑4

k=1 |�pF − �pk| − 4). This means that the inequal-
ity (4) is tight in the sense that the minimal value of
�(M1, M2, M3; N1, N2, N3) is achieved by the lower bound.
In this case the degree of incompatibility of the given triple
measurement is 0. In the following we call a triple measure-
ment {M1, M2, M3} a genuinely incompatible triple measure-
ment if the lower bound of (4) is strictly greater than zero.

Let us consider three sharp unbiased qubit measure-
ments associated with the Pauli operators σi, i = 1, 2, 3. Set
�m1 = (1, 0, 0), �m2 = (0, 1, 0), and �m3 = (0, 0, 1). Then the
three positive-operator-valued measures M1, M2, and M3

are just the projective measurements with respect to the
eigenvectors of the three Pauli matrices, respectively. We
have �p1 = (1, 1, 1), �p2 = (1,−1,−1), �p3 = (−1, 1,−1), and
�p4 = (−1,−1, 1), which constitute a regular tetrahedron. In
addition, the Fermat-Torricelli point is exactly the origin,
�pF = 0. One can verify that the optimal approximation of
triplewise jointly measurable {Ni}3

i=1 is given by �ni = 1√
3
�mi,

as shown in Fig. 2.
The minimal value of �(M1, M2, M3; N1, N2, N3) is actu-

ally the lower bound of (4), i.e.,

�lb(M1, M2, M3) = 1

2

(
4∑

k=1

|�pk| − 4

)
= 2

√
3 − 2. (10)

Therefore, the uncertainty inequality (4) is tight not only in
trivial case but also in this case. Thus the triple measurement
{M1, M2, M3} is a genuinely incompatible triple measurement
and its degree of incompatibility is 2

√
3 − 2.

III. UNCERTAINTY: TRIPLEWISE VERSUS PAIRWISE
JOINT MEASUREMENT APPROXIMATION

We next investigate the difference between mea-
surement uncertainty relations which are obtained by

.
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FIG. 2. Optimal approximation of {Mi = σi}3
i=1 by triplewise

jointly measurable {Ni}3
i=1 given by �ni = 1√

3
�mi.

minimizing �(M1, M2, M3; N1, N2, N3) over pairwise and
triplewise jointly measurable measurements. In [32–34]
this kind of Heisenberg error-disturbance relation for
a pair of measurements was studied. For a given pair
of measurements M1 and M2, their approximation to
a pair of jointly measurable measurements N1 and N2,
�(M1, M2; N1, N2) := maxρ

∑2
i=1 dρ (Mi; Ni ), satisfies the

relation [35]

�(M1, M2; N1, N2) � |�m1 + �m2| + |�m1 − �m2| − 2. (11)

From (11) one may also derive a measurement
uncertainty relation which is obtained by minimizing
�(M1, M2, M3; N1, N2, N3) over pairwise jointly measurable
measurements

�(M1, M2, M3; N1, N2, N3)

= 1

2

3∑
i< j

�(Mi, M j ; Ni, N j )

� 1

2

⎡
⎣ 3∑

i< j

(|�mi + �mj | + |�mi − �mj | − 2)

⎤
⎦. (12)

Nevertheless, compared with the lower bound of (12), the
lower bound of (4) captures better the incompatible measure-
ment uncertainty of the triple measurements M1, M2, and M3.
Consider the case that one pair of measurements {Mi, M j} is
jointly measurable. From the fact that

4∑
k=1

|�pF − �pk| � max
i �= j �=k �=l∈{1,2,3,4}

(|�pi − �p j | + |�pk − �pl |)

� 2 max
i �= j

(|�mi + �mj | + |�mi − �mj |), (13)

one easily gets that the lower bound of (4) is greater than or
equal to the lower bound of (12). As an example that all pairs
of measurements are not jointly measurable, we consider the
measurements with respect to three Pauli operators. By direct
calculation we have L1 = 2

√
3 − 2 > L2 = 3

√
2 − 3, where

L1 and L2 are the lower bounds of the inequalities (4) and
(12), respectively. Therefore, the uncertainties from a triple
of measurements are essentially different from the ones from
pairwise measurements.
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From (13) one can also analytically show that there exist
triple measurements that are genuinely incompatible but pair-
wise jointly measurable. In particular, for three measurements
{Mi

± = (I ± �mi · �σ )/2}3
i=1, with �m1 = (1, 0, 0)/

√
2, �m2 =

(0, 1, 0)/
√

2, and �m3 = (0, 0, 1)/
√

2, which were proved to
be pairwise jointly measurable, one verifies easily that the
pairwise lower bounds of (11) are all zero. However, the lower
bound of (4) is

√
6 − 2 > 0.

Actually, in [23,24] Barchielli et al. obtained an
approximation-error-based triple measurement uncertainty re-
lation where the approximation error for probabilities of joint
measurements is quantified by the sum of relative entropies.
Similar to �lb(M1, M2, M3), a quantity Cinc(M1, M2, M3)
was introduced in [23], although it is difficult to calculate the
universal and analytical lower bound of Cinc(M1, M2, M3). In
[24] a lower bound of Cinc(M1, M2, M3) has been derived for
the case of three incompatible spin-1/2 components, which is
not directly related to the necessary and sufficient condition
of the triplewise joint measurability of the three incompatible
spin-1/2 components.

IV. DISCUSSION AND CONCLUSION

Our approach may be generalized to the case of
multiple measurements. For n measurements, one has
�(M1, . . . , Mn; N1, . . . , Nn) � �lb(M1, . . . , Mn). However,
for multiple measurements the general necessary and suf-
ficient jointly measurable conditions are still not known
even for unbiased qubit measurements. Let us consider the
multiplewise joint measurability for arbitrary n (n � 4) un-
biased qubit measurements. We have that the n unbiased
qubit measurements {Ni = (I ± �ni · �σ )/2}n

i=1 are n-tuplewise
jointly measurable if

∑
μi=±1

∣∣∣∣
n∑

i=1

μi�ni

∣∣∣∣ � 2n (14)

(see the proof in the Appendix).
Nevertheless, (14) is not both sufficient and neces-

sary in general. Only for some special n unbiased qubit

measurements Mi one may have the following relation
from (14):

�(M1, . . . , Mn; N1, . . . , Nn)

�

⎛
⎝ ∑

μi=±1

|
n∑

i=1

μi �mi| − 2n

⎞
⎠/2n−2.

Similar to the triple case, there would exist genuinely incom-
patible n-tuple measurements.

By approximating a given triple of unbiased qubit measure-
ments to all possible triple measurements that are triplewise
jointly measurable, we have formulated state-independent
tight uncertainty inequalities satisfied by the triple of qubit
measurements, with the lower bound given by the necessary
and sufficient condition of the triplewise joint measurabil-
ity of the given triple. These uncertainty relations can be
experimentally tested, like the case of two-qubit measure-
ments [35]. As the measurement uncertainties from a triple
of measurements are essentially different from the ones from
pairwise measurements, it is of significance to explore the
measurement uncertainties for triple or n-tuple measurements
by their measurement incompatibilities.
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APPENDIX: PROOF OF THE SUFFICIENT CONDITION
(14) FOR n-TUPLEWISE JOINT MEASURABILITY

Consider n unbiased qubit measurements { I+μi �mi ·�σ
2 }n

i=1 with
μi = ±1. The general measurement with measurement oper-
ators Oμ1μ2···μn including { I+μi �mi·�σ

2 }n
i=1 as the marginal ones is

given by

Oμ1μ2···μn = 1

2n

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣1 +

n∑
i=2

∑
j1, j2, . . . , ji ∈ I

j1 < j2 < · · · < ji

(
i∏

l=1

μ jl

)
ai

j1 j2··· ji

⎤
⎥⎥⎥⎥⎥⎦I

+

⎡
⎢⎢⎢⎢⎢⎣

n∑
i=2

∑
j1, j2, . . . , ji ∈ I

j1 < j2 < · · · < ji

(
i∏

l=1

μ jl

)
�Zi

j1 j2··· ji +
n∑

i=1

μi �mi

⎤
⎥⎥⎥⎥⎥⎦ · �σ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (A1)
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where ai
j1 j2··· ji and �Zi

j1 j2··· ji are arbitrary parameters and vectors for all i = 1, 2, . . . , n and I = {1, 2, . . . , n}. The positivity of the
operators {Oμ1μ2···μn} implies that ∣∣∣∣∣∣∣∣∣∣∣

n∑
i=2

∑
j1, j2, . . . , ji ∈ I

j1 < j2 < · · · < ji

(
i∏

l=1

μ jl

)
�Zi

j1 j2··· ji +
n∑

i=1

μi �mi

∣∣∣∣∣∣∣∣∣∣∣
� 1 +

n∑
i=2

∑
j1, j2, . . . , ji ∈ I

j1 < j2 < · · · < ji

(
i∏

l=1

μ jl

)
ai

j1 j2··· ji . (A2)

We divide the above 2n inequalities into 2n−1 pairs such that in each pair the two inequalities take the opposite sign for all μi.
From each pair of such inequalities we have the inequality∣∣∣∣∣∣∣∣∣∣∣

n∑
i=2,i=2t+1

∑
j1, j2, . . . , ji ∈ I

j1 < j2 < · · · < ji

(
i∏

l=1

μ jl

)
�Zi

j1 j2··· ji +
n∑

i=1

μi �mi

∣∣∣∣∣∣∣∣∣∣∣
� 1 +

n∑
i=2,i=2t

∑
j1, j2, . . . , ji ∈ I

j1 < j2 < · · · < ji

(
i∏

l=1

μ jl

)
ai

j1 j2··· ji . (A3)

Summing up all these inequalities in (A3), we obtain

∑
μi=±1

∣∣∣∣∣∣∣∣∣∣∣
n∑

i=2,i=2t+1

∑
j1, j2, . . . , ji ∈ I

j1 < j2 < · · · < ji

(
i∏

l=1

μ jl

)
�Zi

j1 j2··· ji +
n∑

i=1

μi �mi

∣∣∣∣∣∣∣∣∣∣∣
� 2n. (A4)

Therefore, n measurements { I±�mi·�σ
2 }n

i=1 are n-tuplewise jointly measurable if

min
�Zi

j1 j2 ··· ji

∑
μi=±1

∣∣∣∣∣∣∣∣∣∣∣
n∑

i=2,i=2t+1

∑
j1, j2, . . . , ji ∈ I

j1 < j2 < · · · < ji

(
i∏

l=1

μ jl

)
�Zi

j1 j2··· ji +
n∑

i=1

μi �mi

∣∣∣∣∣∣∣∣∣∣∣
� 2n. (A5)

In particular, setting �Zi
j1 j2··· ji = 0, the inequality (A5) reduces to

∑
μi=±1 | ∑n

i=1 μi �mi| � 2n, which ensures the n-tuplewise jointly

measurability of { I±�mi·�σ
2 }n

i=1. �
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