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Spin in Compton scattering with pronounced polarization dynamics
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We theoretically investigate a scattering configuration in Compton scattering, in which the orientation of
the electron spin is reversed and, simultaneously, the photon polarization changes from linear polarization into
circular polarization. The intrinsic angular momentum of electron and photon are computed along the coincident
propagation direction of the incoming and outgoing photon. We find that this intrinsic angular momentum is
not conserved in the considered scattering process. We also discuss the generation of entanglement for the
considered scattering setup and present an angle-dependent investigation of the corresponding differential cross
section, Stokes parameters, and spin expectation.
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I. INTRODUCTION

The existence of electron spin effects in strong laser fields
became interesting recently due, for example, to the exper-
imental accessibility in strong-field ionization [1], which is
supported by theoretical investigations [2–8]. Spin-dependent
weak-field ionization has also been investigated in the past
[9–13] and even the existence of spin effects in strong fields
without atoms has been proposed [14–23]. In the latter case,
an electron in vacuum interacts with the modes of the laser
field and, due to momentum conservation, a diffraction pattern
is formed. This property was first described theoretically by
Kapitza and Dirac [24] (see also, for example, [25–27]) and has
been demonstrated later experimentally with electrons [28–30]
and also with atoms [31,32].

Interestingly, the electron spin can alter in a perpendicular
direction to the laser propagation direction [20–23], even
though a famous proof by Wigner implies that photons only
carry angular momentum along their propagation direction,
i.e., in the longitudinal direction [33]. The question arises of
how the electron may change its spin in the perpendicular
direction if the laser photons only carry longitudinal angular
momentum.

Therefore, we want to study the spin dynamics of the
electron with polarized photons because the above-mentioned
studies only consider a classical external field for the photonic
sector. Within a simplification, we ask for the spin dynamics
for the interaction with a single-photon field, for which
the light-matter interaction simplifies to Compton scattering.
Analytic expressions for spin-dependent Compton scattering
were discussed by Franz [34] or Lipps and Tolhoek [35,36]
and in less generalized versions also by Fano [37], Klein and
Nishina [38,39], and Heitler [40]. Further studies discussed
polarization in Compton scattering [41,42], its relations to the
Stokes parameters [43,44], electron polarization for photon
backscattering [45], and electron polarization at high electron
momenta [46]. The differential cross section for scattering
with spin-1/2 particles is discussed in [47] and expressions
for matrix elements in Compton scattering are given in [48].
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Also, a left-right asymmetry in Compton scattering is reported
in [49] and the author establishes relations between theory
and experiment in [50]. Experimentally, polarization dynamics
are investigated in [51] and spin polarization in Compton
scattering is discussed in [52] and [53]. A good overview about
early works is also given in the review by Tolhoek [54] and
another overview on the spin-dependent interaction of elec-
trons with different targets is given in [55]. Recently, Compton
scattering with twisted light has also been investigated [56]. In
strong fields, descriptions for the polarization-dependent cross
section have been studied in [57–65].

In a quantum mechanical description, coherent superposi-
tions of different spin states may result in a new state with
completely different spin alignment. Therefore, we are not
only interested in the polarization direction, but also in the
phases of elements in the scattering matrix (S matrix). Our
investigation is based on the spin matrix structure of the S
matrix itself, which allows one to deduce any polarization
configuration of the outgoing particles in dependence of
the incoming particles, for which even spin entanglement
can be accounted for. We point out that the generation of
entanglement is studied, for example, for the polarization of
photons [66], internal electronic states of trapped ions [67],
the spin of electron-hole pairs in solids [68], charge qubits in
superconducting nanocircuits [69], or polarization and orbital
angular momentum of photons [70] (see also [71]), and is
therefore of interest to the scientific community.

We focus on a specific scattering process in which the elec-
tron reverses its spin orientation while the photon polarization
changes from linear into circular. We further compute the
angular momentum of the spin polarizations and conclude
that the spin angular momentum is not conserved for this
process. This is interesting because, based on the assumption
of spin conservation, arguments are given for spin-dependent
selection rules in the literature [72]. In general, polarization
transfer between charged particles and x rays is relevant for
polarization control of spin-polarized particle beams. Recent
experimental studies of polarization transfer are given in
[73–76] and theory investigations on this topic have also been
carried out in [77,78].

The paper is structured as follows. In Sec. II, we introduce a
Taylor expansion for a particular momentum configuration of
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the S matrix in Compton scattering and emphasize a specific
scattering process which is the subject of investigation in
this paper. We discuss the generation of entanglement in
Sec. III and analyze the spin of the electron and photon
polarization in Sec. IV for the specific scattering event.
Section V contains an angle-dependent investigation of the
differential cross section, Stokes parameters, and spin ex-
pectation of the interaction. Finally, we discuss how such

a scattering can be explicitly observed in experiment in
Sec. VI.

II. SPIN-DEPENDENT COMPTON SCATTERING

Our studies are based on the S matrix in Compton scattering.
For this, we refer to chapter 3.7 in Ref. [79], in which the S
matrix reads

Sf i = −i
q2

V 2

√
m2

EiEf

√
(4π )2

2ω2ω′ (2π )4δ4(pf + k′ − pi − k)εμ(k′)εν(k)Mμν(sf ,si)
1

m
, (1a)

with Compton tensor

Mμν(sf ,si) = m ū( pf ,sf )

[
γμ

/pi
+ /k + m

2pi · k
γν + γν

/pi
− /k′ + m

−2pi · k′ γμ

]
u( pi ,si). (1b)

Here, q is the electron charge, m is the electron rest mass,
and V is a normalization volume. The speed of light c and the
reduced Planck constant h̄ are set to unity in the Gaussian unit
system and we use the Feynman slash notation with Dirac γ

matrices. The polarizations εν(k) and εμ(k′) are the part of the
photon’s vector potential,

Aν(x,k) =
√

4π

2ωV
[εν(k)e−ik·x + εν∗(k)eik·x], (2)

and the four-component Dirac spinor u(p,s) is given in
Ref. [80]. Ei and Ef are the relativistic energy momentum
relations of the incoming and outgoing electrons with momenta
pi and pf , and ω and ω′ are the photon frequencies of
the incoming and outgoing photons with momenta k and k′,
respectively.

Next we want to investigate the electron-photon interaction
for the case that the electron undergoes a spin flip and know that
this certainly happens when the electron transverses a linear-
polarized standing wave of light with electron momentum
m along the standing wave’s polarization direction [22].
Assuming that the electron has picked up and emitted a photon
out of the standing wave of light leads us to the initial and final
photon momenta,

k = kpex, (3a)

k′ = −kpex, (3b)

respectively, for the single-photon interaction analogon con-
sidered here. kp is the photon momentum. The electron is
required to enter and leave the scattering region at the Bragg
angle, with initial and final momentum

pi = −kpex + p2ey + p3ez, (4a)

pf = kpex + p2ey + p3ez, (4b)

respectively, which fulfills the energy and momentum con-
servation. In accordance with the geometry in Ref. [22], we
want to study the scattering around the parameters p2 = 0 and
p3 ≈ m.

A Taylor expansion of the Compton tensor (1b) up to first
order with respect to the small, dimensionless parameters β =

p2/m and γ = 1 − p3/m and up to second order in the small
parameter α = kp/m yields

M22 = 1 + i
1 − √

2√
2

α σy + −1 + √
2

2
α21, (5a)

M23 = −i
1

2
α (σx + σz) − β 1, (5b)

M32 = i
1

2
α (σx − σz) − β 1, (5c)

M33 = i
1√
2
α σy + γ 1 + −1 + √

2

2
α21 . (5d)

Here, 1 is the 2 × 2 identity matrix, σi are the Pauli
matrices, and the combined object

M =
(

M22 M23

M32 M33

)
(6)

is a 4 × 4 matrix, which consists of the 2 × 2 matrices

Mμν =
(

Mμν(s↑,s↑) Mμν(s↑,s↓)
Mμν(s↓,s↑) Mμν(s↓,s↓)

)
. (7)

We denote this in the following by using the Dirac bra and
ket notation. The initial and final electron spins si and sf

can assume the quantization directions spin-up s↑ = (1,0)T

or spin-down s↓ = (0,1)T. The initial and final photon polar-
ization ε(k)μ and ε(k′)ν assumes the horizontal and vertical
polarization states

εH = ey, εV = ez, (8)

which in turn are basis states for left- and right-circular
polarization,

εL = 1√
2

(εH + iεV), εR = 1√
2

(εH − iεV), (9)

and for diagonal and antidiagonal polarization,

εD = 1√
2

(εH + εV), εA = 1√
2

(εH − εV). (10)

Then Eq. (5) consists of 16 matrix elements 〈εf ,sf | M |εi,si〉.
The photon polarization εi,εf ∈ {H,V} is indexed explicitly
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by the numbers {2,3} and the spin polarization sf ,si ∈ {↑ , ↓}
is implied by the 2 × 2 matrix structure of each of the four
subequations in Eq. (5). The tensor product of the photon
and electron polarization |εi,si〉 = |εi〉 ⊗ |si〉 forms a basis
with the four basis states {H ↑ ,H ↓ ,V ↑ ,V ↓} with respect
to which the initial combination of photon and electron spin
configuration can be expanded to

|ψi〉 = ϕ1 |H, ↑〉 + ϕ2 |H, ↓〉 + ϕ3 |V, ↑〉 + ϕ4 |V, ↓〉 .

(11)

In this sense, Eq. (5) shows the matrix elements, which relate
the initial product state of photon and electron spin |ψi〉 to the
final product state,

|ψf 〉 =
∑

εf ∈{H,V}
sf ∈{↑,↓}

|εf ,sf 〉 〈εf ,sf |M|ψi〉 , (12)

of the outgoing photon and electron in the case of scattering.
The leading terms in Eq. (5) scale with α, where the

other terms proportional to β, γ , and α2 can be assumed
to be negligible for the momenta pi , pf , k, and k′, which
are of interest here. A full spin flip of the electron will
occur if the incoming photon is vertically polarized because
the spin-preserving term 1 in M22 only arises for horizontal
polarization. For a vertical initial photon polarization, a spin-
dependent term proportional to σx + σz arises from M23 and a
spin-dependent term proportional to σy arises from M33. The
corresponding directions (1,0,1)T/

√
2 and (0,1,0)T/

√
2 have

the orthogonal direction (1,0, − 1)T/
√

2. The eigenvectors of
the spin-dependent term σx − σz, which corresponds to the
(1,0, − 1)T/

√
2 direction, will be flipped when acting on the

spin terms in M22 and M33. Therefore, by using the Bloch state

s(n) =
(

cos θn

2

sin θn

2 eiϕ

)
, (13)

with θn = 2π + (1 + 2n)π/4 and ϕ = 0, we define

s↗ = s(0), s↘ = s(1), s↙ = s(2), s↖ = s(3), (14)

together with the eigenstates of σy ,

s⊗ = 1√
2

(
1
i

)
, s� = 1√

2

(
1
−i

)
. (15)

The set of spinors {s↙,s↗,s⊗,s�,s↘,s↖} are 45 degrees
tilted around the y axis as compared to the commonly
normalized eigensolutions of the σx , σy , and σz Pauli matrices.
Accordingly, one obtains the spin expectation values,

s↙†σ s↙ = (−1,0, − 1)T/
√

2, (16a)

s↗†σ s↗ = (1,0,1)T/
√

2, (16b)

s⊗†σ s⊗ = (0,1,0)T, (16c)

s�†σ s� = (0, − 1,0)T, (16d)

s↘†σ s↘ = (1,0, − 1)T/
√

2, (16e)

s↖†σ s↖ = (−1,0,1)T/
√

2, (16f)

and the spinors s↙, s⊗, s↘ are eigenvectors of (σx + σz)/
√

2,
σy , and (σx − σz)/

√
2 with eigenvalue 1, and s↗, s�,

FIG. 1. Illustration of the considered process (19a), in which the
electron and photon are changing their spin state simultaneously. The
vertically polarized photon with momentum kp in the x direction and
the electron with momentum −kpex + p3ez with p3 ≈ m and spin
orientation (1,0, − 1)T/

√
2 are entering the interaction region. We

consider a scattering process in which both particles reverse their
momentum component in the x direction. According to Eq. (19a),
the outgoing photon is left-circularly polarized and the spin of the
outgoing electron spin is pointing in the (−1,0,1)T/

√
2 direction after

the interaction.

s↖ are eigenvectors with eigenvalue −1, respectively. In
numeric implementations, we use an equivalent expression
for s↘ and s↖ given in Appendix A. For ease of inter-
pretation, we want to transform the electron spin degree
of freedom into the quantization axis s↘ and s↖ by the
electron spin rotation M ′

ab = U †MabU, a,b ∈ {2,3} with the
matrix

U = (s↘,s↖) =
(

cos θ1
2 cos θ3

2

sin θ1
2 eiϕ sin θ3

2 eiϕ

)
. (17)

With respect to this quantization axis and by neglecting the
terms proportional to β, γ , and α2, the transformed matrix
elements of M ′ read

M ′
22 = 1, M ′

23 = i
1√
2
α σx,

M ′
32 = i

1√
2
α σz, M ′

33 = i
1√
2
α σy. (18)

The matrices M ′ imply that a vertically polarized photon and
a s↘ polarized electron, denoted by the product state |V, ↘〉,
will be scattered into a left-circularly polarized photon and a
s↖ polarized electron, denoted by |L, ↖〉. This process can be
written as

M |V, ↘〉 = i
kp

m
|L, ↖〉 . (19a)

The scattering process of the electron and photon in Eq. (19a)
and their spin properties are illustrated in Fig. 1.

Similarly, a vertically polarized photon and a s↖ polar-
ized electron, denoted by |V, ↖〉, will be scattered into a
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right-circularly polarized photon and a s↘ polarized electron,
denoted by |R, ↘〉,

M |V, ↖〉 = i
kp

m
|R, ↘〉 . (19b)

III. GENERATION OF ENTANGLEMENT

A coherent superposition of the incoming states in the
processes (19) can be used for establishing entanglement
between the electron spin and the photon polarization. The spin
state s↙ can be represented as a superposition of the spinors
s↘ and s↖ by s↙ = (s↘ + s↖)/

√
2. On the other hand, the

electron spin of s↙ points perpendicularly to the directions of
s↘ and s↖, as can be seen from their spin expectation values
(16). Due to the superposition property of the spinor s↙, one
can write

M |V, ↙〉 = M
1√
2

(|V, ↘〉 + |V, ↖〉) (20a)

= i
kp

m

1√
2

(|L, ↖〉 + |R, ↘〉). (20b)

The second line of Eq. (20) shows that the scattering of a
vertically polarized photon with a s↙ polarized electron results
in an entangled superposition of a left-circularly polarized
photon with a s↖ polarized electron and a right-circularly
polarized photon with a s↘ polarized electron, which is a
maximally entangled (Bell) state [71].

IV. ASSIGNING SPIN TO THE POLARIZATION

A. Intrinsic angular momentum density of electron

For the process (19a), we investigate the intrinsic angular
momentum density (spin density) of the photon and electron
before and after scattering. For the electron spin density,
different relativistic spin operators have been considered in
the literature, among which only the proposals from Foldy
and Wouthuysen ŜFW as well as the proposal from Pryce ŜPr

fulfill the angular momentum algebra, are self-adjoint and have
spectrum ±1/2 [81,82]. Both operators are identical for the
positive solutions of the free Dirac equation and one can show
that

m

V E

∫
V

d3x eipxu(p,s)† ŜFWu(p,s)e−ipx (21)

has the value (sin θ cos ϕ, cos θ sin ϕ, cos θ )T/2, if s was the
Bloch state s = (cos θ/2,eiϕ sin θ/2)T. Therefore, we con-
clude that the incoming electron in Eq. (19a) has intrinsic
angular momentum (1,0, − 1)T/

√
8 and the outgoing electron

has intrinsic angular momentum (−1,0,1)T/
√

8. The factor
√

8
in the denominator results from the normalization of the vector
of the electron’s spin expectation value and the property that
the electron is a spin-1/2 particle. Thus, the total spin angular
momentum (−1,0,1)T/

√
2 is transferred to the electron.

B. Intrinsic angular momentum density of photon

For the photon, we consider the spin density E × A, with
E = − Ȧ⊥ and A⊥ being the transverse part of the vector
potential A for plane waves [83–85]. The given photon spin

TABLE I. Spin-x component of particles in the scattering process
given by Eq. (19a). The table lists the x component of the spin of the
electron according to Sec. IV A and the spin of the photon according to
Sec. IV B. The total spin is the sum of the spin of each particle species
and the net spin transfer is the difference between outgoing and
incoming spins. The lower-right entry implies that a spin discrepancy
of 1 − 1/

√
2 (in units of h̄) remains when the scattering occurs.

Spin of Photon Electron Total

Incoming particles 0 1/
√

8 1/
√

8
Outgoing particles 1 −1/

√
8 1 − 1/

√
8

Net spin transfer 1 −1/
√

2 1 − 1/
√

2

density is a gauge-dependent quantity. However, only the
zero component and the longitudinal component A‖ of the
four-vector potential of a plane wave depend on gauge [84].
Since the electric field E of the free Maxwell equations
only has a transverse component, the gauge-dependent part
E × A‖ of the spin density E × A is transverse as well. The
longitudinal component of the spin density E × A is therefore
a gauge-invariant quantity. For this reason, we only consider
the longitudinal component of the photon spin density and
mention that a photon (or, in general, massless particles) may
only carry intrinsic angular momentum along its longitudinal
direction, as Wigner concluded in 1939 by studying the
transformation properties of particles [33,86]. The longitudinal
x component of the intrinsic photon angular momentum,

1

4π

∫
V

d3x[E(x,t) × A(x,t)] · ex, (22)

with the vector potential (2) yields the photon spin 0 for a
vertically polarized incoming photon, the photon spin 1 for a
left-circularly polarized outgoing photon, and the photon spin
−1 for a right-circularly polarized outgoing photon.

The x component of the spin of the electron and photon for
the process (19a) is summarized in Table I, which contains the
information that the net amount of 1 − 1/

√
2 of spin (in units

of h̄) is not transported via the polarization degree of freedom
of the particles.

V. ANGULAR-DEPENDENT SCATTERING ANALYSIS

In this section, we investigate scattering for general
outgoing particle momenta. We denote the outgoing photon
momentum by

k′(ϑ,ϕ) = ω′(ϑ,ϕ)

⎛
⎝ cos ϑ

sin ϑ cos ϕ

sin ϑ sin ϕ

⎞
⎠, (23)

where the parameter ϑ is the scattering angle and

ω′(ϑ,ϕ) = kp

(
1 − p3 sin ϑ sin ϕ

Ei + kp

)−1

(24)

is the photon energy, which is implied by four-momentum
conservation,

pi + k = pf + k′, (25)
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as computed in Appendix B. Correspondingly, the outgoing
electron momentum is

pf =
⎛
⎝ −ω′(ϑ,ϕ) cos ϑ

−ω′(ϑ,ϕ) sin ϑ cos ϕ

p3 − ω′(ϑ,ϕ) sin ϑ sin ϕ

⎞
⎠. (26)

A. Differential cross section

The differential cross section for a process with incoming
momenta pi , k and outgoing momenta pf , k′ is

dσ

d�
(εf ,sf ) = α2

m2

ω′2

k2
p

m√
E2

i − 2Eikp + k2
p + p2

3

× m

Ei + kp

| 〈εf ,sf |M|ψi〉 |2, (27)

where the prefactor in front of the absolute square of the
Compton tensor is derived in Appendix B. The number α

is the fine-structure constant.
First we want to investigate the differential cross section

(27) for a photon which is scattered into the x−y plane. To
achieve this, we set ϕ = 0 in Eq. (23). With this constraint, we
plot the differential cross section over the interval ϑ ∈ [0,2π ]
in Fig. 2, where the two photon polarizations,

ε′H(ϑ) = sin ϑ ex − cos ϑ ey, (28a)

ε′V(ϑ) = ez, (28b)

are coaligned to the final photon momentum (26) such that

k′ · ε′V = 0, k′ · ε′H = 0, and ε′V · ε′H = 0 (29)

is fulfilled. Circular polarizations εL and εR and diagonal
polarizations εD and εA are related to εH and εV by the
relations in Eqs. (9) and (10). We point out that for the
scattering angle ϑ = π , the definitions for k′, pf , ε′V, and
ε′H are coincident with the definitions given in Sec. II. In
Fig. 2, we see that a final polarization and spin configuration
different than |L, ↖〉 are dominating interactions over a wide
range of the scattering angle ϑ . However, the polarization and
spin summed cross section coincides with the |L, ↖〉 projected
cross section at scattering angle ϑ = π , when the electron is
scattered backwards by 180 degrees. This implies that the
polarization state of the outgoing particles must be in the state
|L, ↖〉 at scattering angle ϑ = π and confirms the conclusions
of Sec. II.

For a photon, which is scattered into the x−z plane, we
set ϕ = π/2 and evaluate the Compton tensor (1b) with the
polarization vectors

ε′V(ϑ) = ey, (30a)

ε′H(ϑ) = sin ϑ ex − cos ϑ ez, (30b)

for which (29) is fulfilled as well. The polarizations in Eq. (30),
k′ and pf , are also coincident with the definitions given in
Sec. II at scattering angle θ = π and ϕ = π/2. Figure 3 shows
the differential cross section in the interval ϑ ∈ [0,2π ] in the
x−z plane, similarly to the plot in the x−y plane in Fig. 2.
The cross section in Fig. 3 also has a dip at ϑ = π , which

FIG. 2. Plot of the differential cross section (27) in the x−y plane,
which is shown as a function of the scattering angle ϑ of the final
photon momentum (23) with ϕ = 0. The corresponding basis of the
photon polarization vectors is given in (28), with left- and right-
circular polarization as introduced in Eq. (9). The polarization sums
run over the photon polarizations εf ∈ {L,R} and the spin sums run
over the spin states sf ∈ {↘ , ↖}. The cross section for observing the
final polarization state |L, ↖〉 (red dashed line) and the polarization
summed cross section (black solid line) are suppressed as compared
to the spin summed cross section (black dash-dotted line) and the
polarization and spin summed cross section (black dashed line). This
is the reason why the plot in (a) is repeated as a logarithmic plot in
(b). All plotted cross sections approach the same value in a dip at
scattering angle ϑ = π , which can be seen in a magnified plot in (c).

agrees with the findings in Sec. II and Eq. (19a), stating that an
incoming state |V, ↘〉 is scattered in the final state |L, ↖〉, if
the photon is backscattered by 180 degrees. One can also see
another dip in the cross section in the x−z plane at ϑ ≈ 0.4π .

B. Conditional Stokes parameters

We further investigate the electron-photon scattering with
the Stokes parameters [87],

�0 = PH,↖ + PV,↖, (31a)

�1 = PH,↖ − PV,↖, (31b)

�2 = PD,↖ − PA,↖, (31c)

�3 = PL,↖ − PR,↖, (31d)
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FIG. 3. Plot of the differential cross section (27) in the x−z plane,
as a function of the scattering angle ϑ with ϕ = π/2 and photon
polarization based on the vectors (30). As in Fig. 2, we have εf ∈
{L,R} and sf ∈ {↘ , ↖} for the summation and the plot in (a) is
repeated on a logarithmic y axis in (b) and is zoomed in (c) for
resolving the properties of the cross section at ϑ = π . Also the line
styles are the same as in Fig. 2. The dip at ϑ = π has a very similar
shape as in the x−y plane. However, in the x−z plane, one can see
another dip at ϑ ≈ 0.4π .

with the absolute value squares of a normalized projection,

Pεf ,sf
=

∣∣∣∣ 〈εf ,sf |ψf 〉
〈ψf |ψf 〉

∣∣∣∣
2

. (32)

We mention that common labelings for the Stokes param-
eters are (s0,s1,s2,s3) or (I,Q,U,V ); see [87]. Since we use
s already for denoting the electron spin and V for denoting
vertical photon polarization, we introduce the new labels
(�0,�1,�2,�3) for the Stokes parameters in this article. In
the framework of definition (31), the Stokes parameters are
determined on the projection 〈↖ |pf 〉 of the final scattering
state |pf 〉 on the assumed electron spin state 〈↖|. We plot
the conditional Stokes parameters in the x−y plane in Fig. 4
and in the x−z plane in Fig. 5. For the investigated case of
s↖ projected Stokes parameters, one finds a sharp peak of the
Stokes parameter �3 at ϑ = π in the x−y plane and in the x−z

plane. This means that a generally unpolarized photon state
is getting left-circularly polarized in the case of 180 degree
backscattering of the photon, consistent with the findings in
Sec. II.

FIG. 4. Conditional Stokes parameters (31) in the x−y plane
for the final electron spin orientation s↖ along the final photon
momentum (23) with ϕ = 0. (a) Plot of the interval ϑ ∈ [0,2π ];
(b) zoom of the peaked region at ϑ = π . One can see a sharp peak
of the Stokes parameter �3 (solid black line) at ϑ = π , coincident
with the parameter �0 (red dashed line). The parameters �1 and �2

are zero, implying that the polarization peak is purely left-circularly
polarized.

C. Summed Stokes parameters

In order to lift the constraint of the assumed electron spin
projection state in Eq. (31), we sum over the electron spin
degree of freedom, resulting in the definition of the summed
Stokes parameters,

�̄0 = PH,↖ + PH,↘ + PV,↖ + PV,↘ = 1, (33a)

�̄1 = PH,↖ + PH,↘ − PV,↖ − PV,↘, (33b)

�̄2 = PD,↖ + PD,↘ − PA,↖ − PA,↘, (33c)

�̄3 = PL,↖ + PL,↘ − PR,↖ − PR,↘. (33d)

We show the summed Stokes parameters in Fig. 6 in the
x−y plane and in Fig. 7 in the x−z plane. Linear polarization
emerges for the final photon at locations apart from the
peaks at ϑ ≈ 0.4π and ϑ = π in the x−z plane. Since the
linear polarization does not appear in the conditional Stokes
parameters in Figs. 4 and 5, the linear polarization emerges
with a ↘ electron polarization.

FIG. 5. Conditional Stokes parameters (31) in the x−z plane for
the final electron spin orientation s↖ with ϕ = π/2. The line styles
and x axis are the same as in Fig. 4. As in Fig. 4, one concludes purely
left-circularly polarized polarization. Beside the peak at ϑ = π , there
is another peak at location ϑ = 0.4π , corresponding to the second
dip of the differential cross section in the x−z plane; see Fig. 3.
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FIG. 6. Summed Stokes parameters (33) in the x−y plane along
the final photon momentum (23) with ϕ = 0. The line style and x axis
are the same as for the conditional Stokes parameters in Fig. 4. The
parameter �̄0 is not plotted because of the general property �̄0 = 1.
One can see that the final photon is only circularly polarized at ϑ =
π and linearly polarized otherwise. Here the photon polarization
is vertically polarized at ϑ = 0, changes into diagonal polarization
at about ϑ ≈ 0.4π , reaches horizontal polarization at around ϑ ≈
π (except at the narrow peak at ϑ = 0), changes into antidiagonal
polarization at about ϑ ≈ 1.6π , and, finally, returns back to vertical
polarization at ϑ = 2π , as one sweeps around a circle in the x−y

plane.

D. Conditional and summed spin expectation value

Analogously to the conditional Stokes parameters in
Eq. (31), one can define symmetric parameters for the spin
expectation value of the electrons,

�0 = PL,↙ + PL,↗, (34a)

�1 = PL,↙ − PL,↗, (34b)

�2 = PL,⊗ − PL,�, (34c)

�3 = PL,↘ − PL,↖, (34d)

with an assumed left-circularly polarized final photon state.
And analogously to the summed Stokes parameters in Eq. (33),

FIG. 7. Summed Stokes parameters (33) in the x−z plane along
the final photon momentum (23) with ϕ = π/2. The line style and
x axis are the same as in Fig. 6 and �̄0 is omitted as well. Again, we
find two peaks with left-circular polarization at ϑ ≈ 0.4π and ϑ = π

as for the conditional Stokes parameters in Fig. 5. In contrast to
diverse variations of the polarization in the x−y plane in Fig. 6, the
photon polarization just changes straight to horizontal polarization
outside of the peak region.

FIG. 8. Conditional spin expectation (34) in the x−y plane for a
left-circular final photon polarization plotted in the same way as the
conditional Stokes parameters in Fig. 4. Similar to the differential
cross section and the Stokes parameters, there is a peak of the
parameter �3 (black solid line) at ϑ = π , where it turns from 0.5
everywhere else into −1. This implies that the final electron spin is
in a |↖〉 state at the peak.

one can define a polarization summed electron spin expectation
value,

�̄0 = PL,↙ + PR,↙ + PL,↗ + PR,↗ = 1, (35a)

�̄1 = PL,↙ + PR,↙ − PL,↗ − PR,↗, (35b)

�̄2 = PL,⊗ + PR,⊗ − PL,� − PR,�, (35c)

�̄3 = PL,↘ + PR,↘ − PL,↖ − PR,↖. (35d)

We plot the conditional spin expectation value (34) in
Fig. 8 in the x−y plane and in Fig. 9 in the x−z plane.
The polarization summed spin expectation value is plotted
in Fig. 10 in the x−y plane and in Fig. 11 in the x−z plane. In
contrast to the Stokes parameters, the plots of the conditional
spin expectation values are qualitatively similar to the summed
spin expectation values. However, the spin expectation values
and the Stokes parameters have in common that, first, the
parameter �3 has one peak in the x−y plane and two peaks in
the x−z plane. The second similarity is that one of these peaks
is located at ϑ = π in the x−y plane as well as in the x−z

plane. And the third common property is that the parameter �3

reaches the value −1 at the peak at ϑ = π . Thus, consistently

FIG. 9. Conditional spin expectation (34) in the x−z plane for a
left-circular final photon polarization plotted in the same way as the
summed Stokes parameters in Fig. 5. Similar to the differential cross
section and the Stokes parameters, there is a second peak of �3 at
ϑ ≈ 0.4π in the x−z plane.
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FIG. 10. Summed spin expectation (35) in the x−y plane, plotted
in the same way as the summed Stokes parameters in Fig. 6. The
angular spin dependence is qualitatively similar to the conditional spin
expectation values in Fig. 8. However, quantitatively, the parameter
�̄3 starts from the value 1 and changes over to −1 at the peak.

with the Stokes parameters, the electron spin changes into a
|↘〉 state, which once more confirms the results of Sec. II.

VI. EXPERIMENTAL SETUP FOR AN OBSERVATION
OF THE PROCESS

We suggest the observation of the discussed spin noncon-
serving dynamics in a scattering experiment which is sketched
in Fig. 12. In this scenario, we assume the initial and final
electron and photon momenta pi , pf , k, and k′ as described in
Sec. II with the photon momentum kp = 0.02m, corresponding
to 10.2 keV. The electron momentum component p2 shall
be zero and the electron momentum p3 shall be such that
the trace of M33 is zero, resulting in p3 ≈ m [89], implying
the incoming electron’s kinetic energy Ei − m ≈ 212 keV. A
numeric evaluation (see Supplemental Material [90]) of the
Compton tensor (1b) for an incoming, vertically polarized
photon and an electron with spin s↘ polarization yields the
transition amplitudes

|〈L, ↘ |M|V, ↘〉|2 ≈ 1.72 × 10−13, (36a)

|〈L, ↖ |M|V, ↘〉|2 ≈ 4.00 × 10−4, (36b)

|〈R, ↘ |M|V, ↘〉|2 ≈ 1.72 × 10−13, (36c)

|〈R, ↖ |M|V, ↘〉|2 ≈ 2.94 × 10−14, (36d)

FIG. 11. Summed spin expectation (35) in the x−z plane, plotted
in the same way as the conditional Stokes parameters in Fig. 7. Similar
to the conditional spin expectation in Fig. 9, one can see two peaks
in the x−z plane and, analogously to Fig. 10, the parameter �̄3 starts
from 1 and goes down to −1 in the summed spin expectation.
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Photon slit
Electron slit
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Electron

Photon
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x
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y
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detector
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photon electron
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FIG. 12. Experimental setup for observing a spin nonpreserving
electron-photon interaction in Compton scattering. A 10.2 keV
photon is emitted from the x-ray source and is reflected [88] by
the beam splitter through the photon slit, such that it reaches the
interaction region vertically polarized. In the interaction region, the
photon scatters at a 212 keV electron with polarization s↘ from
the polarized electron source. A coincident detection of a scattered
electron and photon at the detectors corresponds to the process (19a)
with final electron spin s↖ and a left-circularly polarized outgoing
photon.

where the transition amplitude | 〈L, ↖ |M|V, ↘〉 |2 in
Eq. (36b) is consistent with the calculated process in Eq. (19a).
The transition amplitudes into other polarizations than 〈L, ↖|
are negligibly small. This implies that each time the electron
detector and the photon detector of the setup in Fig. 12 are
receiving coincident signals, a vertically polarized photon and
an electron with spin s↘ are scattered into a left-circularly
polarized photon and an electron with spin s↖, leaving a spin
discrepancy of 1 − 1/

√
2 in the x direction behind.

The differential cross section (27) for a transition as in
Eq. (36b) has the value 12 μb. For 5 × 1016 photons per
second from the photon source and 1017 electrons per second
from the electron source, one would expect only one electron
and only one photon in the interaction region if the photon
beam had a spherical focus of 2 nm diameter [91] and the
electron beam had an elliptical beam focus of 6 × 700 nm [92].
Having one electron in the assumed beam spot area of 4 nm2

results in a collision probability of 6 × 10−15 or 16 events per
second for the considered photon flux. We further assume an
uncertainty for the incoming electron and photon momenta
below 1 keV. With this requirement, one can conclude from
the Taylor expansion in Eq. (5) with respect to kp, p2, and p3

that the process (36b) will dominate over the other processes
in Eq. (36) by one order of magnitude [93].

We mention that the transition amplitudes in (36) are only
weakly dependent on the initial electron momentum p1, as
shown in Appendix C 2. We discuss the dependence of all
matrix elements of the Compton tensor (1b) on p1 by evalu-
ating it in a new frame of reference in which p1 = −kp holds
in Appendix C 1. This is achieved by choosing an appropriate
Lorentz transformation in the x direction. The properties in this
frame of reference can be related to the laboratory frame, which
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is considered here, from which we conclude that for small
momentum variations |δp1| � 1 keV/c, the matrix element
(36b) is dominating over the other transition amplitudes in
Eq. (36).

We also want to restrict the experiment to the peak of the
Stokes parameters and the spin expectation value at ϑ = π ,
as given in Sec. V, where the photon is backscattered by
180 degrees. According to the considerations in Sec. IV,
an intrinsic angular momentum of (1 − 1/

√
2)h̄ ≈ 0.3h̄ is

unexplained, when such an event occurs. In order to support
this claim in the case of an event detection, we only want to
allow final photon directions, for which the Stokes parameter
�3 of the final photon is larger than 0.85 and the spin
expectation value �3 of the final electron is below −0.7.
In this case, the left-circular polarized photon generates 1h̄

intrinsic angular momentum in the x direction with more than
85% likelihood and the electron spin flip generates 1h̄ intrinsic
angular momentum in the (1,0, − 1)T/

√
2 direction with more

than 85% likelihood, such that the discrepancy of 0.3h̄ intrinsic
angular momentum is surpassed along the x axis on average. In
Figs. 4, 5, 8, and 9, we see that �3 > 0.85 and �3 < −0.7 is
fulfilled for −5 × 10−3π � ϑ − π � 5 × 10−3π for ϕ = 0,
along the y axis, as well as for ϕ = π/2, along the z axis.
Thus, the considered spin nonconserving event in Compton
scattering can be observed by choosing the spherical photon
slit in the experiment in Fig. 12, such that only outgoing
photons with a divergence of 5π mrad from the x axis will
reach the photon detector. With the resulting solid angle of
d� = 775 mrad2, one expects about one photon every 160
seconds from a process of the form (36b), at a beam-splitter
transmittivity of 50%.

For the generation of entanglement as discussed in Sec. III,
a beam splitter is not necessarily required in the experimental
setup. The beam splitter is introduced for enabling the possibil-
ity of 180 degree backscattering of the interacting photon such
that the longitudinal photon spin can be determined according
to Eq. (22). The generation of polarization entanglement,
however, does not require coaligned propagation directions
for the incoming and outgoing photon, such that entanglement
generation could also be implemented in a different frame of
reference.

VII. DISCUSSIONS AND OUTLOOK

The investigated process in Eq. (36b) leaves open questions.
For example, only those events in which the photon is backscat-
tered are detected and accounted for, but still scattering events
with different outgoing electron and photon momenta are
taking place as well; see Sec. V. This demands a study of
the spin density integrated over the full angular dependence of
the outgoing electron and photon momenta.

Also, we only discuss the intrinsic angular momentum
(spin) of the particles and completely ignore the orbital
angular momentum in our discussion. The reason is that
the orbital angular momentum of a plane wave integrated
through a sphere vanishes. In reality, however, the electron and
photon wave functions have finite extensions. Therefore, the
angular momentum splitting into intrinsic and external angular
momentum of the photon should be investigated with respect
to finite and infinite extensions. In this context, the study of

orbital momentum eigensolutions, for example of twisted light
[94] or twisted electron states, [95] and their interaction could
also be interesting. Steps in this direction were undertaken
recently based on plane-wave electrons, twisted light, and a
nonrelativistic interaction [56].

What is also of interest is the interaction of a similar
process in which the electron is interacting with the strong-field
versions of the incoming and outgoing photons, similar to
[22]. In this case, the electron wave function is expected
to perform deterministic dynamics due to absorption and
simulated emission in the strong fields (provided the fields
are coherent as, for example, in laser beams). However, then
it is more of interest as to how the electron is interacting with
the many-particle quantum state of the light field. We expect
that the polarization properties of each of the photon-number
states in the laser beam’s coherent light field will be influenced
by the electron in a nontrivial way.
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APPENDIX A: EQUIVALENT SPINOR EXPRESSIONS

The spinors s↘ and s↖ given in Eq. (14) can also be denoted
by the equivalent expressions

s↘ = N−

(
1 − √

2
−1

)
, (A1a)

s↖ = N+

(
1 + √

2
−1

)
, (A1b)

with the normalization factors

N+ =
√

2(2 +
√

2)
−1

, (A2a)

N− =
√

2(2 −
√

2)
−1

. (A2b)

We use these expressions for the numeric evaluation of the
Compton tensor (1b).

APPENDIX B: FOUR-MOMENTUM CONSERVATION
AND DIFFERENTIAL CROSS SECTION

The initial electron momentum (4a) with p2 = 0, the
initial photon momentum (3a), the final photon momentum
(23), and the momentum conservation (25) imply the final
electron momentum (26). Equation (25) also implies energy
conservation, which we write as

Ef = Ei + kp − ω′. (B1)

The square of the left-hand side of Eq. (B1) evaluates to

E2
f = m2 + ω′2 + p2

3 − 2ω′p3 sin ϑ sin ϕ. (B2)
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The square of the right-hand side results in

(Ei + kp − ω′)2 = m2 + 2k2
p + p2

3 + ω′2 − 2kpω′

+ 2Eikp − 2Eiω
′. (B3)

Plugging these two terms into the square of Eq. (B1) and
solving for ω′ results in the final photon momentum,

ω′ = kp

Ei + kp

Ei + kp − p3 sin ϑ sin ϕ
. (B4)

We refer again to Ref. [79], chapter 3.7, in which the cross
section is given by

dσ = q4

(2π )2

1

m2

m(4π )2

Ei |�v|2ω

∫
δ4(pf + k′ − pi − k)

× |ε′μ Mμν εν |2 m d3pf

Ef

d3k′

2ω′ . (B5)

The phase-space volume integral over the four-dimensional δ

function can be written as∫
δ4(pf + k′ − pi − k)

m d3pf

Ef

d3k′

2ω′

= m

∫ m+kp

0
δ[(pi + k − k′)2 − m2] ω′dω′d�, (B6)

where the argument of the δ function simplifies to

(pi + k − k′)2 − m2 = 2k2
p − 2kpω′ + 2Eikp − 2Eiω

′

+ 2ω′p3 sin ϑ sin ϕ (B7)

for the initial and final photon and electron momenta consid-
ered here. The derivative of this equation with respect to ω′
yields

∂

∂ω′ [(pi + k − k′)2 − m2] = −2kp − 2Ei + 2p3 sin ϑ sin ϕ

= −2kp

Ei + kp

ω′ , (B8)

with relation (B4) being substituted. The phase-space integral
(B6) evaluates into∫

δ4(pf + k′ − pi − k)
m d3pf

Ef

d3k′

2ω′ = ω′2

2kp

m

Ei + kp

d�,

(B9)

where the integral identity for δ functions∫
dx δ[f (x)] g(x) =

∑
{x∈R,f (x)=0}

g(x)

∣∣∣∣∂f (x)

∂x

∣∣∣∣
−1

, (B10)

has been used. By inserting Eq. (B9) in Eq. (B5) and dividing
by d�, we arrive at Eq. (27). The absolute value of the relative
particle velocity �v = vγ − ve in Eq. (B5) is substituted with

|�v| = E−1
i

√
E2

i − 2Eikp + k2
p + p2

3, (B11)

where vγ = ex is the initial photon velocity and ve = pi/Ei is
the initial electron velocity.

APPENDIX C: LONGITUDINAL MOMENTUM
DEVIATION

1. Analytic considerations

In the main text, a particle with initial momentum

pi =

⎛
⎜⎝

E( p)
−kp

p2

p3

⎞
⎟⎠ (C1)

is considered to scatter a photon with initial momentum

k =

⎛
⎜⎝

kp

kp

0
0

⎞
⎟⎠, (C2)

such that the momenta in the x direction are reversed after
interaction. Assume the x component of the incoming electron
is changed by the small value δp and changes into −kp + δp

instead of −kp. Then it is possible to change the frame of
reference along the x direction such that the transformed x

component of the incoming electron’s four-momentum p̃x

has the same value but opposite sign as the transformed
x component k̃x of the transformed four-momentum of the
incoming photon. For obtaining an explicit expression for such
a transformation, we express the incoming four-momentum of
the electron in terms of the rapidity (at least partially)

pi =

⎛
⎜⎜⎝

Ẽ cosh(η)
−Ẽ sinh(η)

p2

p3

⎞
⎟⎟⎠. (C3)

The parameters Ẽ and η are related to the parameters E( p), kp,
p2, and p3 in Eqs. (C1) and (C2). The inner product pμpμ = m

in Minkowski space implies that Ẽ fulfills the relation

Ẽ2 = m2 + p2
2 + p2

3 (C4)

and η is related by

sinh(η) = kp

Ẽ
. (C5)

The change of the electron momentum by δp can be expressed
by the Lorentz transformation

�(�) =

⎛
⎜⎝

cosh(�) − sinh(�) 0 0
− sinh(�) cosh(�) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠, (C6)

and changes the electron four-vector into

�(�)pi =

⎛
⎜⎜⎝

Ẽ cosh(η + �)
−Ẽ sinh(η + �)

p2

p3

⎞
⎟⎟⎠. (C7)

Similarly to Eq. (C5), one can write

sinh(η + �) = kp − δp

Ẽ
, (C8)

which establishes the relation between δp and � in Eq. (C6).
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According to the statement above, we want to perform
a Lorentz transformation of the system such that the x

components of the electron and photon momenta are equal but
have opposite sign, corresponding to Eqs. (C1) and (C2) before
the momentum disturbance δp. Using the transformation (C6)
with the new transformation parameter θ changes the four
vectors of the electron and the photon into

�(θ )�(�)pi =

⎛
⎜⎜⎝

Ẽ cosh(η + � + θ )
−Ẽ sinh(η + � + θ )

p2

p3

⎞
⎟⎟⎠, (C9a)

�(θ )k =

⎛
⎜⎝

kpe−θ

kpe−θ

0
0

⎞
⎟⎠. (C9b)

As described above, the parameter θ of the Lorentz
transformation has to be such that the x component of the
electron and photon momentum are equal but opposite, which
implies that

−Ẽ sinh(η + � + θ ) = kpe−θ (C10)

shall hold. Due to the equality before the change by the small
momentum δp in Eqs. (C1) and (C2) and the equivalent
expression Eq. (C3) for the electron momentum, one can
further substitute

−Ẽ sinh(η + � + θ ) = −Ẽ sinh(η)e−θ . (C11)

The sine hyperbolic functions can be expanded in terms of
exponential functions

1
2eη+�+θ − 1

2e−η−�−θ = 1
2eη−θ − 1

2e−η−θ (C12)

and solved for θ , resulting in

θ = 1
2 ln(e−� − e−2η−� + e−2η−2�). (C13)

A Taylor expansion with respect to � results in

θ = − cosh(η)e−η� + O(�2). (C14)

Also, plugging Eq. (C5) into Eq. (C8) results in

sinh(η + �) = sinh(η) − δp

Ẽ
. (C15)

Solving for � results in

� = arcsin

[
sinh(η) − δp

Ẽ

]
− η, (C16)

and a Taylor expansion with respect to η yields

� = − δp

Ẽ cosh(η)
+ O(η2). (C17)

FIG. 13. Absolute-value squares of the matrix elements of
the Compton tensor (1b). In (a), one can see that only
| 〈L, ↖ |M|V, ↘〉 |2 has a value of about 4.00 × 10−4, in accordance
with Eq. (36b). The other matrix elements are smaller by several
orders of magnitudes for a vast range of the momentum component
p1, as can be seen in the logarithmic plot in (b).

Plugging this into Eq. (C14) results in

θ = e−η

Ẽ
δp + O(η2). (C18)

We note that the Lorentz transformation (C6) will only
transform the longitudinal and timelike components of tensors,
while transverse components are not affected. Thus the
transverse components of the Compton tensor in Eq. (1b) of the
main text are not changed by the transformation (C6), except
an implicit change of the photon momentum kp in this frame
of reference. However, since the right-hand side of (C18) is
assumed to be much smaller than kp/m, the shifted photon
momentum in this frame of reference due to a small change δp

of the electron momentum in the x direction scales smaller than
k2
p/m2 in Eq. (3) of the main text and is therefore negligible.

The reader may get the impression that a negligible change
of the Compton tensor by momentum δp only applies in this
frame of reference, but not in the laboratory frame, in which the
actual interaction takes place, as illustrated in Fig. 1. But since
the transverse components of the Compton tensor are invariant
under the Lorentz transformation (C6), the conclusion in
this frame of reference applies for the laboratory frame
as well.

2. Numeric investigation

We want to explicitly check the transition amplitudes (36)
for a variation of component p1 of the initial electron momen-
tum pi . Therefore, we plot the transition amplitudes in Fig. 13.
The matrix element | 〈L, ↖ |M|V, ↘〉 |2 is dominating over
the other final scattering configurations by several orders of
magnitude, such that we conclude a negligible dependence of
the momentum p1 on the amplitudes (36).
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