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Recently, there has been a renewed interest in the quantification of coherence or other coherencelike concepts
within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence
or decoherence has already been used by the community for decades since the advent of quantum theory.
Intuitively, the definitions of coherence and decoherence should be two sides of the same coin. Therefore,
a natural question is raised: How can the conventional decoherence processes, such as the von Neumann–
Lüders (projective) measurement postulation or partially dephasing channels, fit into the bigger picture of the
recently established theoretical framework? Here we show that the state collapse rules of the von Neumann or
Lüders-type measurements, as special cases of genuinely incoherent operations (GIOs), are consistent with the
resource theories of quantum coherence. New hierarchical measures of coherence are proposed for the Lüders-
type measurement and their relationship with measurement-dependent discord is addressed. Moreover, utilizing
the fixed-point theory for C∗ algebra, we prove that GIOs indeed represent a particular type of partially dephasing
(phase-damping) channels which have a matrix representation based on the Schur product. By virtue of the
Stinespring dilation theorem, the physical realizations of incoherent operations are investigated in detail and we
find that GIOs in fact constitute the core of strictly incoherent operations and generally incoherent operations and
the unspeakable notion of coherence induced by GIOs can be transferred to the theories of speakable coherence
by the corresponding permutation or relabeling operators.
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I. INTRODUCTION

Quantum coherence, as one of the most fundamental
and characteristic concepts in quantum theory, has long
been recognized as a valuable resource for modern quantum
technologies such as quantum computation [1,2], quantum
cryptography [3,4], and quantum metrology [5,6]. Despite its
crucial importance in the development of quantum informa-
tion science, only very recently was a rigorous theoretical
framework established by virtue of quantum resource theory
to quantify the usefulness of quantum coherence contained
in quantum states [7]. In the corresponding resource theory
of coherence, the incoherent (free) states are defined with
respect to a prefixed orthogonal basis, which is a convex
set containing all diagonal states in this specific basis,
while the resource states are those with nonzero off-diagonal
elements. The restricted set of operations (i.e., the incoherent
operations) is constructed with the defining property that every
incoherent operation has a Kraus decomposition, each branch
of which is coherence nongenerating [7]. References [8,9]
provide detailed reviews of recent advances in the theoretical
understanding and characterization of quantum coherence.

Though such an axiomatic framework is mathematically
well defined, its physical consistency has been further con-
sidered [10,11]. First, the coherence measures proposed in
Ref. [7] are apparently basis dependent and this fact implies
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that, prior to any usage of these quantifiers, a justification or
specification of the choice of basis is needed according to
the theoretical model or experimental setup [11,12]. To be
more precise, most recent work based on the resource theory
characterizes the speakable notion of coherence [11], that is,
relabeling or permutation of basis states is allowed in this
occasion, which is in sharp contrast to the resource theory of
unspeakable coherence (i.e., asymmetry) [13,14]. Second, sev-
eral alternative proposals of the resource theory of coherence
have also been put forward to impose further constraints on
the free operations, such as the maximal incoherent operations
(MIOs) [15,16], dephasing-covariant incoherent operations
(DIO) [10,11], strictly incoherent operations (SIOs) [17,18],
and genuinely incoherent operations (GIOs) [19]. However,
the free (i.e., incoherent) operations defined in these scenarios
are not truly free in the sense of Stinespring dilation, which
means these operations are not strictly freely implementable
[10,11]. Moreover, a physically consistent resource theory has
been introduced in Ref. [10] under the name of physically
incoherent operations (PIOs), but the class of PIOs is too
restrictive and state transformations under this set are rather
limited [20].

On the other hand, any realistic quantum system will
inevitably interact with its environment, and the notion of
decoherence represents the destruction of quantum coherence
between a superposition of preferred states [21,22]. Intuitively,
the definitions of coherence and decoherence should be two
sides of the same coin. In comparison to the resource theory of
coherence, the decoherence basis usually emerges associated
with the specific physical process. Two well-known examples
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are the von Neumann projective measurement [23] and the
pointer states induced by einselection [24–27]. Moreover, we
wonder whether the resource theory of coherence proposed
recently is compatible with previous interpretations of de-
coherence, since such a consistency will help us to obtain
an in-depth understanding of the paradigmatic models of
decoherence processes. More precisely, the aim of this work
is to gain more insight into the characterization of quantum
coherence through the investigations of decohering powers and
physical realizations of various types of quantum incoherent
operations.

This paper is organized as follows. In Sec. II, we briefly
review two representations of quantum operations and their
relationship. In Sec. III, we present an interpretation of popular
coherence measures through the von Neumann measurement
theory and generalize this line of thought to the Lüders-type
measurement, where the minimum disturbance principle is
highlighted. Moreover, the Lüders-measurement-dependent
discord is introduced for a bipartite system and its relation with
Lüders-type coherences is illustrated. In Sec. IV, we provide a
detailed analysis of the structures and physical realizations
of GIOs, SIOs, and generally incoherent operations (IOs),
demonstrating that GIOs or SIOs can be seen as the core
of other types of incoherent operations. Discussions and final
remarks are given in Sec. V and several open questions are
raised for future research.

II. STINESPRING-KRAUS REPRESENTATION
OF QUANTUM CHANNEL

Let H be the finite-dimensional Hilbert space and B(H)
[S(H)] be the set of bounded operators (density operators) on
H. A physically valid quantum operation E : B(H) → B(H) is
defined as a linear trace nonincreasing and completely positive
map [28]. For simplicity, we assume throughout this paper
that E has equal input and output Hilbert spaces. In particular,
we further identify an operation as a quantum channel if it
satisfies the trace-preserving condition. Mathematically, there
exist two explicit and equivalent representations of an arbitrary
operation, which in fact depict the general form of state
changes [29–31]:

The operator-sum representation is

E(ρ) =
∑

n

KnρK†
n, (1)

where Kn ∈ B(H),
∑

n K
†
nKn � 1H and the equality holds for

quantum channels.
The Stinespring dilation is

E(ρ) = TrA(VρV†), (2)

where A is an ancillary system (e.g., an apparatus system)
and V ∈ B(H,H ⊗ A) is a contraction (i.e., V†V � 1H). For a
trace-preserving map, V is actually an isometry.

Intuitively, the Stinespring dilation can be viewed as a
purification of a quantum operation on an extended Hilbert
space [32]. Furthermore, Kraus and Ozawa proved that a
unitary realization can be constructed for quantum operations
or, more generally, quantum instruments [28,33,34], which in

formula can be rewritten as

E(ρ) = TrA[(1 ⊗ MA)U(ρ ⊗ σA)U†], (3)

where U is a unitary operation acting on H ⊗ A, MA is
an effect operator on A (i.e., 0 � MA � 1A and MA = 1A
corresponds to quantum channels), and σA is the initial state of
the apparatus system. Equation (3) shows that for a particular
quantum operation E , the four-tuple {A,σA,U,MA} uniquely
determines the state change caused by E . In other words, the
four-tuple provides a physical realization of the operation.
Under different names, such a realization is also known as
the system-apparatus interaction [23], premeasurement [35],
or indirect measurement model [36].

In addition, without loss of generality, one may require that
σA is a pure state and MA is an orthogonal projection operator
[28]. Therefore, by denoting σA = |a0〉〈a0| and MA = PA,
Eq. (3) can be reexpressed as

E(ρ) = TrA[(1 ⊗ PA)U(ρ ⊗ |a0〉〈a0|)U†]. (4)

To see the direct correspondence between two representations
of Eqs. (1) and (4), it is convenient to specify an orthogonal
decomposition of PA = ∑

n |an〉〈an| and hence the Kraus
operators can be expressed as [2]

Kn = 〈an|U|a0〉. (5)

Moreover, the nonuniqueness of Kraus decomposition can be
regarded as stemming from the freedom in choosing the basis
{|an〉}. Hence different sets of Kraus operators are related to
each other by isometric matrices.

III. LÜDERS-TYPE QUANTUM COHERENCE

In his seminal work [23], von Neumann pointed out that,
in contrast to the unitary transformations described by the
Schrödinger equation, there exists another type of intervention
for quantum systems. In fact, he formulated a measurement
and state-reduction process with respect to purely discrete and
nondegenerate observables, which is better known as the state
collapse postulate. Later, Lüders generalized von Neumann’s
postulate to degenerate observables [37]. In this section, we
connect the von Neumann–Lüders measurement theory to the
interpretation and characterization of the coherence contained
in quantum states, especially relative to the observables under
consideration.

A. von Neumann–Lüders measurement postulation

Let ρ ∈ S(H) be a density matrix of a quantum system in
Hilbert spaceH and R be a discrete, nondegenerate observable
with the eigendecomposition R = ∑

n rn|φn〉〈φn|. Based on
the Compton-Simons experiment, von Neumann derived the
well-known state-collapse postulate by virtue of the following
statistical rule and hypothesis [23]:

Born’s statistical rule. Born’s statistical rule demands that
the probability for obtaining the measurement result rn is given
by

P (rn) = Tr(ρ|φn〉〈φn|) = 〈φn|ρ|φn〉. (6)

Note that this formula can be generalized to more general
measurements described by positive operator-valued measures
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(POVMs) M = {Mn} with Mn � 0 and
∑

n Mn = 1. Namely,
the probability of obtaining the outcome n is P (Mn) =
Tr(ρMn) [2].

Repeatability hypothesis. The repeatability hypothesis
states that if a physical quantity is measured twice in
succession in a system, then we get the same value each
time. This hypothesis is equivalent to a requirement on the
conditional probability:

P (rm|rn) = Tr(ρn|φm〉〈φm|) = δmn, (7)

where ρn is the (normalized) resulting state of the system after
obtaining the measurement outcome rn.

In particular, according to the repeatability hypothesis, it is
easy to prove that the eigenstate |φn〉〈φn| of the observable R

is the only possible postmeasurement state for the outcome
rn (see Appendix A). Therefore, the density matrix ρ is
transformed to the following statistical mixture:

σ =
∑

n

P (rn)ρn =
∑

n

〈φn|ρ|φn〉|φn〉〈φn|. (8)

In the language of quantum operation, The corresponding
change of the state can be represented by

D(•) =
∑

n

|φn〉〈φn| • |φn〉〈φn|, (9)

where this superoperator is also known as a (completely)
pure-dephasing channel or pinching operator [38]. Note that D
is idempotent (i.e., D2 = D) and retains only the diagonal ele-
ments of the density matrix. Apart from the elimination of the
off-diagonal elements, it is noteworthy that the decoherence
effect of D is also manifested in the increase of von Neumann
entropy [23] (see also Appendix B).

Since the initial state is completely decohered by a von Neu-
mann measurement, the above two signatures of decoherence
can be employed to quantify the quantum coherence contained
in states. In fact, prior to the rigorous definitions of quantum
coherence in Ref. [7], the magnitude of off-diagonal elements
in a certain basis has long been recognized as a convenient and
useful quantifier of coherence, for instance, in the discussion
of quantum interferometric complementarity [39–41]. More-
over, the von Neumann entropy produced by the projective
measurement, dubbed the entropy of coherence, has also been
proposed in an attempt to quantify the incompatibility between
a given (nondegenerate) observable and a given quantum state
[42,43], which is exactly the entropic measure of coherence
defined in Ref. [7]. Mathematically, if we define the set of
incoherent states with respect to the nondegenerate observable
R as

I(H) = {ρ : D(ρ) = ρ,ρ ∈ S(H)}, (10)

then the corresponding measures of coherence can be formu-
lated as

Cl1 (ρ) =
∑
m�=n

|〈φm|ρ|φn〉| = min
σ∈I(H)

‖ρ − σ‖l1 , (11)

Cre(ρ) = S(D(ρ)) − S(ρ) = min
σ∈I(H)

S(ρ‖σ ). (12)

On the other hand, if the eigendecomposition of the observ-
able R = ∑

n rnPn is degenerate (i.e., dn = TrPn � 1 denotes
degeneracies), von Neumann’s theory still follows the same

routine by alternatively measuring a commuting fine-grained
observable R = ∑

ni μni |φni〉〈φni |, where
∑dn

i=1 |φni〉〈φni | =
Pn and 〈φmi |φnj 〉 = δmnδij . By defining a function f with
f (μni) = rn for all i = 1, . . . ,dn, the above fine-graining
process can be encapsulated in the following:

R = f (R). (13)

However, since there exists an infinite number of ways to
decompose the degenerate eigenspaces, this apparent arbitrari-
ness would lead to the nonuniqueness of state transformation,
which means that the formula of state change will depend
on the specific choice of R̃. To avoid the ambiguousness,
Lüders generalized von Neumann’s postulate to degenerate
observables by introducing an extended ansatz for state
reduction; that is [37],

L(ρ) =
∑

n

PnρPn, (14)

where L(·) is also known as the Lüders state transformer
or Lüders instrument [44]. Remarkably, except for the hy-
pothesis of discreteness of spectrum and repeatability, it
is demonstrated that the Lüders-type state transformation
can be derived by introducing an additional requirement of
least interferenceor minimal disturbance [45,46]. Indeed, by
defining a generalized set of incoherent states

I(H) = {ρ : L(ρ) = ρ,ρ ∈ S(H)}, (15)

it can be shown that the repeatability hypothesis alone would
render the (possible) reduced state σ belonging to I(H) (see
Appendix A). From the geometric point of view, the principle
of minimal disturbance amounts to the requirement that σ is
closest to the initial state ρ and hence uniquely determines the
change-of-state formula. Thus, the distance metrics, such as
matrix norms or entropy quantities, can be unitized to measure
the degree of closeness.

In particular, the Hilbert-Schmidt norm ‖ · ‖2 turns out
to be a potential choice for demonstrating the closeness
due to its explicit physical meaning and convenience (e.g.,
basis independence) [46]. By using the properties of the
Hilbert-Schmidt norm, we have

‖ρ − σ‖2
2 =

∥∥∥ ∑
m�=n

PmρPn +
∑

n

(PnρPn − PnσPn)
∥∥∥2

2

=
∑
m�=n

∥∥PmρPn

∥∥2
2 +

∑
n

∥∥PnρPn − PnσPn

∥∥2
2.

(16)

To obtain the minimum value of ‖ρ − σ‖2, every term in the
second summation should be equal to zero, which is equivalent
to the condition PnσPn = PnρPn for all n. Therefore, the
formula of state change (i.e., the Lüders state transformer) can
be uniquely determined as

σ =
∑

n

PnσPn =
∑

n

PnρPn, (17)

which is exactly Eq. (14).
In fact, the above argument can also be extended to

the quantum relative entropy, another important quantity in
quantum information theory. Using the idempotent property of
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projectors, the cyclic property of trace, and the commutation
relation [σ,R] = 0, one can obtain the following inequality:

S(ρ‖σ ) = S(ρ‖L(ρ)) + S(L(ρ)‖σ )

� S(ρ‖L(ρ)), (18)

where the equality holds for σ = L(ρ). The l1 norm may
also participate but it is a little bit cumbersome since the
l1 norm is basis dependent. Here we can borrow the same
idea from von Neumann that one can decompose the set of
orthogonal projectors {Pn} into a biorthogonal basis {φni}
for n = 1, . . . ,N and i = 1, . . . ,dn, where the dimension of
Hilbert space is d = ∑

n dn � N . For a particular choice of
basis {φni}, the argument is similar to that of the Hilbert-
Schmidt norm,

‖ρ − σ‖l1 =
∥∥∥ ∑

m�=n

PmρPn +
∑

n

(PnρPn − PnσPn)
∥∥∥

l1

=
∑
m�=n

‖PmρPn‖l1
+

∑
n

‖PnρPn − PnσPn‖l1
,

(19)

where in such a decomposition of eigenspaces the l1 norm
is calculated independently. Therefore, the above derivations
present an alternative and straightforward interpretation of the
framework of the Lüders measurement, from the perspective of
coherence theory: while the repeatability hypothesis induces
a block-diagonal structure of the state reduction, the principle
of least interference or minimal disturbance is equivalent to
the requirement that the von Neumann–Lüders measurement
will always lead to a final state which is closest to the initial
state, comparing to all the other states with no (generalized)
coherence in corresponding decomposition of Hilbert space. In
this sense, the von Neumann–Lüders measurement is usually
deemed a completely decohering (or dephasing) channel in
the framework of quantum coherence. Hence, in the resource
theory of coherence, the completely decohering (or dephasing)
channel serves as a basic reference for other types of incoherent
operations [20].

B. Coarse graining of quantum coherence

Based on the above geometric considerations, we can
generalize the measures of coherence for the nondegenerate
observable to the Lüders-type measurement. With respect
to the spectral decomposition of a degenerate observable
R = ∑

n rnPn, we define

Cl1 (R,ρ) = min
σ∈I(H)

‖ρ − σ‖l1 =
∑
m�=n

‖PmρPn‖l1 , (20)

Cre(R,ρ) = min
σ∈I(H)

S(ρ‖σ ) = S(L(ρ)) − S(ρ). (21)

Note that when R is nondegenerate the generalized set of
incoherent states I(H) reduces to the ordinary set I(H). It is
worth emphasizing again that Cl1 (R,ρ) is a basis-dependent
quantity, where a particular orthogonal decomposition of
eigenprojectors {Pn} should be specified, for example, a fine-
graining observable R in Eq. (13). On the contrary, Cre(R,ρ)
is irrespective of such a fine graining and hence more feasible
and convenient. Thus, Cl1 (R,ρ) and Cre(R,ρ) can be viewed

as a coarse-graining version of the corresponding measures
proposed in Ref. [7], and the coarse-graining process is also
manifested by the hierarchy relation

Cl1 (R,ρ) � Cl1 (R,ρ), Cre(R,ρ) � Cre(R,ρ). (22)

Since the first inequality is easily proved by using the
relation

∑
n�=m

∑
i,j �

∑
ni �=mj , the second inequality can be

verified by the identity

Cre(R,ρ) − Cre(R,ρ) = S[LR(ρ)‖DR(ρ)] � 0, (23)

where we attach suffixes R and R to superoperators L and
D, respectively, to indicate with respect to which observable
the corresponding measurement is performed and note that
LR = DR since R is nondegenerate. The differences in
Eq. (22) indicate that the Lüders measurement retains some
residual coherence which resides in every block of LR(ρ).
Intriguingly, it was proved that for any state ρ and any
degenerate observable R there exists (at least) one fine-grained
nondegenerate observable R� [i.e., R = f (R�)] satisfying
LR = DR�

[47]. In this case, we have

Cl1 (R�,ρ) = Cl1 (R,ρ), Cre(R�,ρ) = Cre(R,ρ), (24)

where the l1 norm of coherence is defined with respect to the
common eigenvectors of R and R� and note that

Cl1 (R,ρ) = ‖ρ − LR(ρ)‖l1 , (25)

Cl1 (R�,ρ) = ‖ρ − DR�
(ρ)‖l1 . (26)

Moreover, it is natural to extend our consideration to
the multipartite system. Consider a bipartite state ρAB with
reduced states ρA and ρB and a Lüders measurement of
observable R = ∑

n rnPn on subsystem B. One can define
an observable-dependent version of quantum-incoherent (QI)
states of the form

χAB = LB(ρAB) =
∑

n

(1 ⊗ Pn)ρAB(1 ⊗ Pn), (27)

which would reduce to the normal QI states introduced in
Ref. [48] if R is nondegenerate. Note that, for degenerate
observables (i.e., TrPn > 1 for some index n), χAB may be
entangled, which is in sharp contrast to the case of von
Neumann measurement [49]. The generalized QI relative
entropy of coherence can be defined as

CA|B
re (R,ρAB) = min

χAB∈QI
S(ρAB‖χAB)

= S(LB(ρAB)) − S(ρAB), (28)

where QI denotes the set of observable-dependent QI states.
Inspired by the concept of the basis-dependent quantum

discord (i.e., discord dependent on a particular von Neumann
measurement) [50,51], one can define a similar observable-
dependent measure of quantum discord,

δA|B(R,ρAB) = I (ρAB) − I (LB(ρAB)), (29)

where I (ρAB) = S(ρAB‖ρA ⊗ ρB) is the quantum mutual
information of ρAB . Remarkably, the Lüders-type quantum
discord δA|B(R,ρAB) is closely related to the Lüders-type
coherences. Indeed, a simple algebra shows that

δA|B(R,ρAB) = CA|B
re (R,ρAB) − Cre(R,ρB). (30)
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When the observable is nondegenerate, then R specifies an
orthogonal basis and Eq. (30) recovers the same relation for
von Neumann measurement [18]. Notably, when R is degener-
ate, the Lüders-type quantum discord is highly nontrivial [49].
In fact, the observable-dependent classical correlation can be
defined as

J A|B(R,ρAB) = I (ρAB) − δA|B(R,ρAB)

=
∑

n

pnS
(
ρA

n ‖ρA
) +

∑
n

pnI
(
ρAB

n

)
, (31)

with the postmeasurement state ρAB
n = (1 ⊗ Pn)ρAB(1 ⊗ Pn)

and ρA
n = TrρAB

n . It is worth noting that the second term
in Eq. (31) is missing in the original definition of classical
correlation [50,51] since for the von Neumann measurement
ρAB

n is a product state. However, for the Lüders measurement,
we may have I (ρAB

n ) > 0, implying ρAB
n is not factorable. This

residual part also reflects the fact that the Lüders measurement
is more gentle than von Neumann measurement and maintains
partial coherence in the measurement process. Interesting, very
recently, the author of Ref. [49] presented two related papers
[52,53] where the significance of the Lüders measurement
has also been highlighted in the characterization of quantum
coherence using the skew information.

IV. GIO AS PARTIALLY DEPHASING CHANNELS

For a proper choice of the orthogonal basis, the von
Neumann or Lüders measurement can also be viewed as
special cases of GIOs, which are an essential subset of
quantum channels preserving all incoherent basis states [19].
By definition, a crucial fact is that GIOs lead to an unspeakable
notion of quantum coherence within the framework of resource
theory [11], which means permutation or relabeling is not
allowed regarding the state transformations induced by GIOs.
To gain a deeper insight into the nature of GIOs, we initiate
a further analysis of GIOs from two different perspectives:
one from the fixed-point theory of quantum maps and the
other from the physical realization of GIOs, both highlighting
that GIOs are at the core of the resource theory of quantum
coherence.

A. Fixed points of unital quantum channels

Here we consider a finite d-dimensional Hilbert space
and a completely positive and trace-preserving (CPTP) map
(i.e., quantum channel) � : B(H) → B(H). The property of
complete positivity guarantees that �(·) has an operator-
sum representation of the form �(·) = ∑

i Ki · K
†
i , and trace

preservation of � is equivalent to
∑

i K
†
i Ki = 1. For a prefixed

orthogonal basis {|φn〉} (or with respect to a nondegenerate
observable R = ∑

n rn|φn〉〈φn|), the set of GIOs can be
proposed with the defining property

GIO = {� : �(ρ) = ρ,ρ ∈ I(ρ)}. (32)

By the linearity of �, the above definition is tantamount to

GIO = {� : �(|φn〉〈φn|) = |φn〉〈φn|,∀n}, (33)

which implies that pure incoherent basis states are fixed points
for GIOs. Obviously, the identity matrix 1 is also preserved

by GIOs and hence GIOs are unital quantum channels (i.e.,∑
i KiK

†
i = 1).

According to Schauder’s fixed-point theorem, there exists
at least one density matrix ρ for a CPTP map such that
�(ρ) = ρ [54]. Indeed, fixed-point theory has already been
employed in the investigations of quantum error correction
[55–57] and quantum reference frame [58]. To proceed, we
need to introduce the notion of the (noise) commutant of
the matrix algebra generated by the set of Kraus operators
{Ki,K

†
i }, that is,

A′ = {X ∈ B(H) : [X,A] = 0,A ∈ {Ki,K
†
i },∀i}. (34)

It is easy to see that A′ ⊆ F(�), where F(�) = {X ∈ B(H) :
�(X) = X} denotes the set of fixed points of unital channel �.
Notably, the converse inclusion relation is also true; in other
words, for � we have the following lemma [59–61].

Lemma 1. For a (finite-dimensional) unital quantum channel
�, we have A′ = F(�).

Proof. Note that in our case the converse inclusion relation
can be elegantly proved by the identity [62,63]∑

i

[X,Ki][X,Ki]
† = �(XX†) − XX†, (35)

with the trace-preserving property of �. �
Now we present our first key observation:
Observation 1. The function of GIOs is fully characterized

by a correlation matrix C, which can be represented as a Gram
matrix of a set of dynamical vectors {|ci〉}di=1.

Proof. Applying Lemma 1 to GIOs, we now know that
every Kraus operator of GIO commutes with all incoherent
basis states, indicating that all the Kraus operators must be of
diagonal form with respect to the incoherent basis

Ki =
d∑

j=1

c
(i)
j |φj 〉〈φj |, ∀i = 1, . . . ,r, (36)

with r being the Choi rank of �. From
∑

i K
†
i Ki = 1, we note

that ∑
i

K
†
i Ki =

∑
j

∑
i

∣∣c(i)
j

∣∣2|φj 〉〈φj | = 1, (37)

which implies that the vectors |ci〉 = (c(1)
i ,c

(2)
i , . . . ,c

(r)
i ) are

automatically normalized. Furthermore, the function of � can
be represented as a Schur product (i.e., entrywise product) of
the form

�(ρ) =
∑

i

KiρK
†
i = CT ◦ ρ, (38)

where we define the correlation matrix as

C =

⎛⎜⎜⎝
1 〈c1|c2〉 . . . 〈c1|cr〉

〈c2|c1〉 1 . . . 〈c2|cr〉
...

...
. . .

...
〈cr |c1〉 〈cr |c2〉 . . . 1

⎞⎟⎟⎠, (39)

and the Schur (Hadamard) product of A = [aij ] and B = [bij ]
is denoted by A ◦ B = [aij bij ]. �

Intriguingly, since the correlation matrix C is a Gram matrix
of a set of vectors {|ci〉}di=1, C is a positive semidefinite
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matrix, which confirms the positivity of � by Schur product
theorem (Theorem 5.2.1 in Ref. [64]). Note that C is uniquely
determined by � and the entries on the main diagonal are
always equal to 1. As special cases of GIOs, the von Neumann
and Lüders measurement can be recast as

D(ρ) = 1 ◦ ρ, L(ρ) = E ◦ ρ, (40)

where E = Ed1 ⊕ · · · ⊕ EdN
with d = ∑N

n=1 dn and Edn
de-

notes the dn-dimensional square matrix with all entries equal
to 1. Another important example is the phase-damping channel
E(ρ) = pρ + (1 − p)σzρσz for a qubit system, which can also
be written as a Schur product

E(ρ) =
(

1 2p − 1
2p − 1 1

)
◦ ρ, (41)

where p ∈ [0,1] is the noise parameter.
If the decoherence basis {|φi〉} is fixed, the decoherence

effect is explicitly exhibited by the decay of the absolute value
of matrix elements since |Cij | = |〈ci |cj 〉| � 1. Moreover, this
decoherence effect can be clearly seen through successive uses
of the channel

lim
n→∞ �n(ρ) = D(ρ). (42)

Moreover, the entropy increase of GIOs can be verified by the
following majorization relation [65]

λ(A ◦ B) ≺ λ(A) ◦ λ(D(B)) ≺ λ(A) ◦ λ(B), (43)

where A � 0, B � 0, and λ(X) denotes the vector of eigen-
values of matrix X in decreasing order. If we choose A = ρ,
B = CT , and note that D(C) = 1, we obtain

λ(�(ρ)) ≺ λ(ρ), (44)

which leads to the inequality S(�(ρ)) � S(ρ) for GIOs [66]
(see Appendix B for more discussion).

B. Physical realization of GIOs

In his seminal work, von Neumann introduced a de-
scription of a quantum measurement process for discrete
observables in terms of the interaction between system and
apparatus [23]. Later, Ozawa generalized this description
to continuous observables in the framework of quantum
instruments [33], where a four-tuple {A,|a0〉,U,PA} is pro-
posed to fully characterize a measuring process [34,36]. In
such an indirect-measurement model, the interaction unitary
operator U plays a central role in establishing the correlation
between the observed system and the measuring apparatus. For
instance, in von Neumann’s premeasurement of an observable
R = ∑

n rn|φn〉〈φn| with nondegenerate eigenvalues rn, the
structure of U is determined by

UN(|φn〉 ⊗ |a0〉) = |φn〉 ⊗ |an〉, (45)

where |a0〉 is a fixed pure state in the Hilbert space A of
the apparatus system and {|an〉} is an orthogonal basis in A.
Hence if we measure an observable MA = ∑

n rn|an〉〈an| on
the apparatus system, a perfect correlation of measurement
outcomes between R and MA will be established by UN and
the repeatability of von Neumann measurement is guaranteed

[35]. For the Lüders measurement,U admits a similar structure
and the degeneracy of R = ∑

n rnPn is taken into account,

UL(|φni〉 ⊗ |a0〉) = |φni〉 ⊗ |an〉, (46)

where |φni〉 constitute an orthonormal basis of H such
that Pn = ∑

i |φni〉〈φni |. Obviously, the Kraus operator is
exactly the orthogonal projector, i.e., Kn = 〈an|UL|a0〉 = Pn,
and correspondingly the formula of state change is L(ρ) =∑

n PnρPn.
Since the von Neumann and Lüders measurements are

special cases of GIOs, intuitively U for GIOs should have
some extra degree of freedom in its construction. Indeed, with
respect to a complete orthogonal basis {φn} the interaction
unitary operator U for GIOs would be of the form

UGIO(|φn〉 ⊗ |a0〉) = |φn〉 ⊗ |cn〉, (47)

where |cn〉 is exactly the one defined in the previous section,
that is, cn = ∑

i c
(i)
n |ai〉. To gain a deeper insight, we have the

following remarkable observation:
Observation 2. UGIO can be represented as a controlled-

unitary operation, namely,

UGIO =
∑

n

|φn〉〈φn| ⊗ Un. (48)

The effect of Un is to transform the fixed pure state |a0〉 to
a normalized vector |cn〉, but not necessarily orthogonal for
distinct n. For comparison, when UGIO reduces to UN the set
of {Un} transforms |a0〉 to a complete set of orthogonal bases
{|an〉}. The corresponding Kraus operators are consistent with
the previous discussion since

Kn = 〈an|UGIO|a0〉 =
∑

i

c
(n)
i |φi〉〈φi |. (49)

In particular, another significant example of controlled-
unitary operations is the generalized controlled-NOT (CNOT)
gate, which can be defined by [67]

UCNOT =
d∑

n=1

|n〉〈n| ⊗ Xn, (50)

where X is the generalized Pauli operator with X|i〉 = |i + 1
(mod d)〉 and d = min(dS,dA) with dS (dA) being the dimen-
sion of Hilbert space of the system (apparatus). Note that the
CNOT gate is a key ingredient for connecting resource theories
of entanglement to that of quantum coherence [8] and is itself
a bipartite SIO [17]. In contrast, UGIO is only incoherent
with respect to the observed system but is overall coherence
generating for the system-apparatus interaction (e.g., {|an〉} is
chosen to be the incoherent basis for the apparatus).

C. Dissecting the structure of SIOs and IOs

To illustrate the GIO as the core of SIOs and IOs, we first
recall the relevant definitions and properties of various types of
incoherent operations. In the context of IOs, the constraint of
coherence nongenerating is put on the set of Kraus operators,
which corresponds to a specific physical realization of IO [7].
Accordingly, the notion of MIO is defined by putting the
same constraint on its overall operation, irrespective of the
specific Kraus decomposition [15,20]. Along the same line,
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the relationship between SIO and DIO is similar to that of
IO and MIO, but the constraint is substituted by coherence
nonexploiting for a classical observer [17,18]. Interestingly,
though the constraint of incoherent state preserving is the
defining property of GIOs, it has been shown that this con-
straint is automatically satisfied by every Kraus decomposition
of GIOs. Indeed, this phenomenon has its root in the fact that
GIOs introduce a notion of unspeakable coherence while SIOs
and IOs are resource theories of speakable coherence [11,19].

Moreover, it has been rigorously proved in our previous
work that the constraint of coherence nongenerating (i.e.,
mapping every incoherent state to an incoherent state) would
render every Kraus operator of IO to admit the following
representation [68]:

K IO
n =

∑
i

c
(n)
i |fn(i)〉〈i|, (51)

with fn(i) being a relabeling function specified by index n.
This structure guarantees that there exists at most one nonzero
entry in every column of K IO

n . Furthermore, SIO requires that
its dual operation would also satisfy this constraint, that is,
K

†
nI(H)Kn ⊆ I(H), which implies

KSIO
n =

∑
i

c
(n)
i |πn(i)〉〈i|, (52)

with πn(i) being a permutation function specified by index
n. Note that there is a crucial difference between fn(i) and
πn(i): πn(i) is bijective and invertible but in general fn(i)
may not be injective. Therefore, the following observation is
straightforward concerning this distinction:

Observation 3. The Kraus operators of SIOs and IOs can
be obtained by combining Kraus operators of GIOs with the
permutation operator and relabeling operator, respectively.
Mathematically, we have

KSIO
n = PnK

GIO
n , K IO

n = RnK
GIO
n , (53)

where we define

Pn =
∑

i

|πn(i)〉〈i|, Rn =
∑

i

|fn(i)〉〈i|. (54)

Note that the permutation operator Pn is in fact a unitary
incoherent operator. Therefore, for a valid coherence measure
defined in Ref. [7], such as Cl1 and Cre, we obtain

C(ρ) � C(PnρP†
n) � C(P†

n(PnρP†
n)Pn) = C(ρ), (55)

which indicates that Pn is a coherence-preserving operator. On
the other hand, one can identify the decoherence effect of the
relabeling operator Rn by having it act on the off-diagonal
elements |i〉〈j |:

Rn|i〉〈j |R†
n = |fn(i)〉〈fn(j )|. (56)

When i = j we have fn(i) = fn(j ) for all n and probably
fn(i) may not be equal to i. This means that Rn may transfer
a diagonal element to the other position on the diagonal. If
i �= j two possible cases emerge: (i) fn(i) �= fn(j ), a situation
in which the coherence is retained but the position of this
element is accordingly changed, and (ii) fn(i) = fn(j ), which
implies that fn is not injective (i.e., many to one) and the
|i〉〈j | coherence is destroyed. In contrast to Pn, Rn could be a
coherence-destroying operator.

On the other hand, if we only focus on Kraus operators for
GIOs we obtain

KGIO
n |i〉〈j |KGIO†

n = c
(n)
i c

(n)∗
j |i〉〈j |, (57)

with |c(n)
i c

(n)∗
j | � 1. Therefore, a GIO or, equivalently, a

correlation matrix C can be regarded as a particular square
sieve for density matrices, since it preserves the diagonal
entries but partially obstructs the off-diagonal elements. This
analogy reflects the unspeakable nature of GIOs. However, for
SIOs and IOs, while KGIO

n is mainly responsible for coher-
ence destruction, the permutation operator Pn and relabeling
operator Rn enable the transfers between different incoherent
basis states. In fact, the above analysis implies the reason why
GIO or SIO is equally as powerful as other seemingly more
powerful operations (such as IO or MIO) on many occasions,
a phenomenon that emerged in many recent relevant works
[20,69,70].

In view of the above general consideration, we can also
make explicit the structure of the interaction unitary operators
U for SIO and IO. Here we can adopt the method present in
Ref. [32], whereU can be constructed by a series of orthogonal
isometries,

U = V ⊗ 〈a0| +
dA−1∑
i=1

Wi ⊗ 〈gi |, (58)

where {|a0〉,|g1〉, . . . ,|gdA−1〉} constitutes another orthogonal
basis for the Hilbert space A of the apparatus system and
the set of isometries {V,W1, . . . ,WdA−1} is orthogonal to each
other. Note that V is of the form

∑
i Ki ⊗ |ai〉 and {Wi} can be

obtained by a repeated use of the Gram-Schmidt method [32].
Furthermore, the orthogonality of the set of isometries (i.e.,
V †Wi = 0 and W

†
i Wj = δij1H) leads to the fact that the ranges

of distinct isometries are disjoint and hence the unitarity of U
is easily checked. Moreover, when restricted to the subspace
H ⊗ |a0〉〈a0|, the corresponding effective U only contains the
first term in Eq. (58) [28], which is of the form

USIO =
∑
ni

c
(n)
i |πn(φi)〉〈φi | ⊗ |an〉〈a0|, (59)

UIO =
∑
ni

c
(n)
i |fn(φi)〉〈φi | ⊗ |an〉〈a0|. (60)

It should be emphasized that technically USI and UIO are not
unitary operators (e.g., they can be extended to a proper unitary
operator by the above procedure) and the constraints on c

(n)
i are

also different. For SIO, c
(n)
i are restricted such that the vectors

|ci〉 = (c(1)
i ,c

(2)
i , . . . ,c

(r)
i ) are normalized, which is equivalent

to the case of GIO. However, for IO, the constraint is fully
characterized by ∑

n:fn(i)=fn(j )

c
(n)∗
i c

(n)
j = δij . (61)

V. DISCUSSION AND CONCLUSION

In this paper, we try to establish a comprehensive
connection between coherence measures and conventional
decoherence processes. As an example, the most obvious
consequences of the von Neumann measurement are the
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complete elimination of off-diagonal elements (with respect
to the basis specified by the spectrum of an observable)
[24,26] and the entropy increase of the observed system
[23]. It signifies that these phenomena can be employed to
define the valid coherence measures, even prior to the rigorous
mathematical framework of Ref. [7], where Cl1 (ρ) and Cre(ρ)
are proposed as popular measures of coherence.

Inspired by work in Ref. [11], we have extended our
discussion to the Lüders-type measurement and proposed
generalized coherence measures Cl1 (R,ρ) and Cre(R,ρ) for
possibly degenerate observable R, which, by its eigendecom-
position R = ∑

n rnPn, splits the Hilbert space into degenerate
subspaces. Note that the Lüders-type state transformation
formula can be derived from the assumptions of discreteness of
spectrum, eigenvalue repeatability, and minimum disturbance
principle. Among these, the repeatability hypothesis is indeed
equivalent to the requirement that the transformed state should
belong to the set of generalized incoherent states (i.e., of
block-diagonal structure ρ = ∑

n PnρPn), while the minimum
disturbance principle will further select the closest one from
the geometric point of view.

It is worth emphasizing that the l1 norm of coherence is
sensitive to the choice of eigendecompositions of eigenspaces
characterized by Pn, which is tantamount to specifying a fine-
grained nondegenerate observable R satisfying f (R) = R.
This is exactly the von Neumann treatment when facing the
degenerate observable. In contrast, the relative entropy of
coherence, Cre(R,ρ) = S(ρ‖L(ρ)) is free from this trouble,
and meanwhile highlights the interpretation that coherence
can be regarded as a sort of incompatibility information since
[43]

[ρ,R] = 0 ⇔ ρ = L(ρ) =
∑

n

PnρPn. (62)

Moreover, compared to the von Neumann measure-
ment, the Lüders-measurement-dependent quantum discord
δA|B(R,ρAB) (the observable R acting on subsystem B) can be
also formulated as the difference between the coherence in the
global and local states [18]. An obvious sufficient condition
for δA|B(R,ρAB) = 0 is the compatibility of ρAB and R, i.e.,
[ρAB,R] = 0. However, the necessary and sufficient condition
for zero Lüders-type discord is left as an open question.

Since the von Neumann and Lüders measurements are
special cases for GIO, we present a detailed analysis of the
structure and physical relation of GIO. We illustrate that GIO
is the core of SIO and IO by introducing the permutation
operator Pn and relabeling operator Rn. In fact, a GIO can
be viewed as a particular sieve which preserves the elements
on the main diagonal but partially blocks the off-diagonal
positions. This implies that the Kraus operators of SIO and
IO can be constructed by combining a Kraus operator of
diagonal form (which we can call the GIO part) with Pn or Rn,
respectively, and the decoherence effects are mainly induced
by the corresponding GIO part. This is exactly what the word
“core” means in the Abstract.

Another problem attracting our attention is the implication
of repeatability for a measurement of a discrete sharp observ-
able. Indeed, in a system-apparatus measurement model of
a discrete degenerate observable R = ∑

n rnPn, the bipartite

interaction unitary operator U is of the form

U(|φni〉 ⊗ |a0〉) = |θni〉 ⊗ |an〉, (63)

where the vectors {|φni〉} form an orthogonal basis of H
such that R|φni〉 = rn|φni〉 and {|θni〉} is any set of normal-
ized vectors in H satisfying the orthogonality conditions
〈θni |θnj 〉 = δij for all i,j and any n [35]. Obviously, for
the Lüders measurement, the choice of the set {|θni〉} is just
{|φni〉}. However, if we only require the measurement to satisfy
the repeatability condition, it is equivalent to require that
Pn|θni〉 = |θni〉 for all i, which means that |θni〉 lies within the
eigenspace corresponding to rn and {|θni〉} constitute another
orthogonal basis ofH (see Lemma 1 in Ref. [71] or discussions
in Ref. [37]). Therefore, for an initial state |φ〉 = ∑

ni αni |φni〉,
the final states induced by the Lüders measurement and this
more general repeatable measurement are given by

ρ1 =
∑

n

PnρPn =
∑
n,i,j

αniα
∗
nj |φni〉〈φnj |, (64)

ρ2 =
∑

n

KnρK†
n =

∑
n,i,j

αniα
∗
nj |θni〉〈θnj |, (65)

with the Kraus operator Kn = ∑
i |θni〉〈φni |. Intriguingly, if the

residual coherences of final states are defined in their respective
basis, we have

C
{|φni 〉}
l1

(ρ1) = C
{|θni 〉}
l1

(ρ2) =
∑

n

∑
i �=j

|αniα
∗
nj |, (66)

C{|φni 〉}
re (ρ1) = C{|θni 〉}

re (ρ2) = S({|αni |2}) − S, (67)

where S({|αni |2}) is the Shannon entropy of the probability
distribution {|αni |2} and S = S(ρ1) = S(ρ2). Therefore, the
repeatability condition simply guarantees that the (properly
defined) residual coherence contained in the final state is
identical to that of the Lüders measurement.

Finally, we notice that a more general notion of coherence
was proposed recently for a POVM M = {Mn} with Mn � 0
and

∑
n Mn = 1 [72]:

CG(ρ) = S

(
ρ‖

∑
n

MnρMn

)
. (68)

Note that CG(ρ) is well defined [i.e., CG(ρ) � 0] due to
the fact that Tr(

∑
n MnρMn) � 1. This quantity is involved

in the derivation of key rates for unstructured quantum
key distribution protocols [72]. However, since in general∑

n MnρMn is not normalized, one may define a modified
version by introducing the generalized Lüders operations [44]

C̃G(ρ) = S

(
ρ‖

∑
n

M1/2
n ρM1/2

n

)
. (69)

Similarly, we have C̃G(ρ) � 0 but its physical meaning and
application are left for future investigation.
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APPENDIX A: REPEATABILITY HYPOTHESIS

Since von Neumann’s measurement scheme can be viewed
as a particular case of the Lüders postulate, here we only need
to consider the implication of the repeatability hypothesis on
the state transformation of Lüders-type measurement. Let R

be a (degenerate) Hermitian operator with the discrete spectral
form

R =
∑

n

rnPn, (A1)

where rn are distinct eigenvalues and
∑

n Pn = 1 with
Tr(Pn) � 1. Before proceeding, we may employ a useful
lemma first proved by von Neumann [23].

Lemma 2. For positive-semidefinite operators A � 0 and
B � 0, we have AB = 0 if Tr(AB) = 0.

Proof. Since A � 0 and B � 0, we have the following:

Tr(AB) = Tr[(
√

A
√

B)†(
√

A
√

B)] = ‖
√

A
√

B‖2
2, (A2)

where ‖ · ‖2 denotes the Hilbert-Schmidt norm. If Tr(AB) =
0, then we get

√
A

√
B = 0 and hence we have AB =√

A
√

A
√

B
√

B = 0. �
Assume that a measurement of observable R on the

initial state ρ yields an eigenvalue rn and the corresponding
(normalized) state after the measurement is given by ρn.
According to the repeatability hypothesis, we have the con-
ditional probability for an immediate successive measurement
of R:

P (rm|rn) = Tr(ρnPm) = δmn. (A3)

In particular, we obtain Tr[ρn(1 − Pn)] = 0. By utilizing the
above lemma, we finally have ρn = ρnPn = Pnρn = PnρnPn,
which means that ρn lies in the eigenspace characterized by
Pn. Note that if the observable R is nondegenerate, then Pn is a
rank-one projection operator and hence ρn = Pn = |φn〉〈φn|.

Further, based on Born’s statistical rule, the initial
state ρ is transformed to a statistical mixture of the
subensembles

σ =
∑

n

P (rn)ρn =
∑

n

P (rn)PnρnPn. (A4)

Since PmPn = δmn, we have

σ =
∑

n

Pn

[∑
m

P (rm)ρm

]
Pn =

∑
n

PnσPn. (A5)

This indicates that the Lüders measurement transforms the
initial state ρ into σ with a block-diagonal structure.

APPENDIX B: ENTROPY INCREASE FOR UNITAL
CHANNELS

The phenomenon of entropy increase in the (one-
dimensional) projection measurement was first recognized by

von Neumann [23]. Generally, it is easy to prove that the
Lüders-type measurements L(ρ) = ∑

n PnρPn increase the
von Neumann entropy by Klein’s inequality since

S(L(ρ)) − S(ρ) = S(ρ ‖ L(ρ)) � 0, (B1)

where S(ρ‖σ ) = Tr(ρ log ρ) − Tr(ρ log σ ) is the quantum
relative entropy.

Moreover, there is another elegant way to gain more
insight into this fact. In particular, for the von Neumann
measurement of density matrix ρ (where Pn are rank-one
orthogonal projectors), the Schur-Horn theorem leads to the
following majorization relation [73]:

λ(D(ρ)) ≺ λ(ρ), (B2)

where λ(ρ) denotes the vector of eigenvalues of ρ. For more
general cases, we note that there exists a unitary mixing
representation of the pinching operation L(ρ),

L(ρ) =
N∑

n=1

PnρPn = 1

N

N∑
k=1

UkρU
†
k , (B3)

where N is the number of elements of the set {Pn}, which
corresponds to the distinct eigenvalues of the observable R =∑

n rnPn, and the unitary matrix Uk is defined as

Uk =
N∑

j=1

ωjkPj , ω = e2πi/N . (B4)

Therefore, according to the Alberti-Uhlmann theorem [74],
we have

λ(L(ρ)) ≺ λ(ρ). (B5)

Since the von Neumann entropy is a symmetric concave
function (and so is automatically Schur concave), we obtain
S(L(ρ)) � S(ρ). This fact can also be confirmed directly by the
concavity of entropy using the unitary mixing representation
of L(ρ):

S(L(ρ)) = S

(
1

N

N∑
k=1

UkρU
†
k

)
� 1

N

N∑
k=1

S(UkρU
†
k ) = S(ρ).

(B6)

It is easy to see that D(ρ) and L(ρ) are both unital channels.
In fact, the similar majorization relation holds for all unital
channels �(1) = 1, i.e., λ(�(ρ)) ≺ λ(ρ) [74,75]. Besides, the
increase of entropy for unital channels can also be proved
by the monotonicity of quantum relative entropy under CPTP
maps in d-dimensional Hilbert space; that is,

S

(
ρ‖ 1

d

)
� S

(
�(ρ)‖�

(
1

d

))
= S

(
�(ρ)‖ 1

d

)
, (B7)

which is equivalent to S(�(ρ)) � S(ρ).
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