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Quantum-enhanced microscopy with binary-outcome photon counting
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Polarized light microscopy using path-entangled N -photon states (i.e., the N00N states) has been demonstrated
to surpass the shot-noise limit at very low light illumination. However, the microscopy images suffer from
divergence of phase sensitivity, which inevitably reduces the image quality. Here we show that due to experimental
imperfections, such a singularity also takes place in the microscopy that uses twin-Fock states of light for
illumination. We propose two schemes to completely eliminate this singularity: (i) locking the phase shift sensed
by the beams at the optimal working point using a spatially dependent offset phase; (ii) a combination of two
binary-outcome photon counting measurements, one with a fixed offset phase and the other without any offset
phase. Our observations remain valid for any kind of binary-outcome measurement and may open the way for
quantum-enhanced microscopy with high N photon states.
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I. INTRODUCTION

Light microscopy at low light illumination is desirable
to avoid damaging the specimen (e.g., the biological sam-
ples) [1–5]. At very low light level, it might be more
efficient to use nonclassical light for illumination, such as
twin beams from a parametric down-converted light [1]
and amplitude-squeezed light [2]. Recently, polarized light
microscopy using path-entangled N -photon states (i.e., the
N00N states) ∼ (|N,0〉 + |0,N〉) was demonstrated to enlarge
the contribution of each photon to the image contrast [4,5],
where |m,n〉 ≡ |m〉H ⊗ |n〉V denotes the product of photon
Fock states of two orthogonal polarization modes H and V .
From binary-outcome photon counting [4,5], it was found
that the birefringence phase shift of a sample φ(x,y) can be
estimated beyond the shot-noise limit, i.e., the phase sensitivity
δφ(x,y) < 1/

√
N . However, the phase sensitivity diverges at

certain values of phase shift, which in turn reduces the quality
of microscopy images [5].

Compared to the N00N states, the twin-Fock states |n,n〉 are
easier to prepare and more robust against photon loss [6–9].
Recently, it was shown that the visibility of the six-photon
count rate could reach ∼ 94% [9], significantly better than that
of a five-photon N00N state [10]. In addition, the achievable
phase sensitivity can surpass that of the N00N states with a
binary-outcome photon counting [9]. Similar to the authors
of Ref. [5], however, we will show that quantum-enhanced
microscopy illuminated by the twin-Fock state of the light (or
any finite-N input state) also suffers from the divergence of
the phase sensitivity. To remedy this problem, we propose
a scheme to lock the phase shift sensed by the beams at
the optimal working point using three estimators nearby, as
illustrated schematically by Fig. 1(a). We further show that
a combination of two binary-outcome photon counting, one
with a fixed offset phase and the other without any offset
phase, also works to remove the singularity. Our results can be
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generalized to any kind of binary-outcome measurement that
has been widely adopted in quantum metrology [11–17], and
recently in quantum-enhanced microscopy [4,5].

II. BINARY-OUTCOME PHOTON COUNTING USING
TWIN-FOCK STATES OF LIGHT

As illustrated schematically in Fig. 1(a), we consider a
quantum-enhanced microscopy illuminated by the twin-Fock
states of light |n,n〉 [6–9], with the number of photons
N = 2n. The microscopy images can be constructed from
the coincidence photon counting at the output ports [4,5].
Theoretically, the conditional probability for detecting n1

photons in the H polarization mode and n2 photons in the
V polarization mode is given by

P (n1,n2|θ ) = |〈n1,n2|e−i[ϕ+φ(x,y)]Jy |n,n〉|2, (1)

where ϕ is a controllable offset phase, φ(x,y) is the spatially
dependent phase shift caused by the birefringence of the polar-
ized beams inside the sample [5], and θ (x,y) ≡ ϕ + φ(x,y).
The phase accumulation exp(−iθJy) can be implemented
with a polarization Mach-Zehnder interferometer [18–20],
corresponding to a rotation around the y component of the
Stokes vector J = (a†

H ,a
†
V )σ (aH ,aV )T /2, where aH (aV ) is

the annihilation operator of the polarization mode H (V ), and
σ denotes the Pauli operator.

The photon detection event n1 = n2 = n is of interest
[7–9] and is denoted as the outcome “+” . This is in-
deed a projection measurement, or equivalently, a binary-
outcome measurement (see Appendix A). The output signal is
〈μ(θ )〉 ≡ 〈ψ(θ )|μ|ψ(θ )〉 = P (n,n|θ ), where μ = |n,n〉〈n,n|
and |ψ(θ )〉 = exp(−iθJy)|ψin〉. For each given phase shift θ ∈
(−π,π ), after N binary-outcome measurements, the signal
is measured by the count rate P (n,n|θ ) 	 N+/N , where
N+ is the occurrence number of the event n1 = n2 = n. In
Fig. 1(c) we show the statistical average of N+/N and its
standard deviation (the circles and the bars) obtained from
numerical simulation: first we generate N random numbers
{ξ1,ξ2, . . . ,ξN } [21] uniformly distributed within [0,1], then
we obtain the occurrence number N+ as the number of counts
for ξ to lie within the interval [0,P (n,n|θ )]. Here, taking
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FIG. 1. (a) Polarized light microscopy with a feedback offset
phase. (b) Quasiprobability distributions of the input |n,n〉 and
the output exp(−iθJy)|n,n〉 on the Poincaré sphere, where θ =
ϕ + φ(x,y). (c) Statistical average of the count rate (red circles)
and its standard deviation (bars) from N = 100 measurements and
20 repetitions. (d) Phase uncertainty of the maximum likelihood
estimator (red circles) and the phase sensitivity (blue solid) using
Pfit(n,n|θ ). The red dashed line: the sensitivity with the exact
P (n,n|θ ). Horizontal grid lines: shot-noise limit 1/

√
N and δθQCRB

for N = 2n = 2, 4, 6.

the experimental imperfections into account, we replaced
P (n,n|θ ) with a0P (n,n|θ ) + b0, with a0 and b0 related to the
imperfect visibility and reduced the peak height at the phase
origin, respectively (see Appendix B). As depicted in Fig. 1(c),
the averaged signal, fitted by Pfit(n,n|θ ), show multifold
oscillations and the first dark fringe appears at θdark 	 π/2,
arccos (

√
1/3), and arctan (

√
2/3), from the top to the bottom.

The microscopy images can be reconstructed from the
inversion phase estimator [5], which is a solution of the
equation P (n,n|θ ) = N+/N (see Appendix A). To avoid
the phase ambiguity [22–24], we assume that the true
value of the phase shift lies within a monotonic regime of
P (n,n|θ ), e.g., θ ∈ (0,θdark). The image quality is determined
by the phase uncertainty δθ = 	μ/|∂〈μ(θ )〉/∂θ | = 1/

√
F (θ ),

where, for a single-shot measurement, the fluctuations of signal
(	μ)2 ≡ 〈μ2〉 − 〈μ〉2 = P (n,n|θ )[1 − P (n,n|θ )] and F (θ ) is
the classical Fisher information of the binary-outcome photon
counting measurements (see Appendix A). In Fig. 1(d), we plot
the phase sensitivity as a function of θ , using the exact (fitted)
expression of P (n,n|θ ). For the exact cases (the red dashed
lines), the sensitivity reaches minimum at θ = 0 [7]. Due to
the experimental imperfections, however, the best sensitivity
occurs at θmin 	 0.88, 0.37, and 0.26 (∼ 15◦ [9]), from the top
to the bottom, as depicted by the blue solid lines of Fig. 1(d).

At the optimal working point θmin, the sensitivity can
surpass the shot-noise limit by an enhancement factor η =
1/(

√
Nδθmin) 	 1.39 (for N = 2), 1.61 (N = 4), and 1.85

(N = 6 ). Theoretically, the enhancement factor can be
predicted by calculating the quantum Fisher information of
a phase-encoded state exp(−iθG)|ψin〉 [25–27], where G is a
Hermitian operator that encodes a phase shift on the input state
|ψin〉. The optimal choice of G is fully determined by quantum
correlation of the input state [28–32] . For a twin-Fock state, the
quasiprobability distribution spreads along the equator of the
Poincaré sphere, see Fig. 1(b). This observation suggests that

the phase generator can take the form G = Jx cos α + Jy sin α

for arbitrary α [= π/2 in Eq. (1)], which results in the quantum
Fisher information FQ = N (N + 2)/2 and hence the quantum
Cramér-Rao bound δθQCRB = 1/

√
FQ 	 √

2/N . Therefore,
the enhancement factor is given by η = 1/(

√
NδθQCRB) =√

(N + 2)/2.
The sensitivity diverges at certain values of θ (e.g., θ = 0,

±θdark). This is because at those points the slope of the
signal ∂〈μ(θ )〉/∂θ = 0, but 	μ �= 0, so that δθ → ∞ (see
also Appendix B). Such a singularity could take place for any
finite-N input state, e.g., a single-photon state |1,0〉 and the
multiphoton N00N states [5]. For a general binary-outcome
measurement, we show that the inversion estimator is indeed
the same as the asymptotically optimal maximum likelihood
estimator (MLE) [33], so the same divergence also occurs
for the MLE (see Appendix A). This problem cannot be
completely avoided even when all the (N + 1) outcomes are
taken into account.

III. SIMULATED MICROSCOPY IMAGES

To reconstruct the microscopy images, one first calibrates
the interferometer (with no sample present, as done by the
authors of Ref. [5]) to obtain the averaged signal Pfit(+|θ ) as
a function of the phase shift θ . Next, at each spatial point of
the sample, one performs the binary-outcome measurements
for N times to record the occurrence frequency for the
detection event of interest, and then inverts the averaged signal
Pfit(+|θ ) = N+(x,y)/N to obtain the inversion estimator
θest(x,y). If an offset phase ϕ is applied before the sample, then
the estimator becomes φest(x,y) = θest(x,y) − ϕ [5], where
the offset phase ϕ is chosen such that the total phase shift
θ = ϕ + φ(x,y) ∈ [θmin,θdark) [34].

The birefringence phase shift used here is φ(x,y) = 0.1 +
0.437 cos6[2(x − π/2)2 + y2] ∈ (0.1,0.537], which can be
discretized into pixels (i,j ), with i,j = 0,1,2, . . .. At each
pixel, performing the photon-counting measurements for N
times and inverting the signal, one can obtain the inversion
estimator φest(i,j ) = θest(i,j ) − ϕ, where θest is a solution
to Pfit(+|θ ) = N+(i,j )/N . For each input twin-Fock state,
Pfit(+|θ ) has been obtained from the calibration of the
interferometer [see the blue solid lines of Fig. 1(c), and also
Appendix B], and N+(i,j ) denotes the occurrence number of
the outcome “+” at the pixel (i,j ).

To simulate the microscopy illuminated by a classical light,
we consider a single-photon state |1,0〉 as the input and treat
the detection event n1 = 1 and n2 = 0 as the outcome “+”,
which occurs with probability P (+|θ ) = cos2(θ/2). Photon
counting over the other outcome gives P (−|θ ) = sin2(θ/2),
as demonstrated recently by Israel et al. [5]. Both of them
exhibit the same phase dependence as that of a coherent-state
input light |α〉 ⊗ |0〉 [16,17].

Figure 2 shows the simulated microscopy images using
the inversion estimator φest(i,j ) for the input twin-Fock states
|n,n〉 with n = N/2 = 1,2,3, and that of the single-photon
state |1,0〉. To keep exactly 600 photons at each pixel, we use
the number of measurementsN = (a) 600, (b) 300, (c) 150, and
(d) 100. From Fig. 2(d), one can note that for the six-photon
state |3,3〉, the simulated microscopy image is less accurate
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FIG. 2. Simulated microscopy images (30 × 60 pixels) recon-
structed from the phase estimator φest(i,j ) for the single-photon state
(a), and the twin-Fock states with N = 2n = 2 (b), 4 (c), and 6
(d). The number of photons at each pixel N × N = 600. Within
the area enclosed by the green solid lines, the phase shift sensed
by the beams is almost optimal, and numerical simulation of the
local standard deviation from 20 repetitions gives LSD|1,0〉 = 0.0413,
LSD|1,1〉 = 0.0297, LSD|2,2〉 = 0.0253, and LSD|3,3〉 = 0.022, indi-
cating LSD|1,0〉/LSD|n,n〉 ≈ √

(N + 2)/2.

at some spatial points (see the speckles). This is because the
sensed phase shift θ = ϕ + φ(i,j ) ∼ θdark, at which the phase
sensitivity diverges. A similar phenomenon takes place for the
triphoton N00N state [5], and also for any finite-N photon
state.

The image quality is improved with the quantum source of
the light as long as the sensed phase shift is far from the singular
points [5]. To quantify such an improvement, we calculate the
standard deviation of φest(i,j ) within a local area enclosed
by the green solid lines of Fig. 2, as denoted by LSD|ψin〉 .
Similar to the authors of Ref. [5], we focus on the relative noise
LSD|1,0〉/LSD|n,n〉, which gives a measure of the improvement
in the image quality beyond the classical illumination. From
each image of Fig. 2 one can extract LSD|ψin〉 and hence
the relative noise. Taking 20 pictures for each input state,
we obtain LSD|1,0〉/LSD|n,n〉 = 1.39 (for n = N/2 = 1), 1.63
(n = 2), and 1.88 (n = 3), in agreement with the enhancement
factor η.

IV. PHASE LOCKING TO THE OPTIMAL
WORKING POINT

Due to the divergence of the phase sensitivity, the sensing
range of the quantum-enhanced microscopy becomes narrow,
especially when a higher-N nonclassical state is injected. To
remedy this problem, we propose a scheme to control the offset
phase at each spatial point of the sample according to three
estimators nearby, as illustrated schematically by Fig. 1(a).

The basic idea is to insert a spatially dependent offset phase
ϕ(i,j ), such that the total phase sensed by the beams is close
to the optimal working point: θ (i,j ) ≡ ϕ(i,j ) + φ(i,j ) ∼ θmin.
To determine the offset phase, we need some prior information
to the unknown phase φ(i,j ) before the measurements.
Quantum measurements with adaptive feedback maximize
the information gain in subsequent measurements and have
been experimentally shown to be a powerful technique to
achieve the precision beyond the shot-noise limit [8,23] .
However, the application of the existing feedback-based phase
estimation (see e.g., Ref. [35]) in the microscopy is generally
very challenging. For our binary-outcome measurements,

FIG. 3. (a, b)Two steps of the phase locking, (c) the simulated
microscopy image for the input six-photon state |3,3〉, (d) and
the true value of phase shift. In (a), the offset phase is tuned
as ϕ(i,0) = θmin − φest(i − 1,0), and ϕ(0,j ) = θmin − φest(0,j − 1);
in (b) it becomes ϕ(i,j ) = θmin − [φest(i − 1,j ) + φest(i,j − 1) +
φest(i − 1,j − 1)]/3. In (c) N = 100 to keep exactly 600 photons
at each pixel. The inset in (d) the simulated estimators at the pixel
y = 30 as a function of x (blue solid) and that of the true value of
phase shift (red dashed).

a global feedback strategy for Ntot measurements requires
solving a set of nonlinear equations with 2Ntot+1 − 1 unknown
variables [35]. Recently, Hentschel and Sanders [36] proposed
an approximate scheme that reduces the number of unknown
variables to ∼ O(Ntot). Here we are interested in estimating
the values of the phases at all the pixels of the sample, which
typically requires Ntot = N × Npixels ∼ 106, where Npixels

denotes the total number of pixels. In this case, even the
approximate strategy becomes formidable.

We present a simple but effective scheme that adjusts
the offset phase after every N measurements per pixel.
Specifically, we first estimate the true value of the phase
shift at the pixel (0,0), e.g., φest(0,0) 	 0.1 rad. From the
starting point, we can obtain all the estimators by adjusting
the offset phase as illustrated in Figs. 3(a) and 3(b). For
instance, to estimate φ(1,0), we adjust the offset phase as
ϕ(1,0) = θmin − φest(0,0), which ensures the phase locking
to the optimal working point θ (1,0) = ϕ(1,0) + φ(1,0) 	
θmin, provided φ(1,0) 	 φest(0,0). With this offset phase, one
performs N measurements at the pixel (1,0) to obtain a
local phase estimator φest(1,0) = θest − ϕ(1,0), where θest is a
solution to Pfit(+|θ ) = N+(1,0)/N . Similarly, one can obtain
the estimator φest(0,1). To estimate φ(1,1), we use the three
estimators in a rectangle and adjust the offset phase to ϕ(1,1) =
θmin − [φest(0,1) + φest(0,0) + φest(1,0)]/3, which helps to
lock θ (1,1) = ϕ(1,1) + φ(1,1) at the pixel (1,1) to the optimal
working point θmin. Repeating the above procedures, one can
measure the phase of all the pixels over the entire sample.

In Fig. 3(c), we show the microscopy image for the
six-photon state |3,3〉 using the phase-locking method. The
main advantage of this method is that the singular points (i.e.,
the speckles) disappear. Furthermore, compared to previous
adaptive feedback schemes [8,35,36] that adjust a controllable
phase after each single measurement, our scheme updates the
offset phase every N measurements. This costs much less in
computational resources, while it can still improve the image
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quality significantly. The overall quality of the image can
be quantified by the root-mean-square error, i.e., RMSE =√∑

i,j [φest(i,j ) − φ(i,j )]2/Npixels , which approaches the op-
timal value of the standard deviation LSD|3,3〉 = 0.022, as
depicted in Fig. 2(d). This observation implies that at most
of the pixels, the phase shift sensed by the beams is optimal.

V. COMBINATION OF TWO BINARY-OUTCOME
MEASUREMENTS

The phase-locking scheme requires control of the feedback
phase after every N measurements at each pixel. To further
reduce the cost, one can use a fixed offset phase ϕ (as
implemented experimentally in Ref. [5]) and then perform two
sequences of binary-outcome photon counting measurements:
one sequence with the offset phase ϕ and the other sequence
without any offset phase. Then we combine all the measure-
ment results to obtain the MLE and hence the microscopy
images, i.e., φmle(i,j ).

Following the authors of Ref. [5], let us begin with the
calibration the interferometer using different known values of
phase shift φ and a fixed offset phase ϕ for each input state.
PerformingN1 measurements without the offset phase, one can
obtain the occurrence numberN (+)

1 for the outcome n1 = n2 =
n. In the presence of the offset phase, one performs another N2

measurements over the output state exp[−i(φ + ϕ)Jy]|n,n〉 to
obtain the occurrence number N (+)

2 . In the upper panel of
Fig. 4, we plot the averaged count ratesN (+)

1 /N1 andN (+)
2 /N2

(the circles) as functions of φ and fit them as Pfit(+|φ) (the
blue solid) and Pfit(+|ϕ + φ) (the red dashed), respectively.

Next, we perform the above binary-outcome photon count-
ing at each pixel of the sample for totally N (= N1 + N2)
measurements to retrieve φmle that maximizes the likelihood
function

L(φ)∝[Pfit(+|ϕ + φ)]N
(+)
2 [1 − Pfit(+|ϕ + φ)]N2−N (+)

2

×[Pfit(+|φ)]N
(+)
1 [1 − Pfit(+|φ)]N1−N (+)

1 , (2)

FIG. 4. Simulated count rates (a)–(c) and uncertainty of the MLE
(d)–(f) for ϕ = −0.3 × θdark and N1 = N2 = N /2, where N × N =
1200 is fixed for the input states |1,1〉 (left), |2,2〉 (middle), and |3,3〉
(right). Red dashed lines in (d)–(f): the phase sensitivity 1/

√
F (φ),

with the locations of θdark indicated by the vertical lines. Blue solid
lines: the sensitivity with the total Fisher information (see text). The
inset: statistical average of φmle as a function of φ for 20 repetitions.

where the occurrence numbers N (+)
1 and N (+)

2 are spatially
dependent, containing phase information of the sample. At
each pixel (i,j ), the phase estimator φmle and its uncertainty
σ can be obtained by numerically finding the peak of the
likelihood function and the 68.3% confidence interval around
the peak [21]. The inset of Figs. 4(d) through 4(f) shows
the statistical average of the estimator 〈φmle〉s = φ, indicating
that φmle is unbiased for φ ∈ (0,θdark). Interestingly, we find
that the averaged phase uncertainty per measurement

√
N 〈σ 〉s

(the circles) follows the lower bound of the phase sensitivity
δφ=√

N /
√

Ftot(φ) (the blue solid lines), where Ftot(φ) =
N1F (φ) + N2F (φ + ϕ) is the total Fisher information of
all the two sequences of binary-outcome measurements and
F (φ) is the Fisher information of a single sequence of
the measurements [see Appendix A, Eq. (A4)]. Obviously,
the singularity of δφ can be completely eliminated by a
suitable choice of the offset phase ϕ (which maximizes the
total Fisher information), in sharp contrast to the previous
result [5,34].

In Fig. 4, we show that with a fixed offset phase ϕ = −0.3 ×
θdark for each input twin-Fock state, the unbiased estimator φmle

does not show any singularity and its uncertainty can surpass
the shot-noise limit as φ increases up to ∼ θdark. It is therefore
useful for estimating the phase information of a sample at the
sub-shot-noise limit through φmle(i,j ).

VI. CONCLUSION

In summary, we investigated theoretically the binary-
outcome photon counting and its potential applications in
quantum-enhanced microscopy using the input twin-Fock
states of light. Our results show that the inversion estimator is
the same to the asymptotically optimal maximum likelihood
estimator. Both estimators may suffer from a divergent
uncertainty that reduces the quality of the microscopy images.
To remedy this problem, we propose a simple method to
lock the phase shift sensed by the beams at the optimal
working point with a spatially dependent offset phase. The
overall image quality outperforms the case of classical light
illumination by a factor ∼ √

(N + 2)/2. We further show that
a combination of two sequences of binary-outcome photon
counting measurements, one sequence with a fixed offset
phase and the other sequence without any offset phase,
also works to remove the singularity. Our results remain
valid for any kind of binary-outcome measurement and pave
the way for realistic implementations of quantum-enhanced
microscopy that uses high-N nonclassical states of the
light.
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APPENDIX A: PHASE ESTIMATORS FOR A GENERAL
BINARY-OUTCOME MEASUREMENT

In the following, we introduce the concept of binary-
outcome measurement and present the details of our numerical
simulations.

Binary-outcome measurements have been widely adopted
in quantum metrology [11–17] and recently in quantum-
enhanced microscopy [4,5]. As the simplest measurement
scheme, the output signal can be expressed as

〈μ(θ )〉 =
∑
i=±

μiP (i|θ ) ≈
∑
i=±

μi

Ni

N , (A1)

where N±/N denotes the occurrence frequency of the out-
come μ±, measured by the normalized coincidence rate with a
finite number of photon counts N = N+ + N−. For the input
twin-Fock states |n,n〉 [7–9], the specific detection event n1 =
n2 = n is of interest and can be treated as the outcome “+” and
the others as “−”, with the conditional probability P (+|θ ) ≡
P (n,n|θ ) and hence P (−|θ ) = 1 − P (+|θ ). Taking
μ+ = +1 and μ− = 0, the signal becomes 〈μ(θ )〉 =
P (+|θ ) = P (n,n|θ ), as expected. Similarly, the parity
detection gives two outcomes ±1, according to the even
or odd number of photons being detected at one port of
the interferometer [11–14]. Recently, quantum-enhanced
microscopy with a two-photon N00N state has been
demonstrated by counting odd numbers of photons [4]. For a
measurement with continuous-variable outcome, one can also
realize a binary-outcome measurement by dividing the date
into two bins [16]. These cases are indeed binary-outcome
measurement [17].

For any kind of binary-outcome measurement, the inversion
estimator θest can be obtained by inverting the averaged
signal, which is indeed a solution of Eq. (A1), or equivalently
P (+|θ ) = N+/N , independently from the measured values
μ±. According to the error propagation, the uncertainty
of θest depends on the fluctuations of signal 	μ = (μ+ −
μ−)	N+/N , with 	N+ = √

NP (+|θ )P (−|θ ) being the
standard deviation of a binomial distribution

L(θ ;N+) =
( N
N+

)
[P (+|θ )]N+[P (−|θ )]N−, (A2)

where
(
n

k

)
is the binomial coefficient, P (+|θ ) + P (−|θ ) =

1, and hence
∑

N+ L(θ ;N+) = [P (+|θ ) + P (−|θ )]N = 1. On
the other hand, from Eq. (A1), we obtain the slope of signal
∂〈μ(θ )〉/∂θ = (μ+ − μ−)∂P (+|θ )/∂θ , which, together with
	μ, gives the phase uncertainty

δθ = 	μ

|∂〈μ(θ )〉/∂θ | =
√

P (+|θ )P (−|θ )√
N |∂P (+|θ )/∂θ | = 1√

NF (θ )
,

(A3)

where, for a single-shot measurement, the classical Fisher
information is given by

F (θ ) =
∑
i=±

1

P (i|θ )

[
∂P (i|θ )

∂θ

]2

. (A4)

Our above results indicate that for any binary-outcome mea-
surements with N � 1, the simplest data processing based on

inverting the averaged signal always saturates the Cramér-Rao
lower bound [17]. This is somewhat counterintuitive since,
according to Fisher’s theorem [33], this bound is saturable
by maximum likelihood estimator (MLE) as the number of
measurementsN � 1. To understand it, we further investigate
the MLE by finding a value of θ that maximizes Eq. (A2)
(hereinafter denoted by θmle). When N± ∼ O(N ) � 1, the
binomial distribution of L(θ ;N+) becomes normal

L(θ ;N+) ∝ exp

(
− [N+ − NP (+|θ )]2

2(	N+)2

)
, (A5)

which indicates that the MLE θmle also satisfy the equation
P (+|θ ) = N+/N , the same to that of θest.

The phase estimator θmle and its uncertainty can be obtained
by maximizing Eq. (A2). To avoid the phase ambiguity
[22–24], we introduce prior knowledge about the true value of
θ by assuming the prior probability P (θ ) = 1 for θ ∈ (0,θdark),
and 0 outside, where θdark denotes the location of the first dark
fringe; see the vertical dashed lines in Fig. 1(c). Next, we fit
the phase distribution as a Gaussian around its peak [21], i.e.,

P(θ |N+) = CP (θ )L(θ ;N+) ∝ exp

[
− (θ − θmle)2

2σ 2

]
,

where C is a normalized factor, and σ is 68.3% confidence
interval of the Gaussian around θmle, given by

σ 	
√

C

|∂2P(θ |N+)/∂θ2|θ=θmle

. (A6)

The above results remain valid for any input state of the probes
and are independent from any specific form of the noise. For
the input twin-Fock states, the averaged phase uncertainty of
the MLE, i.e.,

√
N 〈σ 〉s [the circles of Fig. 1(d)], shows a good

agreement with the sensitivity per measurement 1/
√

F (θ ) (the
blue solid line), where 〈(. . .)〉s ≡ ∑M

i=1(. . .)i/M denotes the
statistical average for M repetition of measurements.

APPENDIX B: NUMERICAL SIMULATIONS

We consider a single-photon state |1,0〉 as the input
to simulate the microscopy with a classical illumination
[4,5]. It is easy to obtain the conditional probability for
detecting a single photon in the horizontal polarization
mode and vacuum in the vertical polarization mode, i.e.,
P (1,0|θ ) = |〈1,0| exp(−iθJy)|1,0〉|2 = cos2(θ/2). If we treat
the detection event n1 = 1 and n2 = 0 as the outcome “+”,
and the others as “−”, then this is indeed a binary-outcome
photon counting measurement, with the output signal 〈μ(θ )〉 =
P (+|θ ) = cos2(θ/2). From Eq. (A3), we immediately obtain
the phase sensitivity δθ = 1/

√
NF (θ ), where the classical

Fisher information is given by

F (θ ) = 1

P (+|θ )[1 − P (+|θ )]

[
∂P (+|θ )

∂θ

]2

= 1, (B1)

which is independent from the true value of phase shift θ .
In the real experiment, e.g., Ref. [5], the achievable

sensitivity depends on θ , arising from the detection efficiency,
the photon loss, the imperfect visibility, and so on. To take
the experimental imperfections into account, we first rewrite
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TABLE I. For the single-photon state |1,0〉 and the twin-Fock
states |n,n〉 with n = N/2 = 1, 2, and 3, the parameters used in the
simulations.

N 1 2 4 6

V , h 0.994, 0.99 0.983, 0.985 0.97, 0.98 0.94, 0.975

Eq. (1) in the main text as

P (n1,n2|θ ) → 2hV

1 + V
P (n1,n2|θ ) + h(1 − V )

1 + V
, (B2)

where the peak height h and the visibility V , as shown
in Table I, can be determined by the photon-counting
measurement. Next, we randomly choose N values of the
outcomes according to P (n1,n2|θ ) for each a given θ [21].
Specially, for the input |1,0〉, we generate N random numbers
{ξ1,ξ2, . . . ,ξN }, where ξk ∈ [0,1] for k = 1, 2, ..., N . If 0 �
ξk < P (1,0|θ ), we set ξk = +1, otherwise, ξk = 0, then the
number of “+1” can be used to simulate the occurrence number
of the event n1 = 1 and n2 = 0, denoted as N+. Finally, for
each a given θ ∈ (−π,π ), we repeat the above simulations for
M times to obtain the averaged signal 〈N+〉s/N and fit it as
Pfit(1,0|θ ).

In Fig. 5, we numerically simulate the binary-outcome
photon counting for the input state |1,0〉, using the parameters
in Table I. For N = 100 and M = 20, we obtain Pfit(1,0|θ ) =
aP (1,0|θ ) + b, with a = 0.988 and b = 0.00396. Substituting
it into the first result of Eq. (B1), we further obtain the phase
sensitivity per measurement

√
N δθ = 1/

√
F (θ ); see the blue

solid line. The optimal working point for phase sensing is
θmin = 1.7371 ∼ π/2 and the best sensitivity 1/

√
F (θmin) =

1.0116 ∼ 1, as predicted by Eq. (B1). Our results coincide
quite well with the experimental data of Ref. [5], where the
signal P (0,1|θ ) = sin2(θ/2) was measured. Using Pfit(1,0|θ ),
we also calculate the phase uncertainty of the MLE, i.e.,√
N 〈σ 〉s (the circles), which shows a good agreement with

the sensitivity (the blue solid line).

FIG. 5. Statistical average of (a) N+/N and (b)
√
Nσ for the

single-photon input state, with the number of photon countsN = 100
and the number of repetitions M = 20, where σ is given by Eq. (A6).
Red dashed and blue solid lines: P (1,0|θ ) and Pfit(1,0|θ ), and the
associated sensitivities 1/

√
F (θ ). Vertical lines: locations of θ = 0,

±θdark, and ±θmin. The horizontal lines in (b): the shot-noise limit
1/

√
N and the theoretical bound

√
2/

√
N (N + 2) for N = 1.

To simulate the twin-Fock experiments [7–9], we
first write down exact results of the signal for
the input states |1,1〉, |2,2〉, and |3,3〉, given by
P (1,1|θ ) = cos2(θ ), P (2,2|θ ) = [1 + 3 cos(2θ )]2/16 [7,8],
and P (3,3|θ ) = [3 cos(θ ) + 5 cos(3θ )]2/64 [9], respectively.
Next, we generate N random numbers according to Eq. (B2)
with the parameters in Table I. The averaged signal and the
associated phase sensitivity are shown in Figs. 1(c) and 1(d).

Note that the exact result of P (+|θ ) and the choice of
random numbers using Eq. (B2) are unnecessary as long as
the counts rate has been recorded in the real experiment.
Furthermore, the phase sensitivity diverges at certain values of
θ . Formally, this is because the slope of signal ∂P (+|θ )/∂θ =
0, but the variance of signal (	μ)2 ∝ P (+|θ )[1 − P (+|θ )] �=
0. Here, the outcome “+” represents n1 = 1 and n2 = 0 for the
input state |1,0〉, while for the twin-Fock states |n,n〉, it stands
for the detection event n1 = n2 = n. Due to the experimental
imperfections, the signal Pfit(+|θ ) �= 0,1 at certain values of
the phase shift (e.g., θ = 0, ±θdark), so the variance of the
signal is nonvanishing at that points, but the slope of signal is
still vanishing, which leads to the singularity of the sensitivity.
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