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We observe spin squeezing in three-component Bose gases where all three hyperfine states are coupled
by synthetic spin-orbit coupling. This phenomenon is a direct consequence of spin-orbit coupling, as can be
seen clearly from an effective spin Hamiltonian. By solving this effective model analytically with the aid
of a Holstein-Primakoff transformation for a spin-1 system in the low excitation limit, we conclude that the
spin-nematic squeezing, a category of spin squeezing existing exclusively in large spin systems, is enhanced
with increasing spin-orbit coupling intensity and effective Zeeman field, which correspond to Rabi frequency
�R and two-photon detuning δ within the Raman scheme for synthetic spin-orbit coupling, respectively. These
trends of dependence are in clear contrast to spin-orbit-coupling-induced spin squeezing in spin-1/2 systems.
We also analyze the effects of harmonic trap and interparticle interaction with realistic experimental parameters
numerically, and find that a strong harmonic trap favors spin-nematic squeezing. We further show spin-nematic
squeezing can be interpreted as two-mode entanglement or two-spin squeezing at low excitation. Our findings can
be observed in 87Rb gases with existing techniques of synthetic spin-orbit coupling and spin-selective imaging.

DOI: 10.1103/PhysRevA.95.013605

I. INTRODUCTION

Spin squeezing is an important resource which has many
potential applications not only in quantum metrology and
atom interferometers [1–5] but also in many aspects of
quantum information due to its close relation with quantum
entanglement [6–10]. In conventional experiments, squeezing
is usually achieved via the nonlinearity induced by the inter-
particle interaction [3–5]. As an example, spin squeezing has
been obtained experimentally in a Bose-Einstein condensate
(BEC) of a three-component Bose gas [11]. However, the
intensity of spin squeezing in these experiments crucially
depends on the interaction between atoms. In cold atom
experiments, the background interaction is usually very weak
such that the observation of squeezing is relatively hard.
Although there are some techniques to enhance the interaction,
e.g., by tuning the state-dependent microwave potentials [4],
or through a magnetic Feshbach resonance in alkali atoms
[5,12], the side effects of decoherence, severe atom loss, and
dynamical instability induced by strong interaction still hinder
the achievement of strong spin squeezing.

The experimental realization of synthetic spin-orbit cou-
pling (SOC) in ultracold atomic gases for a pseudo-spin-1/2
system [13–15] has attracted much attention, partly due to its
close relation to exotic many-particle states and novel exci-
tations [16–18]. Theoretical studies have proposed to realize
spin squeezing in two-component BECs by synthetic SOC,
which can induce an effective spin-spin interaction [19,20].
However, there are two disadvantages of these proposals. First,
the synthetic SOC requires a Raman transition between two
hyperfine states. The Rabi frequency of this Raman transition
is detrimental to spin squeezing, i.e., a stronger SOC leads to
a weaker squeezing. Besides, the two-photon detuning of this

Raman transition is also unfavorable such that best squeezing
will be achieved when the detuning is zero. Nonetheless,
in realistic experiments one would encounter severe heating
effect when the detuning is tuned on resonance.

Recently, the Raman-coupling scheme has been success-
fully applied to realize synthetic SOC in BECs with pseudo-
spin-1 [21], where theoretical analysis predicted a rich phase
diagram as a result of the competition between various in-
teraction channels [22–26]. The spin operators herein must be
described by SU(3) spin matrices, i.e., the Gell-Mann matrices.
These Gell-Mann matrices span an eight-dimensional spin
hyperspace, with three of them usually refereed as spin vectors,
and the other five as nematic tensors [27]. The squeezed spin
operators hence can be categorized into three types, including
the spin-spin squeezing, nematic-nematic squeezing, and spin-
nematic squeezing. Here, we focus on the spin-nematic squeez-
ing, as it is a type of squeezing which exists exclusively in
systems with large spins. We find that the presence of SOC can
induce spin-nematic squeezing, which can be further enhanced
by increasing the SOC intensity or reducing the quadratic Zee-
man splitting. These trends of dependence can be understood
from an effective Hamiltonian, in which the Rabi frequency
and quadratic Zeeman splitting correspond to effective Zeeman
fields in the spin and nematic sectors, respectively, hence
causing opposite effects on various types of spin squeezing.
More importantly, we find that the squeezing is favored by two-
photon detuning of the Raman transition within a fairly large
parameter regime, which is beneficial for experimental realiza-
tions to avoid severe heating effect. When the system exhibits
spin-nematic squeezing in the low excitation limit, we also find
two-mode entanglement [28] and two-spin squeezing [29] in
the system. We further study the effects of an external trapping
potential and interatomic interaction which are present in
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realistic experimental situations by numerically solving the
Gross-Pitaevskii equation, and conclude that the spin-nematic
squeezing is favored by stronger trapping potentials. Finally,
we discuss a possible detection scheme via a spin-selective
imaging technique and a rf rotation of the spin axes [11].

The remainder of this paper is organized as follows. In
Sec. II, we introduce the system under investigation and
discuss the single-particle spectra. We then derive an effective
spin Hamiltonian from which it can be seen clearly that SOC
induces an effective spin-spin interaction. We then analyze
the spin-nematic squeezing and its dependence of various
factors in Sec. III. Finally, we discuss a possible experimental
detection scheme and summarize in Sec. IV.

II. SINGLE-PARTICLE SPECTRA AND AN EFFECTIVE
HAMILTONIAN

Spin-orbit coupled three-component Bose gas can be
generated by counterpropagating Raman lasers along x̂ to
couple the three hyperfine states (|+1〉, |0〉, |−1〉) with mo-
mentum transfer of the Raman process 2kr . The noninteracting
Hamiltonian can be written in the matrix form as [22]

H =

⎛
⎜⎜⎝

(kx+2kr )2

2 − δ �R/2 0

�R/2 k2
x

2 − ε �R/2

0 �R/2 (kx−2kr )2

2 + δ

⎞
⎟⎟⎠ + k2

⊥
2

, (1)

where k⊥ =
√

k2
y + k2

z is the transverse momentum, δ is the
two-photon detuning from the Raman resonance, ε is the
quadratic Zeeman shift induced by the magnetic field along ŷ,
and �R represents the Rabi frequency of the Raman transition.
Notice that throughout the paper, we use the natural units of
� = m = 1, and define kr and the recoil energy Er = k2

r /2 as
the units of momentum and energy, respectively.

The single-particle dispersion can be obtained by diagonal-
izing the noninteracting Hamiltonian of Eq. (1). The resulting
spectrum has three branches, among which the lowest one can
have three minima, two minima, or one minimum depending
on the combination of parameters. In Figs. 1(a) and 1(b),
we show the parameter regions exhibiting different structures
for the case of δ/Er = 1 and ε/Er = 6 respectively. From
Fig. 1(a), we can identify various regions where the lowest
branch of single-particle dispersion acquires one, two, or three
minima. Specifically, for the case of a large positive quadratic
Zeeman splitting ε, the |0〉 state is far detuned from the
other two high-lying hyperfine states, so that the spectrum
has only one minimum. On the other hand, if ε is large
negative, the |0〉 state becomes the high-lying state and the
system essentially turns into a spin-1/2 Bose gas where the
two | ± 1〉 spin components are spin-orbit coupled via virtual
processes involving the |0〉 state. As a result, the single-particle
dispersion can have either two or one minima, depending on
the SOC intensity �R and two-photon detuning δ. For the case
of intermediate |ε|, all three hyperfine states are spin-orbit
coupled and the shape of the spectrum is sensitively dependent
on all parameters. Typical examples of dispersion spectra along
the kx axis showing one minimum, two minima, and three
minima, as well as the trends of evolution depending on �R

and ε, are illustrated in Figs. 1(c) and 1(d), respectively.

FIG. 1. (a,b) Single-particle phase diagrams of a three-
component Bose gas with one-dimensional SOC in the (a) �R–ε

plane with δ/Er = 1 and (b) �R–δ plane with ε/Er = 6. The lowest
branch of the single-particle dispersion spectrum acquires either one,
two, or three local minima in different parameter regimes separated
by solid lines. On the dashed lines within regions of multiple minima,
two of the local minima are degenerate. Typical examples are shown
for the lowest branch of dispersion curves by changing (c) Rabi
frequency �R with δ/Er = 1 and ε = 0 and (d) quadratic Zeeman
energy ε with δ/Er = 1 and �R/Er = 2.

As the spin operators in spin-1/2 systems belong to the
SU(2) group, those in spin-1 systems discussed here are ele-
ments in the SU(3) group. The SU(3) group has eight linearly
independent observables as generators. These generators can
be grouped into two types, including three spin vectors (or
angular momentum operators) and five nematic tensors. The
irreducible matrix representations of these observables are
given by [27]

Jx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Jy = i√

2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠,

Jz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, Qxy = i

⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠,

Qyz = i√
2

⎛
⎝0 −1 0

1 0 1
0 −1 0

⎞
⎠, Qzx = 1√

2

⎛
⎝0 1 0

1 0 −1
0 −1 0

⎞
⎠,

D =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, Y = 1√

3

⎛
⎝1 0 0

0 −2 0
0 0 1

⎞
⎠.

The commutators between these spin operators can then
be classified into three categories: [Jy,Jz] = iJx as spin-
spin group, [Qxy,Qxz] = iJx , [Qyz,D] = iJx , and [Qyz,Y ] =√

3iJx as nematic-nematic group, and [Jx,Qyz] = i(
√

3Y +
D), [Jy,Qzx] = i(−√

3Y + D) as spin-nematic group.
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To study the effective spin-spin interaction induced by
SOC, as well as the induced spin squeezing effect, next we
derive an effective spin model for this spin-orbit coupled
BEC. To facilitate the derivation, we impose a weak har-
monic trap V (r) = ω2

xx
2/2 + ω2

yy
2/2 + ω2

zz
2/2 with ωs=x,y,z

the trapping frequencies along the s axis. We will find
that the resulting form of the effective model does not
depend on the absolute value of trapping frequency, hence it
incorporates solely the effect of SOC. In the presence of such
an auxiliary trapping potential and under the preliminary as-
sumption that all the particles must condense to a single mode
and behave collectively, we can quantize the motional degrees
of freedom along the trapping direction to a discrete energy
spectrum and introduce the bosonic operators a ≡ √

ωx/2(x +
ikx/ωx), b ≡ √

ωy/2(y + iky/ωy), c ≡ √
ωz/2(z + ikz/ωz).

By defining the collective spin operators Fs=x,y,z =∑N
i=1 Js,i , FD = ∑N

i=1 Di, FY = ∑N
i=1 Yi , the Hamiltonian of

Eq. (1) for a system of N particles labeled by i can be rewritten
as [30,31]

H̃ = ωxNa†a + N
4k2

r − ε

3
+ �R√

2
Fx

+ ikr

√
2ωx(a† − a)Fz − δFz + 2k2

r + ε√
3

FY . (2)

Here we ignore the term ωyNb†b + ωzNc†c since the bosonic
modes in the y and z directions do not interact with the spin
operators. Employing the unitary transformation

U = exp[iG(a† + a)Fz] (3)

with G = √
2/ωxkr/N , the Hamiltonian thus can be trans-

formed as

H̃ ′ = ωxNa†a − qF 2
z − δFz + 2k2

r + ε√
3

FY

+ �R√
2
{Fx cos[G(a† + a)] − Fy sin[G(a† + a)]}, (4)

where q = 2k2
r /N = 4Er/N . Notice that in the expression of

H̃ ′, we have neglected the interparticle interaction by con-
sidering the experimentally relevant case of 87Rb atoms with
background interaction trapped in realistic three-dimensional
harmonic potentials, as discussed in the Appendix. In fact, the
effects of density-density interaction proportional to c0 and
spin-spin interaction proportional to c2 are both minor such that
the many-body ground state of the BEC does not differ much
from the single-particle ground state. This assumption is then
validated later by comparing results from this effective model
and those from numerical solutions of the Gross-Pitaevskii
equation. Besides, we drop out the term of N (4k2

r − ε)/3 as
the zero-point energy.

In the weakly interacting regime, the expectation value of
〈a†a〉 is in the order of unity for the single-particle ground state,
and about 1/N for excited states. Considering the prefactor of
1/N in the definition of G, the leading order of the arguments
in the cosine and sine functions in Eq. (4) are 1/N , which are
negligible for systems of large particle number. As a result, we
can approximate the cosine and sine functions to the zeroth
order, and the Hamiltonian Eq. (4) becomes separable in
spatial and spin degrees of freedom, leading to an effective

spin Hamiltonian:

Heff = −qF 2
z + �R√

2
Fx − δFz + 4Er + ε√

3
FY . (5)

One can see clearly that an effective spin-spin interaction
emerges as a result of SOC, and the Rabi frequency �R ,
two-photon detuning δ, and the quadratic Zeeman splitting
ε act as effective Zeeman fields along different directions in
the eight-dimensional spin hyperspace.

III. SPIN-NEMATIC SQUEEZING

With the aid of the effective spin model of Eq. (5), we
can study the spin squeezing in the underlying system. As
the commutators relation between spin and nematic operators
is not present in the spin-1/2 case, next we focus on spin
squeezing of this type. The method can be straightforwardly
applied to the spin-spin and nematic-nematic commutators,
and the results are qualitatively consistent with the findings
for the spin-spin case in a spin-1/2 system with SOC [19,20].

The spin model Eq. (5) cannot be solved exactly due to the
presence of nonlinear interaction. In the following discussion,
we focus on the case of ε > 0 and the low excitation limit
with almost all particles on the |0〉 spin state, and introduce
the Holstein-Primakoff transformation for spin-1 systems

Fx ≡ 1√
2

(b†1N
′
0 + N ′

0b−1 + H.c.),

Fy ≡ 1√
2i

(b†1N
′
0 + N ′

0b−1 − H.c.). (6)

Here, N ′
0 ≡

√
N − b

†
1b1 − b

†
−1b−1, and the operators b±1

represent spin-flipping processes between the internal levels
| ± 1〉 and |0〉 with corresponding operators a±1 and a0. For
the case that most of the particles remain in the mode a0,
i.e., 〈a†

0a0〉 � N and 〈b†±1b±1〉 	 N , the operators b±1 =
a±1a

†
0/

√
N are effective bosonic modes satisfying the com-

mutation relations [bα,b
†
β] = δαβ with α,β = ±1. Besides,

the condition of 〈a†
0a0〉 � N also ensures 〈Fz〉 ∼ 0, such that

the unitary transformation of Eq. (3) has negligible effects
on the ground state.

In what followed, we split the bosonic operators into
its mean-field value (〈b±1〉 = √

Nβ±1) plus the fluctuations
(δb±1), which can be written as b±1 = √

Nβ±1 + δb±1. The
ground-state energy can then be obtained by minimizing the
energy functional E(β1,β−1) in the lowest order. As in this
low excitation limit, nearly all the spins are polarized in the
FY direction, which means |〈±√

3FY + FD〉| ≈ 2N , and the
squeezing parameter is then given by [32]

ξx ≡ min(	2Jn⊥ )

J/2
≈ 	2Fx/N. (7)

Here, J is the expectation value of mean spin, Jn⊥ is a spin
component along the direction perpendicular to the mean spin
direction, and 	2Jn⊥ = 〈J 2

n⊥〉 − 〈Jn⊥〉2. It is then clear that one
has spin squeezing in the spin-nematic channel as ξx < 1.

Next, we will discuss spin squeezing of the ground state
for this system under different parameters by solving the
effective spin Hamiltonian analytically in the low excitation
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FIG. 2. Spin-nematic squeezing parameter ξx as a function of
(a) Rabi frequency �R with δ = 0 and ε/Er = 6 and (b) quadratic
Zeeman splitting ε with δ = 0 and �R/Er = 2. In both figures, results
obtained from the effective spin model Eq. (5) are illustrated by
blue solid lines, in comparison to the numerical solutions of the GP
equation for a pancake-shaped trap with ωx = ωy = 50 Hz, ωz =
1500 Hz (black dashed) and for a cigar-shaped trap with ωx = ωy =
5000 Hz, ωz = 1500 Hz (red dotted). Here, we consider a gas of 87Rb
atoms in the F = 1 manifold with background interaction and total
particle number N = 105.

limit, and comparing with the numerical solutions of the Gross-
Pitaevskii (GP) equation. To incorporate the effects of trapping
potentials and interatomic interaction in realistic experiments,
we consider as a typical example a total number of N =
105 87Rb atoms in the F = 1 manifold with background
interaction confined in two types of harmonic traps, including a
pancake-shaped quasi-two-dimensional trap with ωx = ωy =
50 Hz and ωz = 1500 Hz and a cigar-shaped three-dimensional
trap with ωx = ωy = 5000 Hz and ωz = 1500 Hz.

We first consider the case of zero two-photon detuning δ =
0, and show in Fig. 2 the spin-nematic squeezing parameter
as functions of Rabi frequency �R and quadratic Zeeman
splitting ε. One can see clearly that the ground state is a spin
squeezed state under the effect of SOC. Importantly, as shown
in Fig. 2(a), spin-nematic squeezing can be enhanced with
increasing �R . This behavior is in stark contrast to the case of
spin-1/2 systems, where the spin-spin squeezing is favored by
decreasing �R [19,20].

We then extend the discussion to the more general case
of a nonzero two-photon detuning δ �= 0. This scenario is
experimentally relevant because a severe heating effect is
usually present as the Raman transition is on-resonance. As
shown in Fig. 3(a), a finite δ favors spin-nematic squeezing
within a fairly large region of |δ/Er | < 5. This result can be
understood by analyzing the single-particle Hamiltonian of

FIG. 3. (a) Variations of spin-nematic squeezing parameter ξ as
a function of two-photon detuning δ with �R/Er = 2 and ε/Er = 6.
The analytic result obtained from the effective spin model Eq. (5)
within low-density excitation approximation (blue solid) is compared
with numerical solutions of the GP equation for a pancake-shaped
trap with ωx = ωy = 50 Hz, ωz = 1500 Hz (black dashed) and for
a cigar-shaped trap with ωx = ωy = 5000 Hz, ωz = 1500 Hz (red
dotted). (b) Atom number fractions of the | − 1〉 (black dotted), |0〉
(blue dashed), and | + 1〉 (red solid) states.

Eq. (1), where δ and ε are energy offsets of the diagonal
elements. As Raman transitions will be enhanced when
different states are near resonance, spin squeezing will be
favored when the absolute value of δ is close to ε. To further
clarify this argument, we analyze the atom populations of
different ground states with changing δ. As shown in Fig. 3(b),
the presence of a finite δ will enhance the transition between
the |0〉 state and one of the | ± 1〉 states, while the transition
to the other |±1〉 state is reduced. Notice that this behavior
is very different from the spin-1/2 case, where the two spin
components are moved away from each other with increasing
δ, leading to an effectively weaker SOC.

The dependence of spin-nematic squeezing on the various
parameters of �R , ε, and δ can also be interpreted from
the effective spin model of Eq. (5), within which the three
parameters correspond to effective Zeeman fields along the
Fx, FY , and Fz directions, respectively. Considering that in
the low excitation limit nearly all spins are polarized along
the FY direction, a stronger Zeeman field along the same
direction, i.e., a larger value of ε, will further intensify the
polarization so that the effective spin-spin interaction becomes
relatively weak, leading to a reduced spin-nematic squeezing
effect. On the other hand, effective Zeeman fields along the
perpendicular directions, either Fx or Fz, will tilt the spin
polarization from the FY axis slightly, resulting in a stronger
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FIG. 4. (a) Two-mode entanglement parameter ξ 0
DCZ and (b) two-

spin squeezing parameter ξ 0
UV versus Rabi frequency �R with other

parameters being δ = 0 and ε/Er = 6. The analytic result obtained
from the effective spin model Eq. (5) within low-density excitation
approximation (blue solid) is compared with numerical solutions of
the GP equation for a pancake-shaped trap with ωx = ωy = 50 Hz,
ωz = 1500 Hz (black dashed) and for a cigar-shaped trap with
ωx = ωy = 5000 Hz, ωz = 1500 Hz (red dotted). The insets show
the squeezing parameters as functions of θ . Notice that the optimal
squeezings in both criteria are obtained when θ = nπ with n an
integer.

effective spin-spin interaction and consequently increasing
spin-nematic squeezing.

In addition to the spin-nematic squeezing, we notice that in
the low excitation limit with the majority of particles residing
in the |0〉 state, the two effective bosonic modes b1 and b−1 can
be entangled, which is referred to as two-mode entanglement.
A sufficient criterion for entanglement between the modes b1

and b−1 from the spin squeezing parameters is given by [28]

ξ θ
DCZ = (ξ θ

+ + ξ
θ+π/2
− )/2 < 1, (8)

where ξ θ
± ≈ 〈	2Fθ

±〉/N represents the variance of quadrature
phase amplitudes which depends on the parameter θ , and the
operators are defined as Fθ

+ = cos θFx + sin θFyz and Fθ
− =

cos θFzx + sin θFy . Here, the collective nematic operators are
Fyz = ∑N

i=1 Qyz,i and Fzx = ∑N
i=1 Qzx,i . Figure 4(a) shows

that ξ θ
DCZ reaches its minimum for θ = nπ with n an integer,

and the entanglement is enhanced by Raman transition.
Another representation of two-mode entanglement is called

two-spin squeezing, which is defined by dividing the spin-1
space into three pseudospin subspaces (each of spin 1/2) U,V ,
and T , which are associated with the three relative number
differences of particles N+1 − N0, N−1 − N0, and N+1 − N−1,
respectively [29]. The two-spin squeezing parameter is given
to describe the correlation between the spin subspace U (the

spin-flipping process between internal levels | + 1〉 and |0〉)
and V (the spin-flipping process between internal levels | − 1〉
and |0〉) [29]:

ξ θ
UV = 	2Fθ

+ + 	2F
θ+π/2
−√

3|〈FY 〉| < 1. (9)

In Fig. 4(b), one can see clearly that the optimal correlation
is obtained when θ = nπ with n an integer, and increases
with the Raman transition. When comparing the spin-nematic
squeezing parameter [Fig. 2(a)] with these two criteria (Fig. 4),
we find that the effect of squeezing in a spin-nematic channel
is another representation of the correlation between two spin
subspaces and entanglement between two effective modes in
the low excitation limit.

Finally, by comparing the numerical results of spin-nematic
squeezing parameter ξx , the two-mode entanglement parame-
ter ξ θ

DCZ, and the two-spin squeezing parameter ξ θ
UV with the

outcome from the effective spin model, as shown in Figs. 2–4,
we conclude that the effective model Eq. (5) is qualitatively
valid in the low excitation limit. On the other hand, a strong
harmonic trap can cause a sizable increment on spin-nematic
squeezing and two-mode entanglement. This observation can
be understood by noticing that in the presence of a strong
harmonic trap, the particles will condense in a state with
a higher number density at the trap center, hence leading
to a stronger interparticle interaction effect which enhances
spin-nematic squeezing and two-mode entanglement.

IV. EXPERIMENTAL DETECTION AND CONCLUSION

We have shown that an effective spin-spin interaction can be
induced in a spin-orbit coupled spin-1 BEC, which can produce
a special kind of squeezing called spin-nematic squeezing.
This type of spin squeezing can be enhanced by increasing
Raman transition intensity and decreasing quadratic Zeeman
splitting. More importantly, the squeezing is favored by a finite
two-photon detuning in a fairly large parameter regime, which
could be beneficial for experiments to reduce heating effect.
These behaviors are in clear contrast to the spin squeezing
within spin-orbit coupled spin-1/2 systems, where the trends
of dependence on Raman transition intensity and two-photon
detuning are opposite. We also observe SOC-induced two-
mode entanglement and two-spin squeezing in such a system,
and investigate their dependence on Raman transition intensity.
We further analyze the effects of interparticle interaction
and external harmonic trap by numerically solving the GP
equation, and find good agreement with approximate solutions
of the effective spin model.

In order to detect the spin-nematic type of spin squeezing
in such a system, one can rotate Jx into the easily measured
Jz direction by applying a π/2 rf rotation about the Jy axis.
This operation can be accomplished with a two-turn coil on
the experimental y axis driven at the frequency splitting of the
mF states. Then, we can measure the variance of spin via a
spin-selective imaging technique [11].
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APPENDIX: INTERACTION HAMILTONIAN
FOR A SPIN-1 BEC

The interaction among the three hyperfine states in a spin-1
BEC can be categorized into two parts, a density-dependent
part and a spin-dependent part, which are characterized by the
total angular momentum of the two colliding atoms [33]. The
interaction Hamiltonian can be written as

HI = HD + HS, (A1)

HD = c0

2

∑
ij

∫
d3rψ

†
i ψ

†
j ψiψj , (A2)

HS = c2

2

∫
d3r(ψ†

1ψ
†
1ψ1ψ1 + ψ

†
−1ψ

†
−1ψ−1ψ−1

−2ψ
†
1ψ

†
−1ψ1ψ−1 + 2ψ

†
1ψ

†
0ψ1ψ0

+2ψ
†
−1ψ

†
0ψ−1ψ0 + 2ψ

†
0ψ

†
0ψ1ψ−1

+2ψ
†
1ψ

†
−1ψ0ψ0), (A3)

where ψi,j (i,j = 1,0, − 1) are field operators for different
spin components, c0 = 4π (a0 + 2a2)/3 is the interaction con-
stant between atoms for the density-dependent part HD , and
c2 = 4π (a2 − a0)/3 is the spin-exchange interaction constant
for the spin-dependent part HS . Taking 87Rb as a particular
example, the s-wave scattering lengths have been measured
in the present experiment as a0 = 101.8aB for the total spin
F = 0 channel and a2 = 100.4aB for the total spin F = 2
channel, respectively, where aB denotes the Bohr radius [13].

For a system of N particles, as N = ψ
†
1ψ1 + ψ

†
0ψ0 +

ψ
†
−1ψ−1, the interaction Hamiltonian reads

HD ∼ c0N (N + 1), (A4)

HS ∼ c2(F2 − 2N ), (A5)

where F = (Fx,Fy,Fz) is the collective spin operator. The
strength of the effective spin-spin interaction induced by the
atom-atom collisional interactions thus ∼c2F2. As c2 is rather
small, we can safely neglect the effective spin-spin interaction
induced by the atom-atom collision and focus solely on the
interaction induced by a relatively strong spin-orbit coupling.
Besides, under realistic experimental conditions with weak
to moderate trapping potentials, the density of the BEC
is relatively low such that the density-density interaction
proportional to c2 has only minor effect and the many-body
ground state can be well approximated by the single-particle
wave function.
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