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We investigate, within the weak measurement theory, the advantages of nonclassical pointer states over
semiclassical ones for coherent, squeezed vacuum, and Schrödinger cat states. These states are utilized as pointer
states for the system operator Â with property Â2 = Î , where Î represents the identity operator. We calculate
the ratio between the signal-to-noise ratio of nonpostselected and postselected weak measurements. The latter
is used to find the quantum Fisher information for the above pointer states. The average shifts for those pointer
states with arbitrary interaction strength are investigated in detail. One key result is that we find the postselected
weak measurement scheme for nonclassical pointer states to be superior to semiclassical ones. This can improve
the precision of the measurement process.
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I. INTRODUCTION

The weak measurement, as a generalized von Neumann
quantum measurement theory, was proposed by Aharonov,
Albert, and Vaidman [1]. In weak measurement, the coupling
between pointer and measured systems is sufficiently weak,
but its induced weak value of the observable on the measured
system can be beyond the usual range of the eigenvalues of that
observable [2]. This feature of weak value is usually referred
to as an amplification effect for weak signals rather than a
conventional quantum measurement that collapses a coherent
superposition of quantum states [1,3].

After first optical implementation of weak value [4], it has
been applied in different fields to observe very tiny effects,
such as beam deflection [5–10], frequency shifts [11], phase
shifts [12], angular shifts [13,14], velocity shifts [15], and even
temperature shift [16]. Weak value has a nature of being a com-
plex number, which leads the weak measurements to provide
an ideal method to examine some fundamentals of quantum
physics. Quantum paradoxes (Hardy’s paradox [17–19] and
the three-box paradox [20]), quantum correlation and quantum
dynamics [21–26], quantum state tomography [27–32], viola-
tion of the generalized Leggett-Garg inequalities [33–38], and
violation of the initial Heisenberg measurement-disturbance
relationship [39,40] are just a few examples. In these typical
examples, the small effects have been amplified due to the
benefit of weak values. This amplifying effect occurs when
the preselection and postselection states of the measured
system are almost orthogonal. The successful postselection
probability tends to decrease in order to have successful
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amplification effect. For more details about weak measurement
and weak value, one can consult the reviews [41–43].

So far, most weak measurement studies focus on using the
zero-mean Gaussian state as an initial pointer state. However,
recent studies [44,45] have shown that a zero-mean Gaussian
pointer state cannot improve the signal-to-noise ratio (SNR)
when considering postselection probability. Needless to say,
the Gaussian beam is classical and one may naturally ask
how about using nonclassical pointer states, and what kind
of advantages do they have? This issue has been recently
addressed [46], where coherent and coherent squeezed states
were utilized as pointers. They showed that the postselected
weak measurement improved the SNR compared to the
nonpostselected process if the pointer state is nonclassical
rather than classical. The focus of the calculation was based
on the assumption that the coupling between the measuring
device and the measured system is too weak, and hence it was
enough to consider the time evolution operator up to its first
order. Furthermore, there have been recent studies giving full
order effects of the unitary evolution due to the von Neumann
interaction, but for classical and semiclassical states [47,48].

In this paper, we address a remaining point of interest
constructing a general formula for weak measurement beyond
the first order, and utilizing the nonclassical states. We
investigate the advantages of nonclassical pointer states over
classical (semiclassical) pointer state, within weak values, by
considering postselection probability. In order to do so, we
use coherent, squeezed vacuum, and Schrödinger cat states as
pointer states for system observable Â with property Â2 = Î .
We start by presenting an analytical general expression of the
shifted values of position and momentum operators for the
above-mentioned pointer states with arbitrary measurement
strengths. In addition, we present the ratio of SNR between
postselected and nonpostselected weak measurement, and also
look at quantum Fisher information. Our key results in this
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paper are as follows: (i) Our general expressions of shifted
values reduce to Nakamura et al.’s [47] main result if we
take the zero-mean Gaussian beam as initial pointer state.
(ii) As shown in Ref. [46], improving the SNR using postse-
lected weak measurement, one needs the nonclassical pointer
states which is better than classical or semiclassical states.
(iii) Nonclassical pointer states are much better even when it
comes to the parameter estimation process which is character-
ized by Fisher information.

The rest of the paper is organized as follows. In Sec. II,
we give the setup for our system. In Sec. III, we start
by giving general expressions for the expectation values of
position and momentum operators. After that we discuss the
ratio of SNR between postselected and nonpostselected weak
measurements of coherent, squeezed vacuum, and Schrödinger
cat states. In Sec. IV, we give the Fisher information for those
given states in the light of postselection probability. We give a
conclusion to our paper in Sec. V. Throughout this paper, we
use the unit � = 1.

II. SETUP

For the weak measurement, the coupling interaction be-
tween system and measuring device is given by the standard
von Neumann Hamiltonian [2]

H = gδ(t − t0)Â ⊗ P̂ . (1)

Here, g is a coupling constant and P̂ = ∫
p|p〉〈p|dp is the

conjugate momentum operator, while the position operator is
X̂ = ∫

x|x〉〈x|dx where [X̂,P̂ ] = iÎ . We have taken, for sim-
plicity, the interaction to be impulsive at time t = t0. For
this kind of impulsive interaction the time evolution operator
becomes as e−igÂ⊗P̂ .

The weak measurement is characterized by the preselection
and postselection of the system state. If we prepare the initial
state |ψi〉 of the system and the pointer state, and after some
interaction time t0, we then postselect a system state |ψf 〉 we
obtain the information about a physical quantity Â from the
pointer wave function by the following weak value:

〈A〉w = 〈ψf |Â|ψi〉
〈ψf |ψi〉 , (2)

where the subscript w denotes the weak value. From Eq. (2), we
know that when the preselected state |ψi〉 and the postselected
state |ψf 〉 are almost orthogonal, the absolute value of the
weak value can be arbitrarily large. This feature leads to weak
value amplification.

We express position operator X̂ and momentum operator P̂

in terms of the annihilation (creation) operator, â (â†) in Fock
space representation as

X̂ = σ (â† + â), (3)

P̂ = i

2σ
(â† − â), (4)

where σ is the width of the fundamental Gaussian beam.
These annihilation (creation) operators obey the commutation
relation [â,â†] = Î . By substituting Eq. (4) into unitary
evolution operator e−igÂ⊗P̂ , bearing in mind that operator Â

satisfies the property Â2 = Î , we get

e−igÂ⊗P̂ = 1

2
(Î + Â) ⊗ D

(
s

2

)
+ 1

2
(Î − Â) ⊗ D

(
− s

2

)
,

(5)

where parameter s is defined by s :≡ g/σ , and D(μ) is a
displacement operator with complex number μ defined by

D(μ) = eμâ†−μ∗â . (6)

Note that s characterizes the measurement strength. Thus, we
can say that the coupling between system and pointer is weak
(strong) and so the measurement is a called weak (strong)
measurement, if s � 1 (s � 1).

III. SHIFTED VALUES AND THE SIGNAL-TO-NOISE
RATIO (SNR)

In this section we start by giving general shifted values of
semiclassical states (coherent state) and nonclassical states,
squeezed vacuum and Schrödinger cat pointer states for
arbitrary measurement strength s. To show the advantages of
nonclassical pointer states over semiclassical ones, we discuss
the ratio of SNR between postselected and nonpostselected
weak measurements

χ =R
p

X

Rn
X

. (7)

Here, R
p

X represents the SNR of postselected weak measure-
ment defined as

R
p

X =
√

NPs |〈X〉f i |√
〈X2〉f − 〈X〉2

f

. (8)

Here, N is the total number of measurements, Ps is probability
of finding the postselected state for a given preselected state,
and NPs is the number of times the system was found in a
postselected state. Here, 〈〉f denotes the expectation value of
measuring observable under the final state of the pointer.

When dealing with nonpostselected measurement, there
is no postselection process after the interaction between
system and measuring device due to unitary evolution operator
e−igÂ⊗P̂ . Therefore, the definition of R

p

X for nonpostselected
weak measurement can be given as

Rn
X =

√
N |〈X〉f ′i |√

〈X2〉f ′ − 〈X〉2
f ′

. (9)

Here, 〈〉f ′ denotes the expectation value of measuring observ-
able under the final state of the pointer without postselection.

A. Coherent pointer state

The coherent state is a typical semiclassical state which
satisfies the minimum Heisenberg uncertainty relation. Here,
we take the coherent state [49] as initial pointer state

|α〉 = D(α)|0〉, (10)

where α = reiφ is an arbitrary complex number. After unitary
evolution given in Eq. (5), the resultant system state is
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postselected to |ψf 〉. Then, we obtain the following normalized
final pointer state:

|�f1〉 = λ

2

[
(1 + 〈A〉w)e−i(s/2)Im[α]

∣∣∣∣α+ s

2

〉

+ (1 −〈A〉w)ei(s/2)Im[α]

∣∣∣∣α− s

2

〉]
, (11)

where the normalization coefficient is given as

λ =
√

2
{
1+|〈A〉w|2+ Re[(1−〈A〉∗w)(1+〈A〉w)e−2isIm[α]]

× e−(1/2)s2}−1/2
, (12)

and Im (Re) represents the imaginary (real) part of a complex
number. Using Eqs. (11) and (12) we can calculate general
forms of the expectation values of conjugate position operator
X and momentum operator P , under the final pointer state
|�f1〉, to be

〈X〉f1 = σ |λ|2{(1 + |Aw|2)Re[α] + sRe〈A〉w
+ Re[(1 − 〈A〉∗w)(1 + 〈A〉w)e−2siIm(α)]Re[α]e−1/2s2}

(13)

and

〈P 〉f1 = |λ|2
4σ

(
2(1 + |〈A〉w|2)Im[α]

− Im{(1 − 〈A〉w)(1 + 〈A〉∗w)

× e2isIm[α](s − 2iIm[α])}e−1/2s2)
, (14)

respectively. Equations (13) and (14) are the general forms of
expectation values for system operator Â, with the property
Â2 = Î , and they are valid for any arbitrary value of the
measurement strength parameter s.

Here, we assume that the operator to be observed is the spin
x component of a spin- 1/2 particle through the von Neuman
interaction

A = σx = | ↑z〉〈↓z | + | ↓z〉〈↑z |, (15)

where | ↑z〉 and 〈↓z | are eigenstates of σz with corresponding
eigenvalues 1 and −1, respectively. When we select the
preselected and postselected states as

|ψi〉 = cos

(
θ

2

)
| ↑z〉 + eiϕ sin

(
θ

2

)
| ↓z〉, (16)

and

|ψf 〉 = | ↑z〉, (17)

respectively, we can get the weak value by substituting these
states to

〈A〉w = 〈σx〉w = 〈ψf |A|ψi〉
〈ψf |ψi〉 , (18)

obtaining

〈A〉w = eiϕ tan

(
θ

2

)
, (19)

where, θ ∈ [0,π ] and ϕ ∈ [0,2π ). Here, the postselection
probability is Ps = cos2( θ

2 ). Throughout this paper, we use

FIG. 1. (Color online) The ratio χ ′ of SNRs between postselected
and nonpostselected weak measurement vs coherent state’s parame-
ters φ and r . Here we take ϕ = π/4, θ = 7π/9, and s = 10−5.

the above preselected and postselected states and weak value,
which are given in Eqs. (16), (17), and (19) for our discussions.

In the case of the coherent state used as the initial pointer
state, we calculate the SNR of postselected and nonpostse-
lected process in a weak measurement regime (s � 1). In
Fig. 1 we plot the ratio χ ′ = (χ − 1.4618) × 105 against
coherent state’s parameters r and φ, where the ratio χ has the
same value 1.4618 in most of the regions. This means that, for
the coherent state pointer, the postselected weak measurement
is little better than the nonpostselected case which in turn
slightly increases the precision of measurement.

B. Squeezed vacuum state

The squeezed vacuum state is a typical quantum state.
It has many applications in optical communication, optical
measurement, and gravitational wave detection [50]. Here, we
assume that the initial pointer is the squeezed vacuum state [49]
which is defined by

|ξ 〉 = S(ξ )|0〉. (20)

Here,

S(ξ ) = exp
(

1
2ξ ∗a2 − 1

2ξa†2
)
, (21)

where the squeezing parameter ξ = ηeiδ is an arbitrary
complex number. After the unitary evolution given in Eq. (5),
the total system state is postselected to |ψf 〉. Then, we obtain
the following normalized final pointer state:

|�f2〉 = γ ′

2

[
(1 + 〈A〉w)

∣∣∣∣ s2 ,ξ

〉
+ (1 − 〈A〉w)

∣∣∣∣− s

2
,ξ

〉]
, (22)
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FIG. 2. (Color online) The ratio χ of SNRs between postselected
and nonpostselected weak measurements vs squeezed vacuum state’s
parameters δ and η. Here we take ϕ = π/4, θ = 7π/9, and s = 10−5.

where the normalization coefficient is given by

γ ′ =
√

2
(
1 + |〈A〉w|2 + (1 − |〈A〉w|2)

× e−(1/2)s2| cosh η+eiδ sinh η|2)−1/2
(23)

and we note that | ± s
2 ,ξ 〉 = D(± s

2 )S(ξ )|0〉 is a squeezed
coherent state. Next we will calculate the expectation values of
position and momentum operators under the normalized final
pointer state |�f2〉, and the results read

〈X〉f2= g|γ ′|2Re〈A〉w
−g|γ ′|2Im〈A〉we−(1/2)s2| cosh η+eiδ sinh η|2 sinh(2η) sin δ

(24)

and

〈P 〉f2 = g|γ ′|2
2σ 2

Im〈A〉we−(1/2)s2| cosh η+eiδ sinh η|2

× [1 + sinh(2η) cos δ],

(25)

respectively. These formulas are valid not only in the weak
measurement regime (s � 1), but also in the strong measure-
ment regime (s � 1).

Figure 2 shows the ratio χ of SNR for squeezed pointer
state between postselected and nonpostselected weak mea-
surements (s � 1) plotted as a function of δ and η which are
the parameters of the squeezed state. One can see that when
η is large and near the points where δ = π

2 , 3π
2 the ratio χ is

much larger than unity. Evidently, this result indicates that the
squeezed pointer state is one of the quantum state candidates
that can be utilized to improve the SNR in postselected rather

than nonpostselected weak measurement. This result was also
confirmed in Ref. [46].

C. Schrödinger cat state

The Schrödinger cat state is another typical quantum
state [51] which is a superposition of two coherent correlated
states moving in opposite directions. Generally, there are two
kinds of Schrödinger cat states [52]; even and odd Schrödinger
cat states. Even Schrödinger cat state has very similar
properties with squeezed state, since it has superpositions of
photon number states with even numbers of quanta. Therefore,
we consider the even Schrödinger cat state as the initial pointer
state to examine further the advantages of the nonclassical
pointer state. The normalized even Schrödinger cat state can
be written as

|�+〉 = K(|α〉 + | − α〉), (26)

where | ± α〉 are coherent states as defined in Eq. (10) which
is characterized by α = reiφ , and the normalization constant
is

K = 1√
2 + 2e−2|α|2

. (27)

Following the same procedure as in previous sections, after
taking the unitary evolution given in Eq. (5), the outcome will
then be projected to postselected state, |ψf 〉. Then, we obtain
the following normalized final pointer state:

|�f3〉 = κ ′

2

[
(1+〈A〉w)D

(
s

2

)
+(1−〈A〉w)D

(
− s

2

)]
|�+〉,

(28)

where the normalization coefficient is given by

κ ′ =
[

1

2
(1 + |〈A〉w|2) + K2(1 − |〈A〉w|2) cos (2sIm[α])e−s2/2

+K2

2
(1 − |〈A〉w|2)

(
e−(1/2)|2α+s|2 + e−(1/2)|2α−s|2)]−1/2

.

(29)

By using Eq. (28) we calculate, in a straightforward manner,
the general forms of the expectation values for both conjugate
position and momentum operators as

〈X〉f3 = 2σ |κ ′|2K2 × (
sRe〈A〉w

(
1 + e−2|α|2)

+ 2Im〈A〉wRe[α] sin
{
2sIm[α]e−(1/2)s2

− Im〈A〉wIm[α]
(
e−(1/2)|2α+s|2 − e−(1/2)|2α−s|2)})

(30)

and

〈P 〉f3 = |κ|2K2Im〈A〉w
2σ

× {
(2Re[α] + s)e−(1/2)|2α+s|2

+ 4 sin (2sIm[α])Im[α]e−(1/2)s2 + 2s cos (2sIm[α])

× e−(1/2)s2 − (2Re[α] − s)e−(1/2)|2α−s|2},
(31)

respectively.
In Fig. 3, we plot the ratio χ of SNRs between postselected

and nonpostselected weak measurements for the Schrödinger
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FIG. 3. (Color online) The ratio χ of SNRs between postselected
and nonpostselected measurement vs Schrödinger cat state’s param-
eters φ and r . Here we take ϕ = π/4, θ = 7π/9, and s = 10−5.

cat pointer state. It is, clearly, indicating that when r is
increased and passed near φ = π

4 , 3π
4 , 5π

4 , 7π
4 , the ratio of SNRs

is much larger than unity. Furthermore, when comparing
Fig. 3 to Fig. 1, we find that the ratio χ of the nonclassical
Schrödinger cat pointer state is higher than the semiclassical
coherent pointer state for the same parameters. This, evidently,
leads to the improvement of SNR. However, when comparing
between the two nonclassical states in Figs. 2 and 3, one can
see that these two figures have some similarity, where both of
them have the ratio χ larger than unity, while a much stronger
value is obtained for the case of the squeezed state.

We have to emphasize at this point that we have also
calculated the odd Schrödinger cat pointer states but found
that they have similar properties and results like the even
Schrödinger cat pointer states. And in order to avoid repetition,
therefore, we just report the results of the even Schrödinger
cat states.

For the ratio of SNRs between postselected and nonpostse-
lected weak measurements, we can conclude that nonclassical
pointer states (squeezed vacuum, and Schrödinger cat state)
are better than the semiclassical one (coherent sate) in order to
improve the SNR in postselected weak measurements (s � 1)
for complex weak values. This conclusion can be seen clearly
from Figs. 1–3.

The general expectation values of position and momen-
tum operators for the above three pointer states—coherent,
squeezed, and Schrödinger cat states—can have the same
property. This can be achieved if we assume the initial pointer
state to be a zero-mean Gaussian beam (this corresponds to
r = 0 for coherent states and the Schrödinger cat state, and
η = 0 for the squeezed vacuum state, respectively), then all

expressions reduced to

〈X〉f = gRe〈A〉w
Z , (32)

and

〈P 〉f = gIm〈A〉w
2σ 2Z e−(1/2)s2

. (33)

Here,

Z =1 + 1
2 (1 − |〈A〉w|2)

(
e−(1/2)s2 − 1

)
. (34)

This result is given in Nakamura’s work [47].
A remaining issue is to examine the connection between

weak and strong postselected measurement. Thus, we plot
the R

p

X, which is defined in Eq. (8), as function of arbitrary
measurement strength parameter s and preselection angle θ .
From Fig. 4, particularly for the squeezed vacuum pointer state,
we can see that at θ = π/2 the R

p

X increase with the increase
of s; this is the strong measurement result. The reason is that at
θ = π/2 the preselected state Eq. (16) is the eigenstate of oper-
ator σx which has the eigenvalue +1. This figure does not only
make the connection between weak and strong postselected
measurements, but also indicates that nonclassical pointer
states are also good enough compared with semiclassical ones
in generalized von Neumann measurements [48].

IV. QUANTUM FISHER INFORMATION

Fisher information is the maximum amount of information
about the parameter that we can extract from the system. For
a pure quantum state |ψs〉, the quantum Fisher information
estimating s is

F (Q) = 4[〈∂sψs |∂sψs〉 − |〈ψs |∂sψs〉|2], (35)

where the state |ψs〉 represents the final pointer states of
the system. Here, this can be used for coherent, squeezed
vacuum, or Schrödinger cat states when only dealing with the
postselected weak measurement in the first-order evolution of
unitary operator e−igÂ⊗P̂ . Here, s ≡ g/σ is the measurement
strength parameter which is directly related to the coupling
constant g in our Hamiltonian of Eq. (1).

The variance of unknown parameter �s is bounded by the
Cramér-Rao bound

�s � 1

NF (Q)
, (36)

where N is the total number of measurements. Thus, the Fisher
information set the minimal possible estimate for parameter s,
while higher Fisher information means a better estimation. In
weak measurement, if we consider the successful postselection
probability, then Fisher information would be F (Q)

p = PsF
(Q).

In Ref. [46], one can find general proof showing that quantum
Fisher information is higher in postselected rather than
nonpostselected weak measurement. Thus, we just focus on the
postselected weak measurement process and look into Fisher
information for semiclassical and nonclassical pointer states.

We proceed investigating the variation of Fisher informa-
tion in the weak measurement regime for different weak values.
Our numerical results in Fig. 5 show that the quantum Fisher
information is higher in the weak measurement regime (s � 1)
when the preselection and postselection states are almost
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FIG. 4. (Color online) The R
p

X for arbitrary measurement strength parameter s, and θ for different weak values. Here, we take ϕ = 0 and
N = 1. (a) For coherent pointer state, r = 1, φ = π/4. (b) For Schrödinger cat pointer sates, r = 1,φ = π/4. (c) For squeezed vacuum pointer
state, η = 1, δ = π/4.

orthogonal. The other important result is that the nonclassical
pointer states have more advantages over the semiclassical
ones, which in turn leads to a better estimation process.

V. CONCLUSION

In summary, we give general expressions for the shifted
values of position and momentum operators for different
pointer states (coherent, squeezed vacuum, and Schrödinger
cat states); these expressions are valid in weak and strong
measurement regimes. In the next step, we investigate the
SNR and the quantum Fisher information only in the weak
measurement regime. We find that if we take the initial

state as a zero mean Gaussian state, our general expressions
of shifted values would be reduced to Eqs. (32) and (33),
which are given in Ref. [47]. By giving the ratio of SNR
between postselected and nonpostselected weak measurement,
we find that the postselected weak measurement process for
nonclassical pointer states gives more information about the
system compared to the nonpostselected process. This result
is consistent with Pang et al’s work [46]. If one wants to
quantify the quantum Fisher information in order to improve
the precision of unknown parameter estimation, then he can
consider using the nonclassical pointer state and avoiding the
semiclassical one.

FIG. 5. (Color online) The quantum Fisher information in weak measurement regime vs measurement strength parameter s and θ for
different weak values. Here, we take ϕ = π/4 and N = 1. (a) For coherent pointer state, r = 1, φ = π/4. (b) Schrödinger cat pointer sates,
r = 1, φ = π/4. (c) For squeezed vacuum pointer state, η = 1, δ = π/4.
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