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In quantum mechanics, the variance-based Heisenberg-type uncertainty relations are a series of mathematical
inequalities posing the fundamental limits on the achievable accuracy of the state preparations. In contrast, we
construct and formulate two quantum uncertainty equalities, which hold for all pairs of incompatible observables
and indicate the new uncertainty relations recently introduced by L. Maccone and A. K. Pati [Phys. Rev.
Lett. 113, 260401 (2014)]. In fact, we obtain a series of inequalities with hierarchical structure, including the
Maccone-Pati’s inequalities as a special (weakest) case. Furthermore, we present an explicit interpretation lying
behind the derivations and relate these relations to the so-called intelligent states. As an illustration, we investigate
the properties of these uncertainty inequalities in the qubit system and a state-independent bound is obtained for
the sum of variances. Finally, we apply these inequalities to the spin squeezing scenario and its implication in
interferometric sensitivity is also discussed.
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I. INTRODUCTION

Similar to quantum entanglement, the uncertainty principle
is also one of the characteristic traits of quantum mechanics
and is a fundamental departure from the principles of clas-
sical physics. Any pair of incompatible observables admit a
certain form of uncertainty relationship (e.g., an uncertainty
inequality) and this constraint sets ultimate bounds on the
measurement precision achievable for these quantities. Since
Heisenberg introduced the first uncertainty relation about the
product of the standard deviations of canonical operators in
1927 [1,2], the scientific community has raised the long-
standing controversy over how to interpret and formulate
Heisenberg’s original spirit [3–5].

In recent debate, a series of error-tradeoff or measurement-
disturbance relations have been proposed and the commu-
nity’s enthusiasm for the uncertainty principle has been
reactivated [6–17]. However, the conventional variance-based
uncertainty relations possess a clear physical conception and
still find a variety of applications in quantum information
science, such as entanglement detection [18,19], quantum spin
squeezing [20–24], and even quantum metrology [25–27].
In fact, it is precisely because of the uncertainty relations
that quantum theory imposes definite limits on the precision
of measurement and the celebrated quantum Cramér-Rao
bound can also be deduced from the Schrödinger-Robertson
uncertainty relation [28,29].

Intuitively, it is a well-accepted mathematical structure that
the convectional uncertainty relations provide lower bounds to
the product or sum of the variances of incompatible Hermitian
operators. Among the candidates, the most famous and popular
form is the Robertson uncertainty relation (RUR) [30]:

�A�B �
∣∣∣∣ 1

2i
〈[A,B]〉

∣∣∣∣, (1)
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where the standard deviation �O and expectation value 〈O〉
are taken over the state |�〉. It is notable that the RUR
can be derived from a slightly strengthened inequality, the
Schrödinger uncertainty relation (SUR) [31]

�A2�B2 �
∣∣∣∣ 1

2i
〈[A,B]〉

∣∣∣∣
2

+
∣∣∣∣1

2
〈{Ă,B̆}〉

∣∣∣∣
2

, (2)

where we define the operator Ŏ = O − 〈O〉I and I is the
identity operator.

However, both the RUR and the SUR suffer from the
problem that they may be trivial even when A and B are
incompatible on the state |�〉; for instance, |�〉 is an eigenstate
of either A or B. In order to fix this flaw, recently Maccone
and Pati presented two stronger uncertainty relations based on
the sum of variances and these inequalities are guaranteed to
be nontrivial whenever |�〉 is not a common eigenstate of A

and B. The lower bound can be represented in a combination
of both inequalities [32]:

�A2 + �B2 � max{L1,L2}, (3)

where we define

L1 = ±i〈[A,B]〉 + |〈�|A ± iB|�⊥〉|2, (4)

L2 = 1

2
|〈�⊥

A+B |A + B|�〉|2, (5)

Here |�⊥〉 is an arbitrary state orthogonal to |�〉 and |�⊥
A+B〉

is specified according to Vaidman’s formula [33,34]:

O|�〉 = 〈O〉|�〉 + �O|�⊥
O〉. (6)

Moreover, utilizing the same techniques employed to derive
Eq. (4), Maccone and Pati also obtained an amended RUR [32]:

�A�B � ± i

2
〈[A,B]〉/

(
1 − 1

2

∣∣∣∣〈�| A

�A
± i

B

�B
|�⊥〉

∣∣∣∣
2)

.

(7)
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In this work, we try to look at such a problem from another
perspective. Given two noncommuting operators A and B,
we can define the uncertainty functional U(�) = �A2�B2.
Indeed, the RUR and SUR follow directly from the uncertainty
equality

U(�) =
∣∣∣∣ 1

2i
〈[A,B]〉

∣∣∣∣
2

+
∣∣∣∣1

2
〈{Ă,B̆}〉

∣∣∣∣
2

+ R(�), (8)

where R(�) is a positive semidefinite remainder term, emerg-
ing from the application of the Cauchy-Schwarz inequality to
〈Ă2〉〈B̆2〉. Can we construct other uncertainty equalities for
U(�) and another functional W(�) = �A2 + �B2, which
can straightforwardly lead to the inequalities derived in
Ref. [32]? Here we show that the answer is affirmative and
elucidate the physical meaning behind these inequalities.

An outline of the reminder of the paper is as follows. In
Sec. II, we construct and formulate two quantum uncertainty
equalities, which hold for all pairs of incompatible observ-
ables and imply the new uncertainty relations introduced by
Maccone and Pati [32]. Furthermore, we present an explicit
interpretation lying behind the derivations and relate these
relations to the so-called intelligent states. In Sec. III, we
investigate the properties of these uncertainty inequalities in
the qubit system and a state-independent bound is obtained
for the sum of variances. In Sec. IV, we apply these
inequalities to the spin squeezing scenario and its implication
in interferometric sensitivity is also discussed. Finally, Sec. V
is devoted to the discussion and conclusion.

II. UNCERTAINTY EQUALITIES IMPLY
UNCERTAINTY RELATIONS

A. New uncertainty equalities

As indicated in Ref. [32], the lower bound L2 is derived
from the uncertainty equality

�A2 + �B2 = 1

2
[�(A + B)2 + �(A − B)2]. (9)

In fact, we can obtain another lower bound:

L3 = 1

2
�(A − B)2 = 1

2
|〈�⊥

A−B |A − B|�〉|2. (10)

In the following, we first construct and prove two uncertainty
equalities which imply the uncertainty inequalities (4) and (7).
Note that here we refer to the lower bounds as the correspond-
ing uncertainty relations.

Uncertainty equality 1. The following equality holds for all
pairs of incompatible observables A and B

W(�) = ±i〈[A,B]〉 +
d−1∑
k=1

|〈�|A ± iB|�⊥
k 〉|2, (11)

where W(�) = �A2 + �B2 and {|�〉,|�⊥
k 〉d−1

k=1} compose
an orthonormal complete basis in the d-dimensional Hilbert
space.

Proof. For simplicity, let us define the operator � =
I − |�〉〈�| and the state |χ±〉 = (A ± iB)|�〉. Note that
�2 = �, which is a projector of the Lüders type [35]. The
± sign in |χ±〉 is due to the symmetry between A and B

since W(�) must be invariant under A ⇔ B (see below). We
have

〈χ∓|�|χ∓〉 = 〈�|(A ± iB)(I − |�〉〈�|)(A ∓ iB)|�〉
= 〈χ∓|χ∓〉 − 〈χ∓|�〉〈�|χ∓〉
= 〈A2 + B2 ∓ i[A,B]〉

− (〈A〉 ± i〈B〉)(〈A〉 ∓ i〈B〉)
= �A2 + �B2 ∓ i〈[A,B]〉. (12)

Since � is the orthogonal complement to |�〉〈�| (e.g,
〈�|�|�〉 = 0), we can choose an arbitrary orthogonal de-
composition of the projector � :

� =
d−1∑
k=1

|�⊥
k 〉〈�⊥

k |, (13)

where {|�〉,|�⊥
k 〉d−1

k=1} compose an orthonormal complete basis
in the d-dimensional Hilbert space. Combining Eqs. (12)
and (13), we obtain the uncertainty relation (11). �

Uncertainty equality 2. The following equality holds for all
pairs of incompatible observables A and B

U(�)1/2 = ± i
2 〈[A,B]〉

1 − 1
2

∑d−1
k=1

∣∣〈�| A
�A

± i B
�B

|�⊥
k 〉∣∣2 , (14)

where U(�) = �A2�B2 and {|�〉,|�⊥
k 〉d−1

k=1} compose an
orthonormal complete basis in the d-dimensional Hilbert
space.

Proof. Similar to the above arguments, first define the
unnormalized state vector |ξ±〉 = ( A

�A
± i B

�B
)|�〉. We have

the identity

〈ξ∓|�|ξ∓〉 = 〈ξ∓|ξ∓〉 − 〈ξ∓|�〉〈�|ξ∓〉

=
〈

A2

�A2
+ B2

�B2
∓ i[A,B]

�A�B

〉

−
( 〈A〉

�A
± i

〈B〉
�B

)( 〈A〉
�A

∓ i
〈B〉
�B

)

= 2 ∓ i
〈[A,B]〉
�A�B

. (15)

From Eqs. (13) and (15), we obtain the uncertainty rela-
tion (14). Note that we always assume that �A�B �= 0; e.g.,
|�〉 is not an eigenstate of either A or B. �

Before proceeding, some remarks can be made on the
significance of the above two uncertainty equalities. (i)
When considering infinite-dimensional quantum systems, the
summation in Eqs. (11) and (14) should go over all basis
states. (ii) If we retain only one term associated with |�⊥〉 ∈
{|�⊥

k 〉d−1
k=1} in the summation and discard the others, the

uncertainty equalities (11) and (14) reduce to the uncertainty
inequalities (4) and (7), respectively. In fact, one can obtain a
series of inequalities with hierarchical structure by discarding
1 to d − 2 terms within the set {|�⊥

k 〉d−1
k=1}. (iii) It is worth

emphasizing that in contrast to the derivations in Ref. [32], the
Cauchy-Schwarz inequality is not involved here. Moreover,
the tightness of the inequality is indicated by the uncertainty
equality. For example, when |�⊥〉 is of the form (N is the
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normalization factor)

|�⊥〉 = (A ∓ iB − 〈A ∓ iB〉)|�〉/N = �|χ∓〉/N , (16)

it is easy to see that the contribution from all other terms in the
summation of (11) vanishes:

d−1∑
k=2

|〈�|A ± iB|�⊥
k 〉|2 = N

d−1∑
k=2

|〈�⊥
1 |�⊥

k 〉|2 = 0, (17)

where we assume |�⊥〉 = |�⊥
1 〉. This result coincides with

that of Ref. [32]. Therefore, in view of Ref. [32], we can
naturally interpret the tightness of Eqs. (4) or (7) as imposing
constraints on the properties of |�⊥〉.

B. Interpretations of uncertainty inequalities

However, we still wonder why these seemingly curious
expressions, such as A ± iB and A

�A
± i B

�B
, appear in these

inequalities. Here we provide an explicit interpretation of
Eqs. (4) and (7), and the critical role of the intelligent
states is highlighted. From this perspective, two significant
types of states should be introduced: the ordinary intelligent
states (OISs) provide an equality in the RUR [36,37], while
the generalized intelligent states (GISs) do the same in the
SUR [38]. It is clear that the OISs form a subset of the
GISs and the set of OISs is unitarily equivalent to the set
of GISs [39]. Most importantly, owing to the application of
the Cauchy-Schwarz inequality, the GISs for operators A

and B must satisfy the following characteristic eigenvalue
equation [38,40]:

(A + iγB)|�〉 = λ|�〉, (18)

where γ is an arbitrary complex number (e.g., γ ∈ C)
and the eigenvalue λ = 〈A〉 + iγ 〈B〉. For the particular
case of real γ ∈ R, the eigenvalue equation (18) deter-
mines the OISs for operators A and B [41]. In addi-
tion, it should be emphasized that the concept of OISs
is not equivalent to minimum-uncertainty states (MUSs)
in general [21,36,37,41] and we also obtain a constraint
for |�〉 which should be satisfied if W(�) is to be a
minimum:

(Ă2 + B̆2)|�〉 = (�A2 + �B2)|�〉. (19)

For more details, see Appendix A.
For further discussion, the necessary condition (18) can be

rewritten as

(Ă + iγ B̆)|�〉 = 0. (20)

By multiplying Ă + iγ B̆ or Ă − iγ B̆ upon (20), we have the
following two equations [38,40]:

�A2 − γ 2�B2 = −iγ 〈F 〉, (21)

�A2 + γ 2�B2 = γ 〈C〉, (22)

where we define the Hermitian operators

C = −i[A,B] = −i[Ă,B̆], F = {Ă,B̆}. (23)

Therefore, the solution to Eqs. (21) and (22) is

γ = 〈C〉 + i〈F 〉
2�B2

, |γ |2 = �A2

�B2
, (24)

where we still ignore the trivial cases and assume �A�B �= 0.
Since the uncertainty relations (4) and (7) are both exten-

sions of the RUR, we should concentrate on the special case
of γ ∈ R, that is, γ = ±�A/�B. Therefore, the eigenvalue
equation (18) can be recast as(

A

�A
± i

B

�B

)
|�〉 = λ

�A
|�〉. (25)

Thus, if we define the following two quantities,

	1 =
∣∣∣∣〈�| A

�A
± i

B

�B
|�⊥〉

∣∣∣∣
2

, (26)

	2 = |〈�|A ± iB|�⊥〉|2, (27)

it soon becomes clear that the value of 	1 reveals the extent
to which |�〉 deviates from being an OIS, or, more precisely,
	1 characterizes the extent to which �A�B deviates from
|〈[A,B]〉|/2. Meanwhile, by noticing the inequality

�A2 + �B2 � 2�A�B � |〈[A,B]〉|, (28)

we realize that if we require �A2 + �B2 = |〈[A,B]〉|, the
condition �A = �B must be satisfied. In this circumstance,
the eigenvalue equation (25) reduces to

(A ± iB)|�〉 = λ|�〉. (29)

Thus, we recognize that 	2 characterizes the extent to which
�A2 + �B2 deviates from |〈[A,B]〉|. It is worth noting that
the above explanation does not depend on extra properties
of |�⊥〉 except for 〈�|�⊥〉 = 0, which in turn leads to the
uncertainty inequalities (4) and (7).

III. QUBIT SYSTEM AS AN ILLUSTRATION

As the most commonly used building blocks for quan-
tum information processing, qubit systems have played an
irreplaceable role not only in theoretical analysis but also in
experimental tests due to its unique properties. Therefore, it
would be of great interest to evaluate the performance of these
new uncertainty relations and to compare them with the RUR
or the SUR in the context of qubit systems.

In the Bloch sphere representation, |�⊥〉 is unique (up to
an irrelevant overall phase factor) and its Bloch vector is
antiparallel with respect to that of |�〉, which implies � =
I − |�〉〈�| = |�⊥〉〈�⊥|. From the derivations in Sec. II A,
it turns out that the uncertainty inequalities (4) and (7)
automatically become equalities for arbitrary single-qubit pure
states. In fact, we have

U(�)1/2 = ± i

2
〈[A,B]〉/

(
1 − 1

2
	1

)
, (30)

W(�) = ±i〈[A,B]〉 + 	2. (31)

In other words, the above identities indicate that the novel
uncertainty relations (4) and (7) account for all the uncertainty
predicted by the sum and product of the standard deviations in
the qubit system.
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In full generality, we consider two arbitrary Hermitian
operators,

A =α1I + α2 	a · 	σ , (32)

B = β1I + β2 	b · 	σ , (33)

where {αi,βi} are real parameters, 	a,	b ∈ R3 are unit vectors,
and 	σ = (σx,σy,σz) are standard Pauli matrices. Meanwhile,
the most general pure state of a single qubit is of the form (up
to an unobservable phase factor)

|�〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉, (34)

with θ ∈ [0,π ] and ϕ ∈ [0,2π ]. In Bloch representation,
the corresponding density operator can be written as
ρ = |�〉〈�| = 1

2 (I + 	r · 	σ ), with the Bloch vector 	r =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ). To simplify the problem, one
may consider 	a · 	σ (	b · 	σ ) instead of A (B) and this strategy
is usually employed in the discussion of entropic uncertainty
relations [42,43]. This is reasonable since 	a · 	σ and A have
the same eigenstates and the eigenvalues are not involved in
the corresponding entropy functions. However, the standard
deviation �A does depend on the eigenvalues.

Fortunately, this simplification still works here. In our
notation, the RUR (1) is represented as

|α2|
√

1 − (	a · 	r)2|β2|
√

1 − (	b · 	r)2 � |α2β2||(	a × 	b) · 	r|,
(35)

which is equivalent to

√
1 − (	a · 	r)2

√
1 − (	b · 	r)2 � |(	a × 	b) · 	r|. (36)

Thus, we can restrict our attention to the class of Hermitian
operators of the forms A = 	a · 	σ and B = 	b · 	σ since the
uncertainty inequalities (4) and (7) are both extensions of the
RUR [44]. To Further simplify the discussion, we can assume
that A and B lie in the x − y plane with loss of generality;
that is,

A = cos φ σx + sin φ σy, (37)

B = sin φ σx + cos φ σy, (38)

where the angle between A and B is entirely characterized by
the parameter φ.

First, it is easy to verify that the identities (30) and (31)
indeed hold for arbitrary pure states |�〉 by utilizing
|�⊥〉〈�⊥| = 1

2 (I − 	r · 	σ ). In particular, we have

W(�) = ±i〈[A,B]〉 + |〈�|A ± iB|�⊥〉|2

= 1 + cos2 θ − sin2 θ sin 2ϕ sin 2φ

� 1 − | sin 2φ|
= 1 − |	a · 	b|. (39)

Alternatively, we can prove in Bloch formulism that the above
inequality indeed provides a state-independent lower bound
for the quadratic functional W(�) = �A2 + �B2 by using
the parallelogram law (see Appendix B)

W(�) � 1 − |	a · 	b| = 2(1 − c2), (40)

where c = maxi,j |〈ai |bj 〉| and {|ai〉} ({|bj 〉}) are the corre-
sponding eigenvectors of A (B). Note that c is the most
common and important quantity in the formulation of entropic
uncertainty relations [5].

Since the inequalities (4) and (7) are saturated for any
single-qubit pure state, then we focus on the performance
of the inequality (5), comparing it with the RUR or the
SUR. We notice that reformulation by normalization turns
out to be a relatively reasonable way to compare different
types of uncertainty relations, e.g., dividing both sides of the
inequalities by their own lower bound [45–47]. According
to this line of thought, we can define the following two
functionals:

U1(θ,ϕ,φ) = �A2�B2

|〈[A,B]〉/2|2 , (41)

U2(θ,ϕ,φ) = �A2 + �B2

|〈�⊥
A+B |A + B|�〉|2/2

. (42)

Therefore, the performance (or tightness) of the uncertainty
relations is to compare the left hand sides of the inequalities
with the uniformly normalized lower bound 1. In our notation,
we have

U1 = [1 − sin2 θ cos2(ϕ − φ)][1 − sin2 θ sin2(ϕ + φ)]

cos2 θ cos2 2φ
, (43)

U2 = 2 − sin2 θ (1 + sin 2ϕ sin 2φ)

(1 + sin 2φ)[1 − sin2 θ (1 + sin 2ϕ)/2]
. (44)

We first focus on the case φ = 0 where two observables,
A = σx and B = σy , are complementary to each other. Recall
that the associated eigenvectors of the Pauli matrices are
mutually unbiased bases of C2. In Fig. 1, we show the contour
plots of U1(φ = 0) and U2(φ = 0) as a function of the polar
angle θ and the azimuthal angle ϕ. We can easily check that an
equality U1 = 1 holds for θ = 0,π and arbitrary ϕ or arbitrary
θ and ϕ = nπ/2 (n is an integer and notice the symmetry
of the function U1). When θ → π/2, U1 diverges since the
denominator of U1 approaches 0 near this critical region.
Meanwhile, U2 = 1 is fulfilled for θ = π/2 and ϕ = 3π/4
since |�〉 = 1√

2
(|0〉 + e3πi/4|1〉) is one of the eigenvectors

of A − B = σx − σy , while U2 diverges for θ = π/2 and
ϕ = π/4 due to the fact that �O vanishes if and only if |�〉 is
an eigenstate of the observable O [see the identity (9)].

For comparison, we also present the contour plots for the
case φ = π/8 (Fig. 2). It is evident that the structure ofU1(φ =
π/8) is greatly different from that of U1(φ = 0), but on the
contrary U2 almost remains unchanged. Note that generally
A − B = (cos φ − sin φ)(σx − σy), so that the condition for
convergence or divergence of U2 is independent of the value
of φ. Indeed, we can also interpret this result intuitively by
noting that φ only appears in an overall multiplicative factor
of the denominator of U2 [see Eq. (44)]. Therefore, in order
to neatly avoid the divergence of U2, we can reformulate the
lower bound L2 as

L′
2 = max{L2,L3}. (45)
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FIG. 1. (Color online) (a) The contour plot of U1(φ = 0) as a
function of the polar angle θ and the azimuthal angle ϕ. (b) The
contour plot of U2(φ = 0) as a function of the parameters θ and ϕ.
Note that the lighter regions show higher values of the functions.

For the sake of completeness, we additionally have plotted
the corresponding uncertainty function U3 for the SUR, and it
turns out that U3 never varies and is identically equal to unity,
which means that the equality of the SUR always holds for
arbitrary pure states (|	r| = 1). In fact, we have the following
identity,

ϒ(A,B,ρ) = [1 − (	a · 	b)2](1 − 	r 2) � 0, (46)

where we define

ϒ(A,B,ρ) = �A2�B2 − 1

4
|〈C〉|2 − 1

4
|〈F 〉|2. (47)

Hence, the SUR can be employed in the domain of discrete
variables to detect the mixedness of qubit states [48].

IV. SQUEEZED STATES AND QUANTUM METROLOGY

As indicated in previous literature, the definition of
squeezing or reduction of quantum fluctuations is intimately
intertwined with uncertainty relations [24]. For instance, if
two arbitrary observables A and B obey the commutation
relation [A,B] = iC and the RUR, a state |�〉 is said to be

FIG. 2. (Color online) (a) The contour plot of U1(φ = π/8) as a
function of the polar angle θ and the azimuthal angle ϕ. (b) The
contour plot of U2(φ = π/8) as a function of the parameters θ and ϕ.
Note that the lighter regions show higher values of the functions.

squeezed in O ∈ {A,B} if the uncertainty in O satisfies the
relation [20,21,38,40]

�O2 < |〈C〉|/2. (48)

Following this line of thought, we can generalize this definition
to the case of the variances satisfying the stronger inequal-
ity (7); that is, one can define squeezing if

�O2 < |〈C〉|/(2 − 	1). (49)

Apparently, the definition (49) will reduce to Eq. (48) if 	1 =
0, which means |�〉 belongs to the OISs. Alternatively, by
use of the inequality (4), another criterion of squeezing can be
given as

�O2 <
|〈C〉| + 	2

2
. (50)

As expected, when 	2 = 0 this definition also reduce to
the one based on the RUR. Furthermore, some remarks are
in order: (i) the definition of squeezing is not unique. An
appropriate criterion should be established depending on the
specific scenario where this definition makes sense [20]; (ii)
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given A and B, the values of 	1 and 	2 are determined by the
choice of |�⊥〉 [32]. More precisely, the possible choices of
|�⊥〉 will decide the strength of the definition.

In particular, in the context of spin squeezing, various
spin squeezing parameters have been proposed for different
applications, which have attracted increasing attention since
spin squeezing has been recognized as a valuable resource for
quantum metrology [22,23,49,50]. For instance, based on the
definition (48), a spin squeezing parameter can be defined with
respect to two orthogonal unit vectors 	n1 and 	n2 [24]:

ξ 2
H = 2

(
�Jn1

)2/∣∣〈Jn2

〉∣∣, (51)

where Jn = J · 	n, angular momentum operator J =
1
2

∑N
l=1 	σ (l), and 	σ (l) is the vector of Pauli matrices acting on

the lth particle. When ξ 2
H < 1, the state is said to be squeezed.

However, ξ 2
H may be less than 1 in the coherent spin state

(CSS) and this is not desirable since a CSS should not be
viewed as being spin-squeezed [22,24,51]. Therefore, we shift
our focus to the squeezing parameter introduced by Wineland
et al. [22], which is the one directly related to interferometric
sensitivity,

ξ 2
R = N

(
�Jn1 )2/∣∣〈Jn2

〉∣∣2
. (52)

For the scenario of optical interferometry, it has been proven
that [49,50]

ξ 2
R = N

(
�Jn1

)2

∣∣〈Jn2

〉∣∣2 � N

F
[|�〉,Jn3

] = χ2, (53)

where F[|�〉,Jn3 ] = 4(�Jn3 )2 is the quantum Fisher in-
formation [52] and 	n3 is orthogonal to both 	n1 and 	n2.
The parameter χ2 < 1 is a sufficient condition for particle
entanglement and Eq. (53) confirms that there exists a class of
states which are entangled, χ2 < 1, but not spin squeezed [53].
In fact, by applying the uncertainty relation (7), we can obtain
a generalized version of Eq. (53),

ξ 2
R � χ2

(1 − 	1/2)2
� χ2, (54)

where we choose A = Jn1 , B = Jn3 , and [ Jn3 ,Jn1 ] = i Jn2 .
Hence, if we want to attain higher sensitivity (e.g., ξ 2

R as small
as possible), we are supposed to choose the input state within
the set of OISs (	1 = 0) [54].

V. CONCLUSIONS

In this work, we construct and formulate two quantum
uncertainty equalities, which hold for all pairs of incompatible
observables and lead to the new uncertainty relations recently
introduced by Maccone and Pati [32]. In fact, one can obtain a
series of inequalities with hierarchical structure by retaining
1 to d − 2 terms within the set {|�⊥

k 〉d−1
k=1}. Remarkably, we

provide an explicit interpretation lying behind the structure of
these inequalities and relate them to the so-called intelligent
states [36,37]. As an illustration, we investigate the properties
of these uncertainty inequalities in the qubit system and a state-
independent bound is obtained for the sum of the variances.
Finally, the implication of these uncertainty relations in

interferometric sensitivity is also discussed in the context of
spin squeezing.

Possible generalizations of our method need to be ad-
dressed. First, here we only consider the extension of the
RUR, but one can also extend the SUR employing the concept
of GISs [38], where a suitable phase factor eiω should be
introduced. For example, we can establish a strengthened
version of the inequality (4),

�A2 + �B2 �
√

|〈C〉|2 + |〈F 〉|2 + 	3. (55)

where

	3 = |〈�|A ± ieiωB|�⊥〉|2, (56)

γ = eiω, tan ω = 〈F 〉/〈C〉. (57)

Moreover, we notice that Pati and Wu extended the results of
Ref. [32] into the realm of weak measurement [55]. In fact,
the corresponding uncertainty equality of Eq. (6) in Ref. [55]
can also be constructed utilizing our approach.
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APPENDIX A: OIS, GIS, AND MINIMUM-UNCERTAINTY
STATES

As mentioned above, the OISs and GISs are quantum
states that satisfy the equality sign in the RUR and the
SUR, respectively. However, frequently the OISs and GISs
are also termed as minimum-uncertainty states in previous
literature [56]. Obviously, there is no commonly accepted
name for those states and here we prefer to call the states that
minimize the product functionalU(�) = �A2�B2 minimum-
uncertainty states [21]. In Ref. [41], Jackiw also termed them
critical states and presented a necessary condition which must
be satisfied if U(�) achieves the minimum value:

(
Ă2

�A2
+ B̆2

�B2
− 2

)
|�〉 = 0, (A1)

where Ŏ = O − 〈O〉I .
In fact, we can also provide a similar constraint for the sum

functional W(�) = �A2 + �B2 by the variational method.
Considering the variation 〈�| → 〈�| + 〈δ�|, we have

δ(〈O〉) ≈ 〈δ�|O|�〉
〈�|�〉 − 〈�|O|�〉

〈�|�〉2
〈δ�|�〉, (A2)

where only the first-order approximation is adopted. There-
fore, the variation of the variance can be represented as

δ(�O2) = δ(〈O2〉 − 〈O〉2)

= δ(〈O2〉) − 2〈O〉δ(〈O〉)
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≈ 〈δ�|
[

(O − 〈O〉)2|�〉
〈�|�〉

]
− �O2 〈δ�|�〉

〈�|�〉

= 〈δ�|Ŏ2|�〉
〈�|�〉 − �O2 〈δ�|�〉

〈�|�〉 . (A3)

Note that the normalization factor 〈�|�〉 plays an important
role in the derivation. By choosing O = A,B, the stationary
condition δ[W(�)] = 0 can be recast as

〈δ�|(Ă2 + B̆2)|�〉 = 〈δ�|(�A2 + �B2)|�〉. (A4)

For the arbitrariness of 〈δ�|, it follows that

(Ă2 + B̆2)|�〉 = (�A2 + �B2)|�〉. (A5)

This condition defines another class of critical states for
the functional W(�). Furthermore, combining with the extra
constraint �A = �B, this condition reduces to the special
case of Eq. (A1), which is to be expected.

APPENDIX B: STATE-INDEPENDENT UNCERTAINTY
RELATION FOR THE QUBIT SYSTEM

In this Appendix, we aim to prove the following state-
independent bound:

W(�) � 1 − |	a · 	b| = 2(1 − c2). (B1)

Indeed, this relation holds for arbitrary (pure or mixed) single-
qubit states. Before proceeding, we would like to present
two facts to simplify our discussion: (i) W(�) reaches the
minimum value for pure states; and (ii) we only need to
consider the states whose Bloch vector 	r lies within the
plane spanned by 	a and 	b. Point (i) is obvious since we have
W(�) = 2 − (	a · 	r)2 − (	b · 	r)2. Thus, we have

min
|	r|�1

W(�) = min
|	r|=1

W(�). (B2)

In addition, if 	r is not coplanar with 	a and 	b, we have the
following relation:

cos ϑ = cos ϑ1 cos ϑ2. (B3)

where 	r ∨ 	r‖ = ϑ1, 	r‖ ∨ 	a = ϑ1, and 	a ∨ 	r = ϑ . Here 	m ∨ 	n
denotes the angle between the two vectors and 	r‖ represents
the unit vector along the projection of 	r on the plane spanned
by 	a and 	b. From Eq. (B3), we obtain | cos ϑ1| � | cos ϑ |; that
is, (	a · 	r‖)2 � (	a · 	r)2. Note that the same argument applies to
	b. Therefore, the minimum value of W(�) is attained within
this plane.

Since |	r| = 1, W(�) can be written as

W(�) = ‖	a × 	r‖2 + ‖	b × 	r‖2. (B4)

Moreover, the Bloch vector 	r can be decomposed as

	r = α
	a + 	b

‖	a + 	b‖ + β
	a − 	b

‖	a − 	b‖ , (B5)

where α and β are real parameters and α2 + β2 = 1. By using
the parallelogram law in Herbert space, we have

W(�) = ‖	a × 	r‖2 + ‖	b × 	r‖2

= (‖(	a + 	b) × 	r‖2 + ‖(	a − 	b) × 	r‖2)/2
= [β2(2 + 2	a · 	b) + α2(2 − 2	a · 	b)]/2

= 1 + 	a · 	b(β2 − α2). (B6)

Since |β2 − α2| � 1, we finally obtain W(�) � 1 − |	a · 	b|.
This inequality can be rewritten as

(	a · 	r)2 + (	b · 	r)2 � 2c2 = 1 + |	a · 	b|, (B7)

where c = maxi,j |〈ai |bj 〉| and {|ai〉} ({|bj 〉}) are the corre-
sponding eigenvectors of A (B). We notice the similar bounds
have been obtained in Refs. [12] and [57]. However, Ref. [12]
does not provide an explicit proof, and in comparison with
Ref. [57], our proof is compact and straightforward.
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