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Microwave degenerate parametric down-conversion with a single cyclic
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With the assistance of a cyclic three-level artificial atom of a superconducting flux quantum circuit interacting
with a two-mode superconducting transmission-line resonator, we study theoretically the degenerate microwave
parametric down-conversion (PDC) in a circuit-QED system. By adiabatically eliminating the excited states of
the three-level artificial atom, we obtain an effective microwave PDC Hamiltonian for the two resonator modes
(i.e., the fundamental and second-harmonic modes). The corresponding PDC efficiency in our model can be much
larger than that in the similar circuit-QED system based on a single two-level superconducting qubit [K. Moon
and S. M. Girvin, Phys. Rev. Lett. 95, 140504 (2005)]. Furthermore, we investigate the squeezing and bunching
behavior of the fundamental resonator mode resulting from the coherent driving to the second-harmonic one.
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I. INTRODUCTION

Photonic parametric down-conversion (PDC) is the coher-
ent generation of a pair of photons with lower frequency via
injecting a higher-frequency photonic field into a nonlinear
medium [1] through a three-wave mixing process. The PDC
together with three-wave mixing in an atomic medium has been
widely studied both theoretically [2–5] and experimentally
[6–8]. For instance, the PDC process can be used to generate a
squeezed state [9,10] in which the fluctuation of one quadrature
is suppressed while the fluctuation of the other one is increased
and can be used for precise measurement [11].

In the early days, the degenerate [2] and nondegenerate [3]
PDC processes were studied in a cyclic three-level atomic
system in which any two of the three levels can be coupled
via electric dipole transition. In general, the cyclic three-level
structure does not exist in natural atoms due to the rules of
electric dipole transitions. The key point to form a cyclic
atomic structure in Refs. [2,3] is to use a sufficiently strong
external field to break the symmetry of the atomic system.

Recently, it has been found that such an electrical-dipole-
transition-based cyclic three-level (also called � type) struc-
ture can be formed in the system of a superconducting flux
quantum circuit (SFQC) [12] by adjusting the bias magnetic
flux threaded through the loop composed of three Josephson
junctions. In addition, the cyclic three-level structures also
exist in chiral molecular systems [13,14] and are used to
separate the chiral molecules with different chiralities using
the generalized Stern-Gerlach effect [15]. Based on the cyclic
transitions, it is convenient to use cyclic three-level systems
to generate single microwave photons [16,17], to produce
microwave amplification without population inversion [18,19],
and to serve as a single-photon quantum router [20].

On the other hand, there has been great progress in
simulating a quantum optics phenomenon in a circuit-QED
system [21–23], in which the superconducting qubit (e.g.,
charge, phase, or flux qubit) or qutrit serves as a two-level
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or three-level “artificial atom” interacting with the microwave
superconducting transmission-line resonator. In the circuit-
QED system, the energy structure of the “atom” can easily be
controlled by tuning the external conditions such as currents,
voltages, and electromagnetic fields. The strong couplings
between the artificial atoms and superconducting resonators
have also been realized experimentally [24–26]. Recently,
researchers have proposed realizing the PDC process and
generating a squeezing state in the circuit-QED system [27–
33].

Based on the above achievements, we consider in this
paper the microwave degenerate PDC and generation of
the squeezed state in a circuit-QED system consisting of a
cyclic three-level artificial atom of SFQC and a two-mode
transmission-line resonator. In the case where the detunings
between the three-level artificial atom and the resonator modes
are much larger than their coupling strengths, we can eliminate
adiabatically the degrees of freedom of the artificial atom and
derive the effective coupling between the two modes in the
resonator by Frölich-Nakajima transformation [34–38] (also
called Schrieffer-Wolff transformation [39,40]). The effective
Hamiltonian has a form similar to that of the degenerate
parametric oscillator [41–43], which provides the PDC process
and the generation of the squeezed field.

In our proposal, the efficiency of the microwave PDC is
inversely proportional to the detuning between the funda-
mental mode and the three-level artificial atom. It is much
larger than that in the system of a superconducting two-level
qubit interacting with the superconducting transmission-line
resonator, in which the efficiency is inversely proportional to
the frequency of the qubit’s transition [27]. We further discuss
the squeezing and bunching behavior of the fundamental
mode by means of the mean-field approach [44,45] when the
higher-frequency second-harmonic mode is resonantly driven.

The rest of this paper is organized as follows. In Sec. II, we
illustrate our model and derive the effective PDC Hamiltonian
by adiabatically eliminating the degrees of freedom of the
cyclic three-level system. In Sec. III, we investigate the
squeezing and bunching behavior of the fundamental mode
in a superconducting transmission-line resonator by means
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FIG. 1. (Color online) (a) Schematic diagram of the circuit-QED
setup consisting of a superconducting qutrit and a two-mode mi-
crowave superconducting transmission-line resonator. (b) The cyclic
three-level structure of the qutrit interacting with the two modes,
e.g., the fundamental and second-harmonic modes, of the microwave
resonator.

of the Langevin equations. In Sec. IV, we give some brief
conclusions.

II. THE MODEL AND PARAMETRIC
DOWN-CONVERSION

As shown in Fig. 1(a), we consider a circuit-QED system
with a SFQC interacting with a two-mode superconducting
transmission-line resonator. The SFQC is composed of a
superconducting loop with three Josephson junctions. Two
of the junctions have equal Josephson energies EJ and
capacitances CJ , while the third one has ηEJ and ηCJ

(1/2 < η < 1). The loop is threaded by an external magnetic
flux �e. The Hamiltonian is written as [12,46]

Hq = P 2
p

2Mp

+ P 2
m

2Mm

+ 2EJ (1 − cos ϕp cos ϕm)

+ ηEJ [1 − cos(2πf + 2ϕm)], (1)

where Pj = −i∂/∂ϕj for j = m,p, Mp = 2CJ (�0/2π )2, and
Mm = Mp(1 + 2η), with �0 = π�/e being the flux quanta, �

being the reduced Plank constant, e being the electronic charge.
Here ϕp = (ϕ1 + ϕ2)/2,ϕm = (ϕ1 − ϕ2)/2, with ϕ1,ϕ2 being
the phase drops across the two lager junctions and f = �e/�0

being the reduced magnetic flux. Here we just focus on
the transitions among the lowest three energy levels, whose
related eigenenergies and wave functions can be obtained
numerically [12].

When f = 0.5, the potential and the energy eigenstates
of the qutrit (that is, the three-level superconducting artificial
atom) have fixed parities so that the electrical-dipole transitions
between the states with same parity are forbidden. In this case,

the three states of the qutrit can just form a cascade three-
level structure. However, when f �= 0.5, the symmetry of the
potential is broken, and the transitions between arbitrary two
states are permissible. Thus the qutrit can form a cyclic �-type
energy-level configuration [12]. Such a symmetry-breaking
phenomenon which allows for the coexistence of one- and
two-photon processes has been observed experimentally in
the superconducting quantum flux qubit circuit [47,48].

We consider the case where two of the modes (e.g., the fun-
damental and second-harmonic modes) in the superconducting
transmission-line resonator are involved. For such a circuit-
QED setup, the Hamiltonian is written as H = H0 + HI

(hereafter, we set � = 1), where

H0 = ωg|g〉〈g| + ωr |r〉〈r| + ωe|e〉〈e| + ωaa
†a + ωbb

†b

(2)

is the free Hamiltonian of the qutrit and the microwave modes
in the resonator. Here b† (a†) is the creation operator for the
fundamental (second-harmonic) mode with eigenfrequency ωb

(ωa ≡ 2ωb). ωg , ωr , ωe are, respectively, the eigenfrequencies
of the ground state |g〉, the first excited state |r〉, and the second
excited state |e〉. As a reference, we will set ωg = 0 in what
follows.

The interactions between the resonator modes and the qutrit
are described by

HI = gega|e〉〈g| + grgb|r〉〈g| + gerb|e〉〈r| + H.c., (3)

where gij (i,j = g,e,r) are the complex coupling strengths
with the amplitudes [12,49]

|geg| = 2πηEJ

�0

√
ωa

C

∣∣∣∣ cos

(
πx

L

)
〈e| sin(2πf + 2ϕm)|g〉

∣∣∣∣,
(4a)

|ger| = 2πηEJ

�0

√
ωb

C

∣∣∣∣ cos

(
2πx

L

)
〈e| sin(2πf + 2ϕm)|r〉

∣∣∣∣,
(4b)

|grg| = 2πηEJ

�0

√
ωb

C

∣∣∣∣ cos

(
2πx

L

)
〈r| sin(2πf + 2ϕm)|g〉

∣∣∣∣.
(4c)

Here C and L are, respectively, the capacitance and the
length of the transmission-line resonator, and x is the position
of the qutrit in the transmission-line resonator.

In Eq. (3), we have used the rotating-wave approximation,
which requires the coupling strengths and the detunings be
much smaller than the transition frequencies of the qutrit and
eigenfrequency of the resonator modes: {|geg|,|grg|,|ger|} �
{ωa,ωb,ωr,ωe} and {|�|,|�r |} � {ωa,ωb,ωr,ωe}. Here � :=
ωe − ωa = ωe − 2ωb and �r := ωr − ωb are the related de-
tunings.

In order to obtain the effective coupling between the two
resonator modes, we should eliminate the degrees of freedom
of the qutrit. Here we adopt the Frölich-Nakajima transfor-
mation, which is a canonical transformation widely used in
condensed-matter physics [34] and quantum optics [35–38],
to eliminate the variables of the qutrit.
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In the regime of large detunings

|�| � |geg|, |�r | � |grg|, |� − �r | � |ger|, (5)

the effective coupling between the two modes in the resonator
can be obtained by introducing a unitary transformation H =
exp(−λS)H exp(λS), where S is an anti-Hermitian operator.
According to the Baker-Hausdorff formula, one has

H = exp(−λS)(H0 + λHI ) exp(λS)

= H0 + λHI + λ[H0,S] + λ2[HI ,S] + λ2

2
[S,[S,H0]]

+ λ3

2
[S,[S,HI ]] − λ3

3!
[S,[S,[S,H0]]] + O(λ4),

(6)

where λ is introduced to stress that the interaction Hamiltonian
can be treated as perturbation compared with the free Hamil-
tonian and should be set to 1 after the calculations. Here we
choose

S = g∗
eg

�
a†|g〉〈e| + g∗

er

� − �r

b†|r〉〈e| + g∗
rg

�r

b†|g〉〈r| − H.c.,

(7)

so that it satisfies HI + [H0,S] = 0. Note that in Eq. (6) we
keep to the third order (instead of to the usual second order) in
the expansion to obtain the desired PDC process of three-wave
mixing.

Since we focus on the situation of large detunings, the qutrit
populated in the initial ground state |g〉 will remain mostly in
the ground state. Neglecting the high-frequency terms and
the virtual photon-induced modification to the energy of the
qutrit’s excited states, one can obtain the effective Hamiltonian
in the form of

H = Heff ⊗ |g〉〈g|. (8)

Here, up to the third order of the interaction, the effective
Hamiltonian for the two resonator modes is given as

Heff = 〈g|H|g〉

≈ 〈g|
(

H0 + 1

2
[HI ,S] + 1

3
[[HI ,S],S]

)
|g〉

=
(

ωa − |geg|2
�

)
a†a +

(
ωb − |grg|2

�r

)
b†b

+
(

g∗
eggergrg

�r�
a†b2 + H.c.

)
, (9)

where −|geg|2/� and −|grg|2/�r are the frequency shifts
of the second-harmonic and fundamental modes due to
their largely detuned couplings to the qutrit, respectively.
Usually, these shifts are negligibly small compared with the
corresponding resonant frequencies.

In the case of [50]

ωa − |geg|2
�

= 2

(
ωb − |grg|2

�r

)
=: ωeff ≈ ωa, (10)

the effective Hamiltonian becomes

Heff = ωeffa
†a + ωeff

2
b†b + χ

2
(eiϕa†b2 + e−iϕab†2), (11)

where

χ = 2|g∗
eggergrg|
�r�

(12)

is the effective coupling strength between the two modes in
the resonator and ϕ is the global phase contributed from the
three couplings between the resonator and the qutrit. Note that
here the individual phases of the couplings gij (i,j = e,g,r)
do not matter. In the PDC process implied by Eqs. (8) and (11),
the three-level system evolves along |g〉 → |e〉 → |r〉 → |g〉
by annihilating one photon of the a mode and creating two
photons of the b mode.

Note that the condition for the Frölich-Nakajima trans-
formation in our model has been given in Eq. (5). Strictly
speaking, when the average photon numbers of the resonator
modes are larger than 1, e.g., na,b > 1, the effect of large na,b

should be taken into consideration, and we should modify the
condition for the Frölich-Nakajima transformation as

na � �2/|geg|2, nb � {(� − �r )2/|ger|2,�2
r /|grg|2}, (13)

which is similar to that in Ref. [37].
Governed by the effective Hamiltonian (11), the time

evolution of the system can be obtained analytically when the
dissipation is neglected. Assuming that the system is initially
prepared in the state |ψ(0)〉 = |g; 1; 0〉 ≡ |g〉q ⊗ |1〉a ⊗ |0〉b,
which means that the qutrit is in its ground state, and the
second-harmonic (fundamental) mode in the resonator is in its
Fock state |1〉 (|0〉), the evolved state is expressed as

|ψ(t)〉 = e−iωeff t

(
cos

√
2χt

2
|g; 1; 0〉

− ie−iϕ sin

√
2χt

2
|g; 0; 2〉

)
. (14)

In what follows, we will choose the parameters in the same
order as those in Ref. [27]: ωa/2π = 2ωb/2π = 5.5 GHz,
� = 2�r = ωa/10, and |geg|/2π = 20 MHz, |grg|/2π =
|ger|/2π = 10 MHz. Under these parameters, the conditions
given by Eq. (5) are fulfilled, and the effective coupling
strength is χ/2π ≈ 26 kHz; the effective frequency of the
second-harmonic mode is obtained as ωeff/2π ≈ 5.5 GHz.

In order to verify the validity of the adiabatic elimination
with the Frölich-Nakajima transformation, we illustrate the
time evolution of the system in Fig. 2. In Fig. 2(a), we plot the
probability of the qutrit remaining in the initial ground state |g〉
during the time evolution governed by the Hamiltonians (2)
and (3) without considering the dissipation of the resonator
modes and the qutrit. The fact that the probability even
surpasses 0.99 means it is reasonable to assume that the qutrit
is always populated in the ground state. Moreover, it shows
obvious Rabi oscillation between states |g; 1; 0〉 and |g; 0; 2〉
in Fig. 2(b), where we plot the average photon numbers
as functions of the evolution time t . We also observe from
Fig. 2(b) that our results based on Eq. (14) (represented by
the dashed and solid lines) coincide with the direct numerical
results (represented by the empty rectangles and circles) based
on the original Hamiltonian in Eqs. (2) and (3) very well.
This further confirms the validity of the approach of adiabatic
elimination we used here.
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FIG. 2. (Color online) (a) The probability of the qutrit in the
ground state. (b) The average photon numbers of the second-harmonic
mode (red solid line) and fundamental mode (blue dashed line) in the
resonator. The empty circles and rectangles are the corresponding
numerical results. The parameters are set as ωa/2π = 2ωb/2π =
5.5 GHz, � = 2�r = ωa/10, and |geg|/2π = 20 MHz, |ggr|/2π =
|ger|/2π = 10 MHz. Under these parameters, the effective coupling
strength is χ/2π ≈ 26 kHz, and the effective frequency of the
second-harmonic mode is ωeff/2π ≈ 5.5 GHz. We assume the system
is prepared in the state |ψ(0)〉 = |g; 1; 0〉 initially.

The effective Hamiltonian (11) demonstrates the degenerate
PDC mechanism via nonlinear three-wave mixing. Actually, a
similar process has also been investigated in the system of a
two-level superconducting qubit interacting with a two-mode
superconducting transmission-line resonator in Ref. [27]. The
difference is that the PDC efficiency χ is inversely proportional
to �r in our result, instead of ωa in Ref. [27]. In experiment,
ωa is always of the order of gigahertz [21,51], and �r can
be taken to be about 100 MHz, so the PDC efficiency can be
enlarged by one or nearly two orders in our scheme.

III. SQUEEZING AND PHOTONIC CORRELATION

Now, we will study the optical character of the effective
PDC system in the steady state in the presence of the optical
driving and dissipation simultaneously. Here we focus on
the situation where the second-harmonic mode is resonantly
driven by an external field. The action of the driving field is

described by

Hdrive = iε(a†e−iωeff t − aeiωeff t ), (15)

where ε is the strength of the driving field and is assumed to
be positive.

In the rotating frame with respect to U (t) =
exp[iωeff(a†a + b†b/2)t], the Hamiltonian of the system under
the driving field becomes

H̃ = U (t)(Heff + Hdrive)U †(t) + i
∂U (t)

∂t
U †(t)

= iε(a† − a) + iχ

2
(ab†2 − a†b2), (16)

where we have set the global phase as ϕ = −π/2.
Based on the above standard PDC Hamiltonian (16), the

Langevin equations for the operators a and b are

d

dt
a = ε − χ

2
b2 − γaa +

√
2γaain, (17)

d

dt
b = χab† − γbb +

√
2γbbin, (18)

where the noise operators satisfy 〈ain(t)a†
in(t ′)〉 =

〈bin(t)b†in(t ′)〉 = δ(t − t ′) since we have restricted
our consideration to very low temperature such that
the corresponding thermal photon numbers for the
superconducting resonator modes are close to zero. γa and γb

are, respectively, the decay rates of the second-harmonic and
fundamental modes.

In order to linearize the above equations, we define the
operators as a = α + δa, b = β + δb, where α (β) is the
average value of operator a (b) in the steady state and δa

(δb) is its fluctuation. The average values can be readily given
by [44,52]

α = ε/γa, β = 0, ε � εc,
(19)

α = γb/χ, β = ±
√

2

χ
(ε − εc), ε > εc.

Obviously, there is a phase transition at the critical driving
strength (threshold) εc = γaγb/χ , which is inversely propor-
tional to χ . In what follows, we consider only the positive
branch for β when the driving strength is above the threshold.

After neglecting the high-order terms of the fluctuations,
we obtain the linearized quantum Langevin equations for the
fluctuation operators δa and δb as

d

dt
δa = −χβδb − γaδa +

√
2γaain, (20)

d

dt
δb = χαδb† + χβ∗δa − γbδb +

√
2γbbin, (21)

which can be solved analytically by means of Fourier
transformation. Let us define the quadratures δx(t) = δb(t) +
δb†(t) and δy(t) = −i[δb(t) − δb†(t)]; the expressions of their
variances are obtained as

〈δx2〉 =
{

γaγb

γaγb−εχ
, ε � εc,

1 + γb

γa
− γaγb

2(γaγb−εχ) , ε > εc,
(22)
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FIG. 3. (Color online) Variances of the quadratures (a) 〈δx2〉 and
(b) 〈δy2〉 for the fundamental mode as a function of the driving
strength. The parameters are set as γa/2π = 0.6 MHz and γb/2π =
0.3 MHz. For the other parameters, see Fig. 2. The shading implies
that in the regime close to the threshold the linearization process is
not reasonable.

and

〈δy2〉 =
{ γaγb

γaγb+εχ
, ε � εc,

1 − γ 2
a γb

(γa+2γb)εχ , ε > εc.
(23)

We plot the variances as functions of the driving strength in
Fig. 3. It can be observed from Eqs. (22) and (23) and Fig. 3 that
〈δx2〉 is always larger than 1 and 〈δy2〉 is always smaller than 1.
In other words, when the second-harmonic mode is coherently
driven resonantly, the fundamental mode exhibits a squeezing
effect. It can be observed in Fig. 3(a) that 〈δx2〉 diverges when
the driving strength is close to the threshold. This implies
that the linearization does not work well in this regime [as
shown in the shaded regime in Figs. 3(a) and 3(b)]. Recently,
the modification near the threshold has been made by the
regularized linearization approach [45,53], in which the steady
values α and β are determined self-consistently. However, the
results from the regularized linearization approach coincide
with ours in the regime deviating from the threshold.

Furthermore, we can also investigate the statistical prop-
erties of the fundamental mode by calculating its equal-time
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10
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10
2

10
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c

g
(2

)
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)

FIG. 4. (Color online) The equal-time second-order correlation
g(2)(0) as a function of the driving strength. The parameters are the
same as those in Fig. 3. The blue solid line represents our result, and
the red dashed line represents the results according to those given in
Ref. [54] (for the details, see the context). The shading implies that
in the regime close to the threshold the linearization process is not
reasonable.

second-order correlation. The second-order correlation of the
fundamental mode is defined by

g(2)(0) = 〈b†b†bb〉
〈b†b〉2

, (24)

where 〈·〉 is the average over the steady state. As mentioned
in Ref. [54], the behavior of the correlation is related to
the fluctuation of the photon number. Actually, the second-
order correlation can be also written as [54] g(2)(0) = 1 +
〈:(�n̂)2:〉/〈n̂〉2, where n̂ = b†b is the photon number operator
and �n̂ = n̂ − 〈n̂〉 is its fluctuation, : : indicates the normal
order.

The numerical results of second-order correlation in
Eq. (24) are shown in Fig. 4 (blue solid line). It is observed that
g(2)(0) � 1 when the driving strength is below the threshold,
which implies a strong bunching character. With the increase
of the driving strength, the correlation g(2)(0) decreases and
approaches 1 when ε > εc. Below the threshold, the photon
number has a small average value but large fluctuation, leading
to a strong bunching [54]. When the driving strength is
above the threshold, the photon number fluctuation decreases
dramatically compared with the average photon number, and
the bunching effect decreases. We would like to point out that
except in the regime close to the threshold (see the shaded
regime in Fig. 4, where the linearization process is not valid),
our results for g(2)(0) agree well with the asymptotic ones given
in Ref. [54], wherein the second-order correlation is given as
g(2)(0) → 2 + ε2

c /ε
2 when the driving strength is below the

threshold and g(2)(0) → 1 + χεc/[4(ε − εc)2] for the driving
strength is above the threshold (see the red dashed line in
Fig. 4) [55]. It can be seen in Fig. 4 that g(2)(0) experiences
a sudden change at the threshold. This discontinuity can also
be removed by the regularized linearization approach [45,53],
which is beyond what we focus on in this paper.
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IV. CONCLUSION

In summary, we have studied the microwave degenerate
PDC in the circuit-QED system where a single cyclic three-
level superconducting qutrit couples to the fundamental and
second-harmonic modes in a superconducting transmission-
line resonator simultaneously. In the situation of large de-
tunings and weak couplings, we adiabatically eliminate the
degree of freedom of the qutrit (that is, keep the qutrit in
the ground state) and obtain the effective PDC Hamilto-
nian for the two microwave resonator modes. Within the
available experimental parameters, we show that the method
of the adiabatic elimination is reasonable by comparing
the corresponding approximate analytical results with the
direct numerical calculations. Compared with the scheme in
which the two-mode resonator couples to a single two-level
qubit [27], the PDC efficiency in our model is dramatically
enhanced with a single cyclic three-level system, which can be

realized and tuned in the realistic system of a superconducting
circuit. Based on the obtained effective Hamiltonian, we show
that a coherent driving of the second-harmonic mode will
result in the squeezing and bunching effect of the fundamental
mode. We hope that our proposal will open a way to generate
the high-efficiency microwave PDC process in the system of
circuit QED.
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