
PHYSICAL REVIEW A 90, 022327 (2014)

Multiple phase estimation in quantum cloning machines

Yao Yao,1,2 Li Ge,1 Xing Xiao,1 Xiao-guang Wang,3,* and Chang-pu Sun1,2,†
1Beijing Computational Science Research Center, Beijing, 100084, China

2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China,
Hefei, Anhui 230026, China

3Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou 310027, China
(Received 22 July 2014; published 25 August 2014)

Since the initial discovery of the Wootters-Zurek no-cloning theorem, a wide variety of quantum cloning
machines have been proposed aiming at imperfect but optimal cloning of quantum states within its own context.
Remarkably, most previous studies have employed the Bures fidelity or the Hilbert-Schmidt norm as the figure
of merit to characterize the quality of the corresponding cloning scenarios. However, in many situations, what
we truly care about is the relevant information about certain parameters encoded in quantum states. In this work,
we investigate the multiple phase estimation problem in the framework of quantum cloning machines, from the
perspective of quantum Fisher information matrix (QFIM). Focusing on the generalized d-dimensional equatorial
states, we obtain the analytical formulas of QFIM for both universal quantum cloning machine (UQCM) and
phase-covariant quantum cloning machine (PQCM), and prove that PQCM indeed performs better than UQCM
in terms of QFIM. We highlight that our method can be generalized to arbitrary cloning schemes where the
fidelity between the single-copy input and output states is input-state independent. Furthermore, the attainability
of the quantum Cramér-Rao bound is also explicitly discussed.
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I. INTRODUCTION

The no-cloning theorem, initially discovered in the early
1980s, is one of the earliest and paramount results of quantum
computation and quantum information, which prohibits the
probability of perfectly cloning an arbitrary unknown state
[1,2]. However, approximate or probabilistic cloning can still
be accomplished with new conceptual and technical tools de-
veloped within the framework of quantum information theory
[3]. Since then, many refinements of the no-cloning theorem
and various quantum cloning machines have been proposed,
such as Wootters-Zurek cloning [1], universal cloning [4–6],
state-dependent cloning [7], probabilistic cloning [8,9], and
phase-covariant cloning [10–17], just to name a few. All these
schemes are optimal in their own context, where indicates
some measures of distance metric are used to quantify the
closeness between the output copy and the input state. For
instance, the possible choices are the Uhlmann fidelity, the
Bures distance, the Hilbert-Schmidt norm, and the trace
norm [18]. Moreover, it is worth emphasizing that quantum
cloning machines also find wide applications in other quantum
information tasks [19].

On the other hand, in plenty of theoretical and experimental
scenarios, our real concern is only the partial information
about some relevant parameters encoded in quantum states
instead of the states themselves, as pointed out by Lu and
Song [20,21]. Therefore, in these situations, all we need is to
clone the relevant parameter information. In order to quantify
the physical information about these involved parameters,
quantum Fisher information (QFI) is introduced [22–25] and
receives more and more attention due to its great significance
in both quantum estimation theory and quantum-enhanced
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metrology [26–29]. Remarkably, Lu et al. investigated the
cloning and broadcasting of QFI in a general sense and proved
that QFI cannot be cloned [20]. Furthermore, Song et al.
compared the Wootters-Zurek cloning and universal cloning
from the perspective of QFI and showed that the former
performs better than the latter in this context [21]. These
results shed new light on the nature of QFI and can deepen
our understanding of the information transferring in quantum
cloning machines.

However, we note that Lu and Song only considered the
single-parameter case and their results cannot be directly
extended to the multiple parameter case since the quantum
Cramér-Rao bound (QCRB) cannot be generally saturated
in the multiparameter problem [30,31]. On the other side,
when we consider the cloning of d-dimensional quantum
system (especially for d > 2), the multiple parameters are
naturally involved, such as phase-covariant quantum cloning of
qudits [15–17]. These considerations motivate us to investigate
the distribution and transfer of QFI in quantum cloning
machines for qudits and to compare their performances in
this particular context. Quite recently, we also notice that
the quantum estimation problem of multiple parameters is
attracting increasing attention in the literature [32–52]. With
the aid of these results, we investigate the multiple phase
estimation problem in quantum cloning machines for qudits
where the universal quantum cloning machine (UQCM) and
the phase-covariant quantum cloning machine (PQCM) are
both evaluated. Special focus is placed on the generalized
d-dimensional equatorial states [53,54], since this form of pure
states has played a crucial role in many quantum information
protocols such as quantum key distribution [55,56], remote
state preparation [57], and phase-covariant quantum cloning
[15–17]. We prove that PQCM indeed outperforms UQCM
in terms of cloning QFI. Moreover, the attainability of the
quantum Cramér-Rao bound and the generalization of our
method are also discussed explicitly.
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This paper is organized as follows. In Sec. II, we provide
a brief review of technical preliminaries of QFIM and its
recent progress on the analytical calculation. In Sec. III, we
discuss in detail the multiparameter estimation problem in
both UQCM and PQCM and give the analytical expressions
of the corresponding QFIMs. Furthermore, we illustrate that
our method can be applied to a general class of quantum
cloning machines. In Sec. IV, the attainability of the quantum
Cramér-Rao bound is explicitly discussed. Finally, Sec. V is
devoted to the discussion and conclusion.

II. TECHNICAL PRELIMINARIES OF QFIM

In this section, we will give a brief summary of multipa-
rameter estimation theory and review the recent progress on
the analytical calculation of QFIM. Let us consider a family
of quantum states ρ(θ ) in the d-dimensional Hilbert space,
involving a series of parameters denoted by a vector θ = {θμ},
μ = 1, . . . ,p. For the single-parameter case (that is, p = 1),
the QFI is defined as [22,23,28]

F(θ ) = Tr(ρθL
2
θ ), (1)

where the Hermite operator Lθ is the so-called symmetric
logarithmic derivative (SLD) satisfying [30]

∂ρθ

∂θ
= ρθLθ + Lθρθ

2
. (2)

The quantum estimation theory places a fundamental limit
on the estimation precision of the parameter θ , which is
characterized by the QCRB

Var(θ ) � 1

MF(θ )
. (3)

Here Var(θ ) denotes the variance of any unbiased estimator,
and M is the number of measurements repeated. It is worth
stressing that in this case the QCRB can always be asymptoti-
cally achieved with the maximum likelihood approach [30].

Turning to the multiparameter scenario, the QFI is substi-
tuted by QFIM. The element of QFIMF(θ) = [Fμν] is defined
by

Fμν = Tr

[
ρ(θ )

LμLν + LνLμ

2

]
, (4)

where Lμ and Lν are SLDs with respect to θμ and θν ,
respectively. Meanwhile, the QCRB changes into the matrix
inequality [30]

Cov(θ ) � [MF(θ)]−1, (5)

where Cov(θ) stands for the covariance matrix of the estimator
θ̂ . Note that in general this bound cannot be achieved.
Therefore, much effort has been devoted to the discussion of
the attainability of the multivariate QCRB. For pure states
ρ(θ ) = |ψθ 〉〈ψθ |, Fujiwara and Matsumoto proved that if
the condition Im[〈ψθ |LμLν |ψθ 〉] = 0 is satisfied for all μ

and ν, the multiparameter QCRB is achievable at θ [35,36].
Matsumoto also presented a POVM measurement with p + 2
elements that indeed achieves the bound [36]. For mixed states,
the situation is more complicated. However, recent research
by Guţă and Kahn indicates that the QCRB is asymptotically

attainable if and only if [58–60]

Tr(ρ(θ )[Lμ,Lν]) = 0. (6)

On the other hand, recently several authors have made an
extremely useful contribution to the analytical calculations
of QFIM. In particular, Liu et al. provided an analytical
expression of the QFIM determined only by the support of
the density matrix [61]. Based on the spectral decomposition
of ρ(θ ),

ρ(θ ) =
s∑
i

λi(θ)|ψi(θ)〉〈ψi(θ )|, (7)

with s being the rank of ρ(θ ) (s � d), the QFIM can be divided
into two separate contributions

Fμν = FC + FQ, (8)

where

FC =
s∑

i=1

∂μλi∂νλi

λi

,

(9)

FQ =
s∑

i=1

4λiRe�i
μν −

s∑
i,j=1

8λiλj

λi + λj

Re	ij
μν,

with �i
μν = 〈∂μψi |∂νψi〉 and 	

ij
μν = 〈∂μψi |ψj 〉〈ψj |∂νψi〉.

Hence it can be seen clearly that FC is attributed to the
classical contribution if we treat the set of nonzero eigenvalues
as a genuine probability distribution; while FQ is the purely
quantum contribution determined by both eigenvalues and
eigenvectors. Furthermore, we notice that F(θ) = [Fμν] is
a real symmetric matrix and its diagonal element coincides
with the analytical formula of the single-parameter case as we
expect [62–64]. Keeping these technical tools in mind, we are
now in a position to present our main results.

III. QFIM IN QUANTUM CLONING MACHINES

As described in the Introduction, we mainly focus on the
generalized d-dimensional equatorial states of the form

|ψ(φ)〉 = 1√
d

d−1∑
j=0

eiφj |j 〉, (10)

where φ = {φ0,φ2, . . . ,φd−1}, φj ∈ [0,2π ), j = 0, . . . ,d − 1,
and {|j 〉} is a complete orthonormal basis of the d-dimensional
Hilbert space. The overall phase cannot be estimated, so we
can assume φ0 = 0. It is remarkable that this set of states
(10) can be generated by d − 1 independent phase shifts with
respect to the reference state |ψ(φ = 0)〉 = (1/

√
d)

∑d−1
j=0 |j 〉,

by virtue of the unitary transformation [53,54]

U(φ) = |0〉〈0| +
d−1∑
j=1

eiφj |j 〉〈j |. (11)

As a warmup, we first evaluate the QFIM of this initial state.
By the definition, the SLDs of pure state ρ(θ ) = |ψθ 〉〈ψθ | can
be represented as

Lμ = 2∂μρ(θ ) = 2(|∂μψθ 〉〈ψθ | + |ψθ 〉〈∂μψθ |), (12)
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with |∂μψθ 〉 denoting the partial derivative of |ψθ 〉 with respect
to θμ. Moreover, the QFIM can be rewritten as

Fμν = Re〈ψθ |LμLν |ψθ 〉. (13)

Substituting Eq. (12) into Eq. (13), one can obtain

Fμν = 4 Re〈∂μψθ |�|∂νψθ 〉, (14)

where � = I − |ψθ 〉〈ψθ | is the projection operator onto the
orthogonal complement of ρ(θ ). With the notations as defined
above, for the generalized equatorial states (10), one gets

�μν = 〈∂μψ(φ)|∂νψ(φ)〉 = 1

d
δμν,

(15)

	μν = 〈∂μψ(φ)|ψ(φ)〉〈ψ(φ)|∂νψ(φ)〉 = 1

d2
.

Therefore, the QFIM for states (10) can be expressed as

Fμν = 4(�μν − 	μν) = 4

(
1

d
δμν − 1

d2

)
. (16)

Notice that �μν and 	μν are all real-valued and
Im[〈ψ(φ)|LμLν |ψ(φ)〉] = 0 for all μ and ν. Thus the mul-
tiparameter QCRB can be achieved in this case. Especially,
the total variance of all the parameters follows the inequality

(�φ)2 =
d−1∑
μ=1

(�φμ)2 = Tr[Cov(φ)] � Tr[F(φ)−1]. (17)

We observe that in fact φ is a (d − 1)-dimensional parameter
vector and thus F(φ) = [Fμν] is a d − 1 ⊗ d − 1 matrix.
According to the symmetry ofF(φ), the eigenvalues ofF(φ)−1

are d2/4 and d/4, and the degrees of degeneracy are 1 and
d − 2, respectively. Therefore, the lower bound of the total
variance is

(�φ)2 � d2

4
+ d(d − 2)

4
= d(d − 1)

2
. (18)

Moreover, this error bound can indeed be achieved due to the
saturation of the QCRB for the generalized equatorial states.
Later, we are moving on to the evaluation of the QFIMs of two
essential types of quantum cloning machines.

A. UQCM

The UQCM was first proposed by Bužek and Hillery, in
order to clone an arbitrary qubit to two approximate copies [4].
The universality indicates that the quality of the copies does not
depend on the specific form of the input state. In other words,
all states should be copied equally well referring to a proper
measure of the distance between the input and output states.
This cloning procedure was proved to be optimal, in the sense
that the fidelity between the input qubit and output qubit is
maximal [5,7]. Bužzek and Hillery also extended the UQCM
to the arbitrary-dimensional case, that is, 1 → 2 symmetric
cloning of qudits [6].

For a d-dimensional quantum system, the corresponding
cloning mechanism can be specified as the following unitary
transformation [6]

|i〉|0〉|X〉 =⇒ α|i〉|i〉|Xi〉 + β

d∑
i 	=j

(|i〉|j 〉 + |j 〉|i〉)|Xj 〉, (19)

where

α = 2√
2(d + 1)

, β = 1√
2(d + 1)

, (20)

and |i〉|0〉|X〉 represent respectively the states of the original,
the blank copy, and the cloner qudit. Here {|Xi〉} denotes an
orthonormal basis of the cloning machine Hilbert space. It is
worth noting that the UQCM can be completely characterized
by a shrinking factor η [65] and it is useful to express the
output reduced state in the following form [6]:

ρout = ηρ in + 1 − η

d
I, (21)

where ρ in = |ϕ〉〈ϕ| describes the initial pure state to be cloned.
It is easy to verify that this scaling form indeed guarantees
that the UQCM is input-state independent. Considering the
equatorial states (10) as the input state, one of the two output
qudits can be represented as

ρout(φ) = d + 2

2(d + 1)
|ψ(φ)〉〈ψ(φ)| + 1

2(d + 1)
I. (22)

To apply the analytical formula presented in Eq. (9), our
main task is to find the spectral decomposition of the mixed
state (22) [e.g., the diagonalization of ρout(φ)]. First, we
observe that |ψ(φ)〉〈ψ(φ)| itself is an eigenstate of ρout(φ),
that is

ρout(φ)|ψ〉〈ψ | = d + 3

2(d + 1)
|ψ〉〈ψ |. (23)

Here and henceforth we omit the φ dependence in |ψ(φ)〉 for
brevity. Therefore, the form (22) can be recast as

ρout(φ) = d + 3

2(d + 1)
|ψ〉〈ψ | + 1

2(d + 1)
(I − |ψ〉〈ψ |). (24)

Now the problem is converted into the decomposition of the
operator � = I − |ψ〉〈ψ | which is projected onto the orthog-
onal complement of |ψ〉〈ψ |. One possible set of orthonormal
basis vectors of this (d − 1)-dimensional Hilbert subspace can
be constructed as

|ψn〉 =
√

2n

n + 1

(
|χn〉 − 1

n

n−1∑
j=1

eiφjn |χj 〉
)

, (25)

where

|χn〉 = 1√
2

(
−e−iφn0 , . . . , 1︸︷︷︸

nth

, . . .

)
. (26)

Here we introduce the notation φmn = φm − φn and only
the zeroth and nth (1 � n � d − 1) elements of |χn〉 are
nonzero (that is, all . . . represent zeros). For more details,
see Appendix A.

From the above analysis, we finally obtain the spectral
decomposition of ρout(φ)

ρout(φ) = d + 3

2(d + 1)
|ψ0〉〈ψ0| + 1

2(d + 1)

d−1∑
j=1

|ψj 〉〈ψj |, (27)

where we define |ψ0〉 = |ψ(φ)〉 since {|ψn〉}d−1
n=0 is exactly an

orthonormal basis of the whole Hilbert space. Combining the
analytical formula (9) and this particular form of spectral
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FIG. 1. (Color online) Confirmation of the inequality (33). F in
μμ

(orange solid line) andFout
μμ (purple dashed line) represent the diagonal

entries of the QFIM for the input state |ψ(φ)〉〈ψ(φ)| and output state
ρout(φ), respectively.

decomposition, the diagonal elements of the QFIM are the
same and can be evaluated as (see Appendix B)

FUQCM
μμ = 2(d − 1)(d + 2)2

(d + 1)(d + 4)d2
, (28)

where μ = 1, . . . ,d − 1. Correspondingly, the off-diagonal
terms of the QFIM are also equal

FUQCM
μν = − 2(d + 2)2

(d + 1)(d + 4)d2
(μ 	= ν). (29)

Before proceeding, some remarks need to be made. First,
when d = 2, Eq. (28) reduces to F11 = 4/9, which recovers
the qubit case presented in Ref. [21]. Secondly, for the initial
pure state |ψ(φ)〉, we notice that the following relation holds:

Fμμ = −(d − 1)Fμν (μ 	= ν). (30)

Intriguingly, this relation is still valid for the output mixed
state ρout(φ) due to the scaling form (22). Finally, since a
cloning scenario is a special kind of quantum channel (i.e.,
a trace-preserving completely positive map) [66], QFI is
nonincreasing under the cloning transformation as a result
of its monotonicity [67], that is

F(ρout(φ)) � F(|ψ(φ)〉〈ψ(φ)|). (31)

However, this inequality can be further strengthened combin-
ing the convexity of QFI and the scaling form of ρout(φ)

F(ρout(φ)) � d + 2

2(d + 1)
F(|ψ(φ)〉〈ψ(φ)|). (32)

Since a necessary condition for a real symmetric matrix to be
positive is the positive definiteness of its diagonal entries, the
following inequality should be satisfied:

Fμμ(ρout(φ)) � d + 2

2(d + 1)
Fμμ(|ψ(φ)〉〈ψ(φ)|), (33)

which is clearly confirmed by Fig. 1.

B. PQCM

As described above, the UQCM is the optimal choice when
the input state is completely unknown. However, in many

realistic quantum information processing tasks, we actually
have a limited knowledge of the input state. By virtue of these
partial information, a quantum cloning machine with better
performance can be designed for such a restricted class of
input states. The first PQCM was proposed by Bruß et al. for
the equatorial qubit states of the form |ψ〉 = (|0〉 + eiφ|1〉)/√2
[7]. Here phase covariant reveals that the quality of this cloning
machine does not rely on the specific values of phase parameter
φ. Then Fan et al. presented explicitly the optimal 1 → M

cloning transformation for equatorial qubits [14] and extended
the PQCM to the d-dimensional quantum system [15].

Focusing on the generalized equatorial pure qudits (10),
the optimal 1 → 2 PQCM is characterized by the following
unitary transformation [15]:

U |j 〉|Q〉 = α|jj 〉|Rj 〉 + β√
2(d − 1)

d−1∑
l 	=j

(|j l〉 + |lj 〉)|Rl〉,

(34)

where |Q〉 is a combination of the blank state and initial state
of the cloning machine, {Rj } is an orthonormal basis of the
cloning machine, and

α =
(

1

2
− d − 2

2
√

d2 + 4d − 4

)1/2

,

(35)

β =
(

1

2
+ d − 2

2
√

d2 + 4d − 4

)1/2

.

By tracing over one qubit, we can obtain the reduced density
matrix of a single output qudit

ρout(φ) = 1

d

∑
j

|j 〉〈j | +
(

αβ

d

√
2

d − 1

+ β2(d − 2)

2d(d − 1)

)∑
j 	=k

eφj −φk |j 〉〈k|. (36)

Remarkably, we notice that this output reduced state in Eq. (36)
can also be rewritten in the scaling form (21) with the shrinking
factor

ηPQCM = 1

4(d − 1)
(d − 2 +

√
d2 + 4d − 4). (37)

Since

ηPQCM > ηUQCM = d + 2

2(d + 1)
, (38)

the optimal fidelity of PQCM is larger than that of UQCM [15].
Following the same method as in the above section, we

obtain the diagonal entries of the QFIM in this scenario

FPQCM
μμ = 2(d2 + dγ − 2γ )

d[d2 + d(γ + 4) − 2(γ + 2)]
, (39)

where γ = √
d2 + 4d − 4. When d = 2, FPQCM

μμ = 1/2 >

4/9. Meanwhile, we observe that the relation (30) still holds
in this circumstance. Notably, it is easy to prove the inequality

FPQCM
μμ � FUQCM

μμ , (40)

which means that the performance of PQCM is better than
that of UQCM in terms of cloning QFI for each individual
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FIG. 2. (Color online) Comparison of the diagonal entries of
QFIMs. FUQCM

μμ (orange solid line) and FPQCM
μμ (purple dashed line)

correspond to UQCM and PQCM, respectively.

phase parameters. However, when the dimensionality d is large
(e.g., d � 10), it should be noted that the advantage of PQCM
over UQCM almost disappears as shown in Fig. 2. This fact
tells us that the PQCM is more significant for the qubit case.
Furthermore, owing to the structure of QFIM and the relation
(30), a stronger (matrix) inequality holds (see Appendix C):

FPQCM � FUQCM. (41)

C. Generalization

In fact, our method can be extended to any quantum cloning
machine in which the output reduced state can be written in
the form (21), that is

ρout(φ) = η|ψ(φ)〉〈ψ(φ)| + 1 − η

d
I, (42)

where the shrinking factor η does not depend on |ψ(φ)〉.
The diagonal and off-diagonal elements of the QFIM for this
general form of mixed qudit are given by

Fμμ = 4(d − 1)η2

d[2 + (d − 2)η]
, (43)

Fμν = − 4η2

d[2 + (d − 2)η]
(μ 	= ν). (44)

Therefore, we finally confirm that the relation Fμμ = −(d −
1)Fμν is always valid due to both the structure of the initial
state (10) and the scaling form of ρout(φ).

In addition, we find that Fμμ is a monotonically increasing
function of the shrinking factor η. Indeed, the first-order
derivative of Fμμ is given by

∂Fμμ

∂η
= 4η(d − 1)[4 + (d − 2)η]

d[2 + (d − 2)η]2
> 0. (45)

This is to be expected since the larger η is, the more information
the reduced output state ρout(φ) contains about parameters.
Meanwhile, this finding also reconfirms the previous result
that FPQCM

μμ � FUQCM
μμ since ηPQCM > ηUQCM.

Moreover, it should be emphasized that the structure of
the QFIM is heavily dependent on the form of the input state
|ψ(φ)〉. Here we are focusing on the generalized equatorial
states and this is the reason why the diagonal (or off-diagonal)

entries are all equal. When the parameters are encoded in the
initial state in a more complex way, a more technical treatment
will be involved but the critical point is still to diagonalize the
reduced state ρout(φ).

IV. ATTAINABILITY OF QCRB

For the ideal pure state (10), the multiparameter QCRB
can be saturated, that is, the optimal measurements performed
to attain the quantum limits for every individual parameter
commute with each other. To identify whether the QCRB can
be achieved for the output reduced state ρout(φ), we should
check the condition (6) for every pair of SLDs. However, it
could be a very difficult task to apply this criteria directly since
the explicit expression of SLD is usually hard to obtain. Similar
to the formula (9), here we present an analytical expression
of this criteria exploiting the diagonalization of ρout(φ) (see
Appendix C)

Tr

(
ρ(φ)

[Lμ,Lν]

2

)
= i

(
s∑

k=1

4λkIm�k
μν

−
s∑

k,l=1

8λkλl(λk − λl)

(λk + λl)2
Im	kl

μν

)
.

(46)

In fact, �k
μν and 	kl

μν are all real valued based on our construc-
tion. Therefore, the multiparameter QCRB is attainable in our
study.

On the other hand, for the output reduced state ρout(φ),
the total variance (error) of all the phases {φμ}d−1

μ=1 is lower
bounded by

(�φ)2 = Tr[Cov(φ)] � Tr[F(φ)−1]. (47)

Because of the saturation of the matrix QCRB, this lower
bound can also be achieved. From Eqs. (43) and (44), the
analytical expression of this lower bound can be obtained (see

2 4 6 8 10
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FIG. 3. (Color online) Total variances (errors) for multiple phase
estimation. Ein (orange dot-dashed line), EUQCM (green solid line),
and EPQCM (purple dashed line) represent the total errors for quantum
simultaneous estimation of all the phases using the initial pure state,
the output reduced state of UQCM and PQCM, respectively. The inset
picture clearly shows that EUQCM > EPQCM.
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Appendix C)

(�φ)2
min = Tr[F(φ)−1] = (d − 1)[2 + (d − 2)η]

2η2
. (48)

Remember that F(φ) = [Fμν] is a d − 1 ⊗ d − 1 matrix. As
shown in Fig. 3, for the purpose of simultaneously estimating
all the phases, the PQCM has an advantage over the UQCM,
since the total error (�φ)2

min is a monotonically decreasing
function of the shrinking factor η. In particular, when η = 1,
we recover the result for the initial pure state. Nevertheless,
it is also evident that this advantage is not very significant, as
seen from Fig. 3. In fact, to see this, we notice that when d →
∞ both of the output reduced states of UQCM and PQCM
asymptotically approach an identical final state since

lim
d→∞

ηUQCM = lim
d→∞

ηPQCM = 1
2 . (49)

V. DISCUSSION AND CONCLUSION

In contrast to the single-parameter issue, recently increasing
attention has been paid to the multiple parameter estimation
problem, especially from a quantum information perspective.
On one hand, in many practical scenarios, more than one pa-
rameter is naturally involved and the simultaneous estimation
of these parameters is of significant interest to the research
community on both theoretical and experimental grounds.
On the other hand, due to the quantum nature, quantum
estimation of multiple parameters is fundamentally distinct
from the single-parameter case, since the SLDs corresponding
to different parameters do not commute with each other in
general (which means the optimal measurements for each
individual parameter are incompatible). In addition to these
basic considerations, we realize that quantum cloning of
high-dimensional systems can be regarded as a multiparameter
estimation problem and it provides an excellent platform for
investigating the quantum feature of this scenario.

In this study, we concentrate on the generalized d-
dimensional equatorial qudit as the input state, not only due
to its symmetry but also for its importance in quantum infor-
mation processing tasks. Within the framework of quantum
cloning machines, we present the analytical expressions of
the QFIMs for UQCM and PQCM, and prove that PQCM
indeed performs better than UQCM in terms of QFI cloning.
It is also worth emphasizing that our method can be directly
extended to any cloning machines where the output reduced
state can be written as the scaling form (21). When dealing
with the attainability of QCRB, we introduce a new matrix
L(θ ) = [Lμν] (see Appendix C), which is dual to F(θ) and
directly determines whether the QCRB can be achieved. We
provide an analytical formula for elements of L(θ) and show
that the ultimate quantum limits can be attained in our study.

Based on these findings, a wider variety of problems deserve
our attention: (i) the multiparameter estimation strategies need
to be investigated under the background of other quantum
cloning scenarios, such as the state-dependent cloning [7] and
probabilistic quantum cloning machines [8,9]. Especially for
the latter, a postselection of the measurement results is involved
and the role played by postselection in quantum metrology
has attracted a lot of attention recently [68–72]. Mixed-state
cloning or broadcasting would be also very interesting in

terms of QFI [20]. (ii) As pointed out by Ref. [21], we could
directly take the QFI as the figure of merit to find out the
optimal cloning machines in this context, particularly when
it is unnecessary to acquire the full information of quantum
states.
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APPENDIX A: CHOICE OF DECOMPOSITION AND
GRAM-SCHMIDT ORTHONORMALIZATION

To be clear, our main concern is to construct a complete set
of orthonormal basis vectors of the orthogonal complement
to |ψ(φ)〉〈ψ(φ)|. The first step is to find d − 1 vectors which
span this (d − 1)-dimensional Hilbert subspace, although they
may not be orthogonal to each other. The general form of pure
qudit can be expressed as

|χ〉 =
d−1∑
j=0

αj |j 〉, (A1)

where αj are complex coefficients and
∑d−1

j=0 |αj |2 = 1. Since
these vectors are orthogonal to |ψ(φ)〉〈ψ(φ)|, they should
satisfy the following condition:

〈χ |ψ(φ)〉 = 1√
d

d−1∑
j=0

α∗
j e

iφj = 0. (A2)

Intuitively, the simplest form of |χ〉 is what we present in
the main text, that is

|χn〉 = 1√
2

(
− e−iφn0 , . . . , 1︸︷︷︸

nth

, . . .
)
, (A3)

where 1 � n � d − 1 and all . . . represent zeros. In fact, a
more general form can be given as

|χ ′
n〉 = 1√

2

(
. . . ,−e−iφnm︸ ︷︷ ︸

mth

, . . . , 1︸︷︷︸
nth

, . . .
)
, (A4)

where φnm = φn − φm and m is free to choose with m < n.
Moreover, we should keep in mind that the rule of inner
products of vectors (A3) is

〈χm|χn〉 = 1
2eiφmn , if m 	= n,

〈χm|χn〉 = 1, if m = n.
(A5)

However, Eq. (A5) imply that |χn〉 are not orthogonal to
each other. To get an orthonormal basis of this Hilbert sub-
space, we need to make use of the procedure of Gram-Schmidt
orthonormalization. The Gram-Schmidt process generates an
orthogonal set of vectors �′ = {|ω1〉, . . . ,|ωd〉} from a finite
linearly independent set � = {|υ1〉, . . . ,|υd〉} which span the
same d-dimensional subspace. Defining |ξ1〉 = |υ1〉/‖|υ1〉‖,
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the Gram-Schmidt process works inductively as follows:

|ωk〉 = |υk〉 −
k−1∑
i=1

〈υk|ξi〉|ξi〉, |ξk〉 = |ωk〉
‖|ωk〉‖ , (A6)

where 2 � k � d and {|ξ1〉, . . . ,|ξd〉} is the required set of
normalized orthogonal vectors.

Moving on to our case and utilizing the rules in Eq. (A5), the
Gram-Schmidt process produces a sequence of unnormalized
vectors

|ψ̃n〉 = |χn〉 − 1

n

n−1∑
j=1

eiφjn |χj 〉, (A7)

with 1 � n � d − 1. Through direct calculation, we notice
that

〈ψ̃n|ψ̃n〉 = n + 1

2n
. (A8)

Therefore, after the normalization, the desired set of vectors is
just as the states (25) given in the main text. As expected, one
can easily check that 〈ψm|ψn〉 = δmn. Moreover, it is worth
emphasizing that this choice of decomposition does not lose
any generality, since distinct sets of orthonormal basis are
related by unitary transformations and QFI is invariant under
unitary transformations.

APPENDIX B: QFIM FOR UQCM

First, we observe that there is no classical contribution [see
the formula (9)], since the eigenvalues contain no information
about φ

λ0 = d + 3

2(d + 1)
, λn = 1

2(d + 1)
, (B1)

with 1 � n � d − 1. Before evaluating the quantum part,
there are two points which need to be clarified. (i) Due to
the symmetry of |ψ(φ)〉 and the scaling form of ρout(φ), all
{φμ}d−1

μ=1 are encoded in ρout(φ) on an equal footing. More
precisely, the diagonal (or off-diagonal) elements of the QFIM
will show a similar dependence on the set of parameters. For
instance, if we find F11 is independent of all the parameters,
then all Fμμ will be all equal and have no dependence on
any φμ (later we will prove this is indeed the case). (ii) The
quantum contribution is composed of two isolated terms and
these two summations can be calculated separately. The key
issue is to determine �μν and 	μν for certain parameters.

In the following, we try to evaluate F11, that is, μ = ν = 1.
Based on the orthonormal basis {|ψn〉}d−1

n=0 and defining �n
μν =

〈∂μψn|∂νψn〉, we have

�n
μν =

{
1/d, if n = 0,

1/n(n + 1), if 1 � n � d − 1.
(B2)

Thus the first summation is

d−1∑
n=0

4λnRe�n
μν = 4

d
, (B3)

where we make use of the identity

d−1∑
n=1

1

n(n + 1)
= 1 − 1

d
. (B4)

On the other hand, it is much more complicated to calcu-
late 	nm

μν = 〈∂μψn|ψm〉〈ψm|∂νψn〉. Here we only present the
results

	nm
μν =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
d2 , if n = m = 0,

1
dm(m+1) , if n = 0,m � 1,

1
dn(n+1) , if n � 1,m = 0,

1
nm(n+1)(m+1) , if n � 1,m � 1.

(B5)

Therefore, we obtain the second term

d−1∑
n,m=0

8λnλm

λn + λm

Re	nm
μν = 2(d3 + 7d2 + 8d + 4)

(d + 1)(d + 4)d2
. (B6)

Subtracting Eq. (B6) from Eq. (B3), we obtain F11 and it
is indeed independent of any parameter. Therefore, all the
diagonal elements are equal to F11. Following a similar
procedure as above, we can also evaluate the off-diagonal
terms of the QFIM [see Eq. (29)]. The calculations are tedious
but straightforward, and so the details are not presented here
for the sake of simplicity.

APPENDIX C: ATTAINABILITY

Following the notations in Ref. [61], the elements of QFIM
are defined by

Fμν = 1
2 Tr[ρ(θ ){Lμ,Lν}]. (C1)

Correspondingly, here we introduce another matrix L(θ ) =
[Lμν], whose elements read

Lμν = 1
2 Tr[ρ(θ )[Lμ,Lν]]. (C2)

In fact, one can find that

Fμν = Re Tr[ρ(θ )LμLν], (C3)

Lμν = i Im Tr[ρ(θ )LμLν]. (C4)

Moreover, based on the spectral decomposition (7), the
elements of L(θ ) can be represented as

Lμν = 1

2

s∑
i=1

d∑
j=1

λi([Lμ]ij [Lν]ji − [Lν]ij [Lμ]ji), (C5)

where we define [Lμ]ij = 〈ψi |Lμ|ψj 〉 and note that [Lμ]ij =
[Lμ]∗ji . Using results from Ref. [61], one can find that

s∑
i=1

d∑
j=1

λi[Lμ]ij [Lν]ji =
s∑

i=1

∂μλi∂νλi

λi

+
s∑

i=1

4λi�
i
μν

−
s∑

i,j=1

16λ2
i λj

(λi + λj )2
	ij

μν. (C6)
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Therefore, we can obtain

Lμν = i

(
s∑

k=1

4λkIm�k
μν −

s∑
k,l=1

16λ2
kλl

(λk + λl)2
Im	kl

μν

)
. (C7)

Here we should note the fact that

Re	kl
μν = Re	lk

μν, (C8)

Im	kl
μν = −Im	lk

μν. (C9)

In fact, for an antisymmetric matrix Aij = −Aji , we have the
relation ∑

ij

λiAij = 1

2

∑
ij

(λiAij + λjAji)

= 1

2

∑
ij

(λi − λj )Aij . (C10)

Then we obtain the final expression in the main text. Remark-
ably, in contrast to the expression of Fμν , there is no classical
contribution and this fact implies that whether Lμν (μ 	= ν)
are equal to zero or not depends on purely quantum effect.

On the other hand, the structure of QFIM is of the form

F =

⎛⎜⎜⎝
Fμμ Fμν · · · Fμν

Fμν Fμμ · · · Fμν

...
...

. . .
...

Fμν Fμν · · · Fμμ

⎞⎟⎟⎠ . (C11)

Thus the eigenvalues of F are given by

λ1 = Fμμ + (d − 2)Fμν,
(C12)

λ2 = · · · = λd−1 = Fμμ − Fμν.

From this result, one can easily obtain the lower bound of the
total variance

(�φ)2
min = 1

Fμμ + (d − 2)Fμν

+ d − 2

Fμμ − Fμν

= −2(d − 1)

dFμν

= (d − 1)[2 + (d − 2)η]

2η2
, (C13)

where the relation Fμμ = −(d − 1)Fμν has been used.
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