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Indirect driving of a cavity-QED system and its induced nonlinearity
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The linear driving for a single-mode optical field in a cavity can result from the external driving of a classical
field even when the coupling between the classical field and the cavity is weak. We revisit this well-known effect
with a microscopic model where a classical field is applied to a wall of the cavity to excite the atoms in the
wall, and recombination of the low excitations of the wall mediates a linear driving for the single-mode field
inside the cavity. With such modeling about the indirect driving through the quantum excitations of the wall, we
theoretically predict several nonlinear optical effects for the strong-coupling cases, such as photon antibunching
and photon squeezing. We propose a greatly simplified nonlinear quantum photonics model.
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I. INTRODUCTION

Photons are a prime candidate for quantum information
processing such as quantum computing and long-distance
quantum communication, as they can be easily generated and
can travel long distances with high coherence. Due to the
ability of obtaining photon-photon interactions, the nonlinear
optical process has great advantages in quantum information
processing and quantum computation compared with linear
optics methods, and possesses great potential for a variety
of emerging technologies [1]. However, there is no direct
interaction between single photons in physics according to the
quantum electrodynamics (QED). Hence, it is of great impor-
tance to achieve the interaction between single photons. The
most popular method to generate the strong nonlinear effects
between photons is spontaneous parametric down conversion,
which is used especially as a source of entangled photon
pairs [2,3]. Examples of such quantum optical phenomena
have been investigated experimentally including generation
of quadrature squeezing states and two-photon entanglement
states in various degrees of freedom [4–12].

Generally, the typical nonlinear optical phenomenon occurs
only at very high optical intensities and the degree of nonlin-
earity between single photons is very low [13–15]. However,
producing high-degree nonlinearity at very low mean-photon
level is desirable in many quantum information processing
applications [16,17], such as the photon blockade effect, which
plays an important role as an effective single-photon source
in quantum information processing. Recently, some similar
nonlinear effects such as cross phase modulation [18,19] and
spontaneous down conversion [20,21] have been observed
with a single-photon level pump. These nonlinearities at
single-photon level are also obtained through an optical cavity
in which photon-photon interaction is relatively strong [4].
Recently, Gupta et al. [22] experimentally investigated the Kerr
nonlinearity and dispersive optical bistability of a Fabry-Perot
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(FP) optical cavity arising from the long-lived coherent motion
of ultracold atoms trapped within. They reported that the strong
nonlinearity would be observed at low average intracavity
photon number level n̄ = 0.05, and even at as low as n̄ = 10−4.
The photon blockade effect was also found in optomechanical
systems [23], where the Kerr interaction between photons is
induced by the strong optomechanical coupling.

It is known that the linear coupling between an external
classical field and a single-mode cavity can result in a linear
driving to create a coherent state of the cavity field. If we
assume that the single-mode cavity field is driven by an
external driving field with frequency ωf , then the Hamiltonian
can be written as

Vf = ωa†a + f0a
†e−iωf t + H.c.,

where a†(a) is the creation (annihilation) operator of the single-
mode radiation field and f0 is the related driving strength.
The corresponding energy spectrum of the output field of
the cavity is of the Lorentz form. However, the underlying
mechanism to explain this simple phenomenon is not clear
until now. In this paper, we revisit this well-known effect
by giving a microscopic explanation of physical mechanism
for such linear driving. Here, a classical field is applied to
one wall of a FP cavity, which is modeled as a two-level
atomic ensemble where the two levels can be imagined as
excited and nonexcited states of local excitons. When the
decay rate of the atomic ensemble is much larger than the
decay of the cavity, the recombination of the low excitations
of the ensemble in the wall will mediate a linear driving for
the single-mode field inside the cavity. Furthermore, if the
higher-order excitation of the atomic ensemble is taken into
account, the single-mode cavity field exhibits some interesting
nonlinear photonic phenomena.

When the external driving field is weak, but the coupling
between atomic ensemble (the cavity wall) and the cavity mode
is strong, the Kerr nonlinear effect is dominant in the effective
Hamiltonian of photons, which produces the photon blockade
phenomena. In this case, we found that the strong nonlinearity
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as well as photon blockade of our system would occur at a low
intracavity photon number, even tough as low as n̄ � 10−4.

On the contrary, for the case of strong driving and weak
coupling (between the atomic ensemble and the cavity),
the light-squeezing nonlinear effect is dominant. For weak
coupling between the atomic ensemble and single-mode cavity
field we found that in our system the optical bistability,
even multistability phenomena would appear with increasing
the driving strength. From the output intensity spectrum of
single-mode cavity field, we found that the squeezed effect of
the output field occurs when the driving strength increases.
We also found that the maximum squeezing takes place at the
vicinity of the resonance point.

This paper is organized as follows: In Sec. II, we describe
our model with an effective Hamiltonian in terms of collective
low excitation operators of atomic ensemble (cavity wall), and
present the clear microscopic explanation to indirect quantum
driving. In Sec. III, we consider the effects of higher-order
excitation of atomic ensemble (cavity wall) and obtain the
effective Hamiltonian of the single-mode cavity field, which
describes the very interesting nonlinear photonic phenomena
by controlling some corresponding parameters of the system.
In Sec. IV, we study the two extreme cases separately, and
calculate the second-order correlation function and output
spectrum. Finally, we conclude and give some remarks to our
work in Sec. V.

II. SIMPLIFIED MODEL FOR NONLINEAR PHOTONICS
AND ITS LINEAR LIMIT

In this section, we build a microscopic model to explain the
quantum driving. Here, we assume that a wall (left wall) of the
cavity consists of a vast number of two-level systems (TLSs),
which can be viewed as an atomic ensemble. The two levels
can be imagined as the excited and nonexcited states of the
local exciton. As shown in Fig. 1, the left wall of the cavity
is driven by a classical external field with frequency ωf . The
model Hamiltonian reads as (hereafter we take � = 1)

H = ωcc
†c +

N∑
i=1

{
ωa

2
σ (i)

z +[(gc + �e−iωf t )σ (i)
+ + H.c.]

}
,

(1)

FIG. 1. (Color online) Schematic of indirect quantum driving
model. The wall of the cavity consists of N two-level atoms with
the same energy difference ωa . A classical field with frequency ωf

is applied to excite these atoms to generate a linear driving for the
single-mode cavity field.

where, c (c†) is the annihilation (creation) operator of the
single-mode cavity field with frequency ωc, the Pauli matrices
σ (i)

z = |ei〉〈ei | − |gi〉〈gi |, σ
(i)
+ = |ei〉〈gi |, and σ

(i)
− = |gi〉〈ei |

describe the ith atom with the ground (excited) states |gi〉 (|ei〉)
and energy level spacing ωa; N is the number of the two-level
atoms, and ωf is the frequency of the classical driving field.
For simplicity, we take the uniform driving strength �i = �

and cavity-atom coupling constant gi = g.
To explore the effects and phenomena resulting from the

above, we take the Holstein-Primakoff (H-P) transformation
[24] for the collective atomic operators

N∑
i=1

σ
(i)
+ = B†

√
N − B†B, (2)

N∑
i=1

σ
(i)
− =

√
N − B†BB, (3)

and
N∑

i=1

σ (i)
z ≡ 2B†B − N. (4)

Here, the B and B† represent the atomic collective excitation
operators. In the low excitation limit 〈B†B〉/N � 1, we have
[25–27]

B† ≈ 1√
N

N∑
i=1

σ
(i)
+ , and B ≈ 1√

N

N∑
i=1

σ
(i)
− , (5)

where the operator B satisfies the standard bosonic commu-
tation relation [B,B†] ≈ 1. Using these relations (4) and (5),
in the interaction picture with respect to H0 = ωf (c†c + B†B)
we can rewrite our model Hamiltonian (1) in terms of the
atomic collective operators B and B† as

H (0) = �cc
†c + �bB

†B + (GcB† + χB + H.c.), (6)

where �c = ωc − ωf is the detuning between the single-
mode cavity and external driving field and �b = ωa − ωf

the detuning between the two-level atom and external field,
G = g

√
N and χ = �

√
N . For simplicity here, we assumed

all these coupling strengths are real. We note that during the
derivation of Eq. (6) we have neglected a constant term Nωb/2
since it has no effect on our results in the context.

The quantum Langevin equations of variables of our system
are obtained from Eq. (6) as

ċ(t) = −i�cc(t) − iGB(t) − κ

2
c(t) + √

κcin(t), (7)

Ḃ(t) = −i�bB(t) − iGc(t) − iχ − γ

2
B(t) + √

γBin(t),

(8)

where κ is the decay rate of the cavity, γ is the decay rate of
collective mode B, and cin(t) and Bin(t) are zero-mean noise
operators (i.e., 〈cin〉 = 〈Bin〉 = 0) satisfying the fluctuation
relations

〈cin(t)c†in(t ′)〉 = [n(ωc) + 1]δ(t − t ′), (9a)

〈Bin(t)B†
in(t ′)〉 = [n(ωb) + 1]δ(t − t ′), (9b)
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FIG. 2. (Color online) Cavity response vs detuning. Here, ωac =
ωa − ωc = 5 × 104, N = 1 × 104, � = 1, g = 1. All parameters are
in the units of cavity decay rate, κ . In this figure the shift amount is
δ = 0.2.

where

n(ωr ) = 1

exp
(

ωr

kBT

) − 1
, (r = b,c) (10)

are the average thermal excitation numbers of the cavity mode
and atomic collective modes at temperature T , respectively.

In our system, the natural lifetime of the excited atom
is much smaller than the lifetime of a photon in the cavity,
γ −1 � κ−1. Thus we can eliminate adiabatically the degrees
of freedom of the atomic ensemble by substituting the steady-
state solution of Eq. (8) into Eq. (7) and obtain

ċ(t) = −i�
(0)
eff (t) − 1

2κc(t) − if + √
κcin(t). (11)

Here, �
(0)
eff = ω

(0)
eff − ωf is the detuning between the driving

field and the effective frequency of the single-mode cavity
ω

(0)
eff = ωc − δ with the atomic-ensemble-induced shift δ =

Ng2/ωba and ωac = ωa − ωc, and f = −Gχ/�b is the
induced driving amplitude of the single-mode cavity. Here, we
assume that the laser is detuned sufficiently far from resonance
that |�b| 
 γ, �. Under this condition, the driven atomic
ensemble only modifies the resonance frequency of the cavity,
and the correction of the cavity decay rate has been neglected.

From Eq. (11), we obtain an effective Hamiltonian of the
single-mode cavity field as

Heff = ω
(0)
effc

†c + (f c†e−iωf t + H.c.), (12)

which describes a typical model of a quantum harmonic
oscillator driven by a classical field with strength f and
frequency ωf .

As shown in Fig. 2, the driving on the wall of the cavity
induces an effective driving for the cavity mode and the
spectrum of the output field is of the Lorenz form centered
at the effective frequency ω

(0)
eff . This is the so-called indirect

driving.

III. NONLINEAR PHOTONIC EFFECT DUE TO
LARGER EXCITATION

To investigate the effect of high-order expansion terms
of H-P transformation for collective atomic operators to our
system we take the first-order expansion term into account,

and obtain N∑
i=1

σ
(i)
+ ≈

√
NB†

(
1 − B†B

2N

)
, (13)

N∑
i=1

σ
(i)
− ≈

√
N

(
1 − B†B

2N

)
B, (14)

and

Sz =
N∑

i=1

σ (i)
z = B†B − N

2
. (15)

For this case, the Hamiltonian (6) is rewritten as

H ′ = H (0) + H (1), (16)

where the first part is the zeroth-order form as given in Eq. (6)
and the second part is

H (1) = − 1

2N
(GcB†2B + χB†2B + H.c.), (17)

resulting from the first-order expansion of collective excita-
tion operator. We can see that, for the low excitation case
〈B†B〉/N � 1, the effect of H (1)can be neglected, and the
Hamiltonian (16) reduces to the zeroth-order Hamiltonian (6).

We note that the adiabatic elimination does not depend on
the number of the atoms in the ensemble [28]. Thus here,
we can still use the adiabatic elimination method to get the
effective Hamiltonian of the single-mode cavity field. By
taking the same procedure as in Sec. II, we obtain the effective
Hamiltonian of the single-mode cavity field as

H̃eff = �(1)
effc

†c + χkerrc
†2c2 + [μc2 + ζc†c2 + Fc + H.c.].

(18)

Here,

�
(1)
eff = �c − Ng2

�b

+ χkerr + 4μ, (19a)

χkerr = Ng4

�3
b

, (19b)

μ = Ng2�2

�3
b

, (19c)

ζ = 2Ng3�

�3
b

, (19d)

and

F = −Ng�

�b

[
1 − 2�2 + g2

�2
b

]
. (20)

From this result we can see that if we take the the first-order
expansion of the collective atomic operators, the effects of
photonic nonlinearity appear. Here, the term c†2c2 character-
izes the Kerr effect with the strength χkerr, c2 characterizes the
squeezing effect with the strength μ, and c†c2 denotes the two
photon phase-space filling effect with the strength ζ . We note
that if |�b| 
 √

Ng,� the effects of these nonlinear terms
are negligible. We also note that the strengths of these terms
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can be controlled and enhanced separately by mediating the
corresponding parameters.
If the atom-cavity coupling strength is much larger than that
of the external driving field, i.e., g 
 �, the above effective
Hamiltonian (18) of the single-mode cavity field reduces to

H1 = �eff,1c
†c + χkerrc

†2c2 + (F ′c + ζc†c2 + H.c.), (21)

where we have neglected the squeezing term, and

�eff,1 = �c − Ng2

�b

+ χkerr, (22)

and

F ′ = −Ng�

�b

+ 1

2
ζ, (23)

are the corrected detuning and driving strength, respectively.
The strength of the Kerr term χkerr is related to the number of
the atoms N , the atomic detuning �b, and the atom-cavity
coupling strength g, but independent of �. Thus, we can
enhance the Kerr term effect by mediating g, �b with fixed
number of the atoms. In this case, we can investigate the photon
statistical properties of the single-mode cavity field.
If the strength of external driving field is much larger than the
atom-cavity coupling strength, i.e., � 
 g, the total effective
Hamiltonian (18) reduces to

H2 = �eff,2c
†c + (F ′′c + μc2 + ζc†c2 + H.c.). (24)

Here,

�eff,2 = �c − Ng2

�b

+ 4μ, (25)

and

F ′′ = −Ng�

�b

+ 2Ng�3

�3
b

. (26)

We can see that in this particular case the dominant squeezing
effect of light and other correlated photonic nonlinear effects
can be directly controlled by the external driving strength. In
this case, we can calculate the output squeezing spectrum of
the cavity field to investigate the efficiency of our scheme to
generate the squeezed photonic state.
Note that in both the cases discussed above we have to
consider the two-photonic phase-space filling effect term,
whose strength is characterized by ζ . Since its strength is
related to g and �, it will directly effect the investigated both
nonlinear phenomena. In the next section, we will investigate
the above two particular cases separately.

IV. SECOND-ORDER CORRELATION: PHOTON
ANTIBUNCHING

In this section, we study the first case g 
 �, where the
Kerr effect is dominant. To investigate the photon statistics of
the single-mode cavity radiation field, we will calculate the
second-order correlation function at zero time delay, g(2)(0) =
〈a†a†aa〉/〈a†a〉2. We will begin our calculation by writing the
master equation of our system with Hamiltonian (21)

ρ̇ = −i[H1,ρ] + κ(nth + 1)(2cρc† − c†cρ − ρc†c)

+ κnth(2c†ρc − cc†ρ − ρcc†), (27)

where, nth = n(ωc) is the thermal occupation number of the
single-mode cavity field as defined in (10). As we see, in our
system the operator equation is nonlinear, in this case it is
useful to use the c-number Fock-Planck equation.

The density matrix of the cavity mode in the generalized P

representation function [4] reads

ρ =
∫

�(α)P (α,β)dμ(α,β), (28)

where (α) = (α,β) ≡ (α,α†), and in the generalized P repre-
sentation α and α† are independent variables. The nondiagonal
coherent state projection operator is defined as

�(α) = |α〉〈β∗|
〈β∗|α〉 . (29)

The corresponding Fock-Plank equation of ρ in the P

representation is written as

∂P (α)

∂t
= ∂

∂α
[κ ′α + ζ ′(α2 + 2α∗α) + 2χ ′′α∗α2 − E]P

+ ∂

∂α∗ [κ ′∗α∗+ζ ′∗(α∗2 + 2α∗α)+2χ ′′∗αα∗2−E∗]

×P − ∂2

∂α2
[χ ′′α2 + ζ ′′α]P − ∂2

∂α∗2

× [χ ′′∗α∗2 + ζ ′∗α∗]P + 2κnth

∂2

∂α∂α∗ P. (30)

Here, κ ′ = κ + i�eff,1, χ ′′ = iχkerr, ζ ′ = iζ , and E = −iF ′.
In the P representation, α and α∗ are independent complex
variables and the Fokker-Planck equation has a positive
semidefinite diffusion matrix in four-dimensional space. This
allows us to define the equivalent stochastic differential
equations using the Ito rules [4]

∂

∂t

(
α

α∗

)
=

(
E − κ ′α − 2χ ′′α†α2 − ζ ′(α2 + 2α†α)

E∗ − κ ′∗α† − 2χ ′′∗α†2α − ζ ′∗(α†2 + 2α†α)

)

+
(−2χ ′′α2 − 2ζ ′α 2κnth

2κnth −2χ ′′∗α†2 − 2ζ ′∗α†

) 1
2

×
(

η1 (t)
η
†
1 (t)

)
, (31)

where η1(t) and η
†
1(t) are the δ correlated stochastic forces

with zero mean, namely

〈η1(t)〉 = 〈η†
1(t)〉 = 0. (32a)

〈η1(t)η†
1(t ′)〉 = δ(t − t ′), (32b)

〈η1(t)η1(t ′)〉 = 0, (32c)

The semiclassical or mean value of the above equations
can obtained by replacing α† by the steady-state value α∗

0
determined by

E − κ ′α − 2χ ′′α†α2 − ζ ′(α2 + 2α†α) = 0, (33)

where |α0|2 = n0 represents the mean intracavity photon
number in the steady state.

To investigate the effect of quantum fluctuation to steady
state, we consider the very small fluctuation around the steady
state by taking α = α0 + α1. Linearizing Eq. (31), we obtain
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the stochastic differential equation for the fluctuation variable α1(α†
1) as [4]

∂

∂t
α1(t) = −A.α1(t) + D

1
2 .ξ (t). (34)

Here, α1 = (α1,α
†
1)T , and

A =
(

κ ′ + 4χ ′′n0 + 4ζ ′Re (α0) , 2χ ′′α2
0 + 2ζ ′α0

2χ ′′∗α∗2
0 + 2ζ ′∗α∗

0 , κ ′∗ + 4χ ′′∗n0 + 4ζ ′∗Re (α0)

)
, (35)

represents the drift matrix,

D =
(−2χ ′′α2

0 − 2ζ ′α0 2κnth

2κnth −2χ ′′∗α∗2
0 − 2ζ ′∗α∗

0

)
(36)

is the diffusion matrix, and ξ (t) = [η1(t),η2(t)]T .
According to Ref. [29], the correlation matrices

Css ≡
( 〈a2〉 − 〈a〉2, 〈a†a〉 − |〈a〉|2

〈a†a〉 − |〈a〉|2 〈a†2〉 − 〈a†〉2

)
≈

(
〈α2

1〉, 〈α†
1α1〉

〈α†
1α1〉, 〈α†2

1 〉

)
(37)

in the steady state can be evaluated by

Css =
(

C11 C12

C12 C∗
11

)
(38)

= DDet(A) + [A − Tr(A)I ]D[A − Tr(A)I ]T

2Tr(A)Det(A)
. (39)

Here, Tr(A) and Det(A) are the trace and the determinant of matrix A, respectively. We calculate the correlation matrices
elements,

C11 = −2κ[κ ′ + 4χ ′′n0 + 4ζ ′Re(α0)]∗
(
χ ′′α2

0 + ζ ′α0
)
(1 + 2nth)

Tr(A)Det(A)
, (40)

and

C12 = 2κnth|κ ′ + 4χ ′′n0 + 4ζ ′Re(α0)|2 + 4κ
∣∣χ ′′α2

0 + ζ ′α0

∣∣2

Tr(A)Det(A)
, (41)

respectively. Then, we obtain the total photon number inside
the cavity including the quantum fluctuation effect as

n̄ = n0 + C12. (42)

For the zero-temperature case nth = 0, the above equation
changes into

n̄ = n0 + 2|χkerrα
2
0 + ζα0|2

Det(A)
. (43)

It follows from Eq. (43) that if g = 0 the above intercavity
photon number is zero since all the parameters in our system
are proportional to the coupling coefficient g.

The second-order correlation function can also be calcu-
lated easily from the above correlation matrices elements as

g(2)(0) ≈ 1 + 2
〈α†

1α1〉
n0

+ 2Re

(〈
α2

1

〉
α2

0

)

= 1 + 2C12

n0
+ 2Re

(
C11

α2
0

)
. (44)

Generally, the thermal fluctuation would increase the
second-order correlation function at zero time delay g(2)(0)

to above unity. To optimize g(2)(0) to investigate the photon
antibunching effect of the system, we only consider the
zero-temperature case, nth = 0. Thus the above second-order
correlation Eq. (44) is only related to the quantum fluctuation
effect. The intracavity photon number and second-order
correlation function at zero time delay vs the coupling strength
g is shown in Fig. 3. We just consider the case where the driving
field is resonant with the cavity field �c = 0, but largely
detuning from the atoms. As shown in Fig. 3(a), the intracavity
photon number will be much lower than one as increasing the
coupling strength g, and the corresponding g(2)(0) displays
the typical antibunching behavior as shown in Fig. 3(b). The
strong nonlinear effects appear at very low photon number, i.e,
as low as n̄ � 10−4.

V. OUTPUT INTENSITY AND SQUEEZING SPECTRA

In this section, we investigate the second extreme case � 

g, where the squeezing effect of the single-mode cavity field
is dominant. To calculate the output fluctuation spectrum, we
write down the quantum Langevin equation of the cavity mode
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FIG. 3. (Color online) The second-order correlation function
g(2)(0), in Eq. (44) and total intracavity photon number in Eq. (42)
vs coupling strength g. Here we take the parameters as : �c = 0,
�b = 45, N = 1 × 104, � = 0.1. All the parameters are in the units
of κ .

according to the Hamiltonian (24) as

ċ = −
(

κ

2
+ i�eff,2

)
c − 2iμc† − iζ (2c†c + c2) − iF ′′

+√
κcin. (45)

Here, cin(t) is the noise operator and satisfies the fluctuation
relations as listed in Eq. (9a). The steady state value of c is
determined by

F ′′ − i

(
κ

2
+ i�eff,2

)
cs + 2μc∗

s + ζ (2|cs |2 + c2
s ) = 0. (46)

To study the influence of the quantum fluctuation, we split the
operator c into two parts c = cs + δc. Here, δc represents the
fluctuation operator, which has a vanishing mean value, i,e.,
〈δc〉 = 0. Thus, after the linearization, the Langevin equation
(45) is rewritten as

δċ = −
[
κ

2
+ i�eff,2 + 4iζRe(cs)

]
δc − 2i(μ + ζcs)δc

†

+√
κcin. (47)

By taking the Fourier transformation, we have

δc(ω) =
√

κ

D(ω)
[−iBc†in(ω) + A∗(−ω)cin(ω)]. (48)

where

A(ω) = −iω +
[
κ

2
+ i�

(2)
eff + 4iζRe(cs)

]
, (49a)

B = 2(μ + ζcs), (49b)

D(ω) = A(ω)A∗(−ω) − |B|2. (49c)

In the frequency space, the noise operators satisfy the
following relations

〈cin(ω)c†in(ω′)〉 = [n(ωc) + 1]δ(ω + ω′), (50a)

〈c†in(ω)cin(ω′)〉 = n(ωc)δ(ω + ω′), (50b)

〈cin(ω)cin(ω′)〉 = 〈c†in(ω)c†in(ω′)〉 = 0. (50c)

The input-output relationship is given by cout = √
κc − cin.

After a linearization of the input-output fields around the
steady-state value, the corresponding relationship between
input and output fluctuation operators in the frequency space
reads as

δcout(ω) = √
κδc(ω) − cin(ω). (51)

The output intensity spectrum SI (ω) [30] is defined as

SI (ω) = 1

|cout|2
∫

dω′〈δIout(ω)δIout(ω
′)〉, (52)

where

δIout(ω) = c∗
outδcout(ω) + coutδc

†
out(ω). (53)

By substituting Eq. (48) and Eq. (51) into Eq. (52) and using the
noise fluctuation relations (50a)–(50c), we obtain the explicit
expression of output intensity spectrum of single-mode cavity
field as

SI (ω) = ∣∣1 − κ
D(ω) [C(ω) + ie2iϕB∗]

∣∣2
. (54)

Here, ϕ is the phase of the output field, and its value is
determined by the input-output relationship. We note that in
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FIG. 4. (Color online) Intracavity photon number vs the driving
strength. Here N = 1 × 104, g = 0.1, �c = 1,�b = 60. All param-
eters in the unit of the cavity decay rate, κ . The different colors
in this figure represents the different steady-state values under same
parameters, and the inset in this figure depicts the solid red and dashed
blue curves in the interval � ∈ (0,1].
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the above calculation the temperature T of the cavity field is
assumed to be zero, i.e., n(ωc) = 0.

The variation of the steady-state field intensity ns = |cs |2,
which is determined by Eq. (46), as a function of the driving
field is given in Fig. 4. It is clear that the bistability and
even multistability would occur in our system as increasing
the driving field strength. The four lines with different colors
represent four different steady-state solutions of Eq. (46). As
shown in the subplot of Fig. 4, the solid red line means ns starts
from 0 and increases with the driving strength monotonically,
and the dashed blue line corresponds to that ns starts at infinite

and decreases with the driving strength monotonically. In the
following, we choose the value of ns on the solid red line to
do the forward calculations.

To investigate the squeezing effect of the system, we
numerically calculate the output intensity spectrum S(ω). As
shown in Fig. 5(a), there would occur the squeezing effect
at detuning �c = 1 and the single minimum peak is split
into two peaks when the the driving strength increases. From
Fig. 5(b), we also find that the detuning between the cavity
mode and the driving frequency �c also affects the squeezing
effect of the output intensity spectrum when the driving
strength is fixed.

VI. CONCLUSION AND REMARKS

In this paper we have studied the microscopic mechanism
of the external driving for a single-mode cavity field based
on an indirect driving model. In this simplified model a wall
of the cavity is imagined as an ensemble of local two-level
systems. Through this modeling we investigated the nonlinear
effects of the single-mode cavity field, which is induced by
the recombination of the higher-order excitations of atomic
ensemble. By adjusting some parameters there will occur the
typical nonlinear phenomena of the single-mode cavity field,
such as the photon blockade and squeezing effects.

Our scheme in this paper is closely related to the mi-
croscopic description of laser, and can be considered as a
simplified nonlinear quantum optical model [31]. Actually,
generating entangled photons is very important in quantum
information processing and quantum communication. Several
schemes to generate entangled photon pairs from three-level
systems have been proposed [32–34]. Thus our setup may
provide a potential source of entangled photons if we consider
the cavity wall consisting of three-level atoms.
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[17] A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, Phys.
Rev. Lett. 79, 1467 (1997).

[18] N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and
K. Edamatsu, Nature Photon. 3, 95 (2009).

[19] H. Y. Lo, P. C. Su, and Y. F. Chen, Phys. Rev. A 81, 053829
(2010).

[20] H. Hubel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch,
and T. Jennewein, Nature (London) 466, 601 (2010).

[21] L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch, and
T. Jennewein, Nature Phys. 9, 19 (2013).

[22] S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn,
Phys. Rev. Lett. 99, 213601 (2007).

[23] P. Rabl, Phys. Rev. Lett. 107, 063601 (2011); A. Nunnenkamp,
K. Borkje, and S. M. Girvin, ibid. 107, 063602 (2011).

[24] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

[25] C. P. Sun, Y. Li, and X. F. Liu, Phys. Rev. Lett. 91, 147903
(2003).

[26] G. R. Jin, P. Zhang, Y. X. Liu, and C. P. Sun, Phys. Rev. B 68,
134301 (2003).

[27] Z. Song, P. Zhang, T. Shi, and C. P. Sun, Phys. Rev. B 71, 205314
(2005).

[28] C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991).
[29] S. Chaturvedi, C. W. Gardiner, I. S. Matheson, and D. F. Walls,

J. Stat. Phys. 17, 469 (1977).
[30] S. Mancini and P. Tombesi, Phys. Rev. A 49, 4055 (1994).
[31] W. H. Louisell, Quantum Statistical Properties of Radiation

(Wiley, New York, 1973).
[32] F. Marquardt, Phys. Rev. B 76, 205416 (2007).
[33] J. Wen, S. Du, and M. H. Rubin, Phys. Rev. A 76, 013825

(2007).
[34] H. Ajiki, H. Ishihara, and K. Edamatsu, New J. Phys. 11, 033033

(2009).

013836-8

http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.79.1467
http://dx.doi.org/10.1103/PhysRevLett.79.1467
http://dx.doi.org/10.1103/PhysRevLett.79.1467
http://dx.doi.org/10.1103/PhysRevLett.79.1467
http://dx.doi.org/10.1038/nphoton.2008.292
http://dx.doi.org/10.1038/nphoton.2008.292
http://dx.doi.org/10.1038/nphoton.2008.292
http://dx.doi.org/10.1038/nphoton.2008.292
http://dx.doi.org/10.1103/PhysRevA.81.053829
http://dx.doi.org/10.1103/PhysRevA.81.053829
http://dx.doi.org/10.1103/PhysRevA.81.053829
http://dx.doi.org/10.1103/PhysRevA.81.053829
http://dx.doi.org/10.1038/nature09175
http://dx.doi.org/10.1038/nature09175
http://dx.doi.org/10.1038/nature09175
http://dx.doi.org/10.1038/nature09175
http://dx.doi.org/10.1038/nphys2492
http://dx.doi.org/10.1038/nphys2492
http://dx.doi.org/10.1038/nphys2492
http://dx.doi.org/10.1038/nphys2492
http://dx.doi.org/10.1103/PhysRevLett.99.213601
http://dx.doi.org/10.1103/PhysRevLett.99.213601
http://dx.doi.org/10.1103/PhysRevLett.99.213601
http://dx.doi.org/10.1103/PhysRevLett.99.213601
http://dx.doi.org/10.1103/PhysRevLett.107.063601
http://dx.doi.org/10.1103/PhysRevLett.107.063601
http://dx.doi.org/10.1103/PhysRevLett.107.063601
http://dx.doi.org/10.1103/PhysRevLett.107.063601
http://dx.doi.org/10.1103/PhysRevLett.107.063602
http://dx.doi.org/10.1103/PhysRevLett.107.063602
http://dx.doi.org/10.1103/PhysRevLett.107.063602
http://dx.doi.org/10.1103/PhysRevLett.107.063602
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRevLett.91.147903
http://dx.doi.org/10.1103/PhysRevLett.91.147903
http://dx.doi.org/10.1103/PhysRevLett.91.147903
http://dx.doi.org/10.1103/PhysRevLett.91.147903
http://dx.doi.org/10.1103/PhysRevB.68.134301
http://dx.doi.org/10.1103/PhysRevB.68.134301
http://dx.doi.org/10.1103/PhysRevB.68.134301
http://dx.doi.org/10.1103/PhysRevB.68.134301
http://dx.doi.org/10.1103/PhysRevB.71.205314
http://dx.doi.org/10.1103/PhysRevB.71.205314
http://dx.doi.org/10.1103/PhysRevB.71.205314
http://dx.doi.org/10.1103/PhysRevB.71.205314
http://dx.doi.org/10.1007/BF01014350
http://dx.doi.org/10.1007/BF01014350
http://dx.doi.org/10.1007/BF01014350
http://dx.doi.org/10.1007/BF01014350
http://dx.doi.org/10.1103/PhysRevA.49.4055
http://dx.doi.org/10.1103/PhysRevA.49.4055
http://dx.doi.org/10.1103/PhysRevA.49.4055
http://dx.doi.org/10.1103/PhysRevA.49.4055
http://dx.doi.org/10.1103/PhysRevB.76.205416
http://dx.doi.org/10.1103/PhysRevB.76.205416
http://dx.doi.org/10.1103/PhysRevB.76.205416
http://dx.doi.org/10.1103/PhysRevB.76.205416
http://dx.doi.org/10.1103/PhysRevA.76.013825
http://dx.doi.org/10.1103/PhysRevA.76.013825
http://dx.doi.org/10.1103/PhysRevA.76.013825
http://dx.doi.org/10.1103/PhysRevA.76.013825
http://dx.doi.org/10.1088/1367-2630/11/3/033033
http://dx.doi.org/10.1088/1367-2630/11/3/033033
http://dx.doi.org/10.1088/1367-2630/11/3/033033
http://dx.doi.org/10.1088/1367-2630/11/3/033033



