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Waveguide quantum electrodynamics: Controllable channel from quantum interference
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We study a waveguide QED system with a rectangular waveguide and a two-level system inside, where the
transverse magnetic TMmn modes define the quantum channels of guided photons. It is discovered that the loss
of photons from the TM11 channel into the others can be overcome by replacing it with a certain coherent
superposition of TMmn channels, which is named the controllable channel (CC), as the photons in the CC can
be perfectly reflected or transmitted by the two-level system and never lost into the other channels. A dark
state emerges when the photon is incident from one of the scattering-free channels orthogonal to the CC. The
underlying physics mechanism is the multichannel interference associated with Fano resonance.
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I. INTRODUCTION

In a fully quantum network based on single-photon carriers
to process quantum information, the essential task is to coher-
ently control photon propagation by a local quantum node
[1–5]. To this end, a hybrid system consisting of a one-
dimensional (1D) waveguide coupled to a two-level system
(TLS) has been extensively studied for physical implemen-
tation of the quantum node acting as a quantum switch
[6–11] or a single-photon transistor [12,13]. This functional
hybrid system can be realized in circuit-QED systems [14–18].
Inspired by its potential application in quantum computation
and quantum information processing, the waveguide-QED
system [19] has been studied intensively. The working princi-
ple of the quantum devices mentioned is based on the following
observation: a single photon propagating in a 1D waveguide
will be completely reflected if it is resonant with the transition
frequency of the TLS (this is the Fano resonance phenomenon
[6,20,21]).

This observation is made for a 1D waveguide without a
cross section. However, a realistic waveguide of a finite cross
section necessarily possesses transverse modes. Thus, photons
guided in a realistic waveguide may be in different quantum
channels defined by transverse modes. Each transverse mode
has a cutoff frequency for the corresponding guiding mode. To
demonstrate multichannel effects on single-photon scattering,
Ref. [22] used the two-mode approximation with a quadratic
dispersion relation and showed that a guided photon can be lost
from one mode to the other. As a result, the total reflection on
Fano resonance desirable in quantum devices cannot be well
achieved. In order to overcome such multichannel loss, we
revisit the waveguide QED by considering a realistic hybrid
system without any overapproximation.

In this article, we study single-photon scattering by a TLS
locally embedded in a waveguide of a finite rectangular cross
section. In our approach, both the real dispersion relation and
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multichannel effects are exactly taken into account. As for the
multichannel-induced loss, we find that there exists a unique
controllable channel (CC) defined by a particular superposition
of the transverse magnetic TMmn modes, in which the guided
photons are lossless and thus well controlled by the TLS,
since the complementary channels orthogonal to the CC are all
decoupled from the TLS. The scattering-free channels (SFCs)
are actually dark states to support the electromagnetically
induced transparency. The CC and all SFCs make up the whole
single-excitation Hilbert space of the waveguide-QED system.
For a single photon confined in the CC, the Fano interference
[20,21] between the incident wave and the re-emitted wave
makes it totally reflected on resonance and well transmitted
off resonance. Therefore, in a realistic waveguide the TLS can
also work well, provided we use the CC to guide photons.

This paper is organized as follows: In Sec. II, we describe
the model. In Sec. III, we present the scattering equation. In
Sec. IV, we study single-channel scattering and its loss. In
Sec. V, we study multichannel quantum interference and the
CC. In Sec. VI, conclusions are summarized.

II. MODEL SETUP

We consider a waveguide of rectangular cross section with
area A = ab, as shown in Fig. 1(a). The guiding modes in
such a realistic waveguide are labeled (m,n,k), with (m,n)
the TMmn mode (standing wave numbers in the cross section
are kx = mπ/a, ky = nπ/b) and k the propagating wave
number along the z direction. Each transverse mode (m,n) has
the cutoff frequency �mn =

√
(mπ/a)2 + (nπ/b)2 (the unit

� = 1 = c is used). According to the ascending order of the
cutoff frequencies, we replace (m,n) with its sequence number
j ; that is, j = 1,2,3, . . . denote TM11, TM31, TM13, . . . ,
respectively. The dispersion relation of the guiding modes is
given by ωj,k =

√
�2

j + k2, as plotted in Fig. 1(c). The TLS
of the transition frequency ωa is located at ra = (a/2,b/2,0),
whose ground (excited) state is denoted |g〉 (|e〉). The dipole
oriented along the z direction couples the TM electric field. The
total Hamiltonian H = H0 + Vr + Vd of the hybrid system is
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FIG. 1. (Color online) (a) Rectangular waveguide with a TLS
located in the center of the cross section. The TLS is dipole-coupled
to the TM guiding modes of the waveguide. a = 2b. (b) Schematic of
the TLS as a multicomponent dark state. (c) Dispersion relation of the
TM guiding modes of the waveguide. �1 = 2.23607, �2 = 3.60555,
�3 = 6.08276. The frequency is in units of π/a. A photon with
energy E > �3 can propagate in different modes with wave number
k = k1, k2, k3, etc.

given by the free part,

H0 =
∑

j

∫ +∞

−∞
dkωj,ka

†
j,kaj,k + ωaσ+σ−, (1)

and the dipole interaction,

Vr =
∑

j

∫ +∞

−∞
dkgj,k(aj,kσ+ + a

†
j,kσ−), (2)

Vd =
∑

j

∫ +∞

−∞
dkgj,k(a†

j,kσ+ + aj,kσ−), (3)

with the atomic operator σ+ ≡ |e〉〈g|, σ− ≡ |g〉〈e|. Here,
the mode-dependent coupling strength reads gj,k =
− sin mπ

2 sin nπ
2 g�j/

√
ωj,k , with j ≡ (m,n), g = d/

√
πA.

The matrix element d of the dipole transition is set to
be real. Note that the coupling strength vanishes for even
integer m or n. In this article, we focus on single-photon
scattering in the weak-coupling regime, so that the rotating-
wave approximation (RWA) can be used, H = H0 + Vr , and
the excitation number of the system is conserved. Details of
the derivation of the Hamiltonian are given in the Appendix.

III. THE SCATTERING EQUATION

We now consider single-photon scattering in this hybrid
system. For a single photon input in state |φj,k〉 ≡ a

†
j,k|∅〉 with

energy E = ωj,k , the scattering state assumes the form

|φ(+)
j,k 〉 =

∑
j ′

∫
dk′Ug(j ′,k′; j,k)a†

j ′,k′ |∅〉 + Ue(j,k)σ+ |∅〉 ,

(4)

which ensures the conservation of the excitation number in
the single-excitation subspace. Here, |∅〉 represents the TLS
in the ground state and the waveguide field in vacuum. The

scattering state is related to the input state via the Lippmann
Schwinger equation,

|φ(+)
j,k 〉 = |φj,k〉 + 1

E − H0 + i0+ Vr |φ(+)
j,k 〉. (5)

By solving the Lippmann Schwinger equation, we obtain the
amplitudes Ug and Ue as

Ue(j,k) = gj,k

E − ωa − �(E) + i�(E)
, (6)

Ug(j ′,k′; j,k)

= δj ′,j δ(k′ − k) + 1

E − ωj ′,k′ + i0+ gj ′,k′Ue(j,k), (7)

where the functions �and � are defined as

�(E) =
∑

j

∫ +∞

−∞
dkP

(
1

E − ωj,k

)
|gj,k|2, (8)

�(E) = π
∑

j

∫ +∞

−∞
dkδ(E − ωj,k)|gj,k|2. (9)

The elements of the scattering matrix Ŝ can be obtained from
the scattering state as

〈φj ′,k′ |S|φj,k〉
= δj,j ′δ(k − k′) − 2πiδ(ωj ′,k′ − ωj,k)〈φj ′,k′ |Vr |φ(+)

j,k 〉
= δj,j ′δ(k − k′) − 2πiδ(ωj ′,k′ − ωj,k)

× gj ′,k′gj,k

E − ωa − �(E) + i�(E)
, (10)

where ρj (E) ≡ E√
E2−�2

j

and kj ′ is fixed by E = ωj ′,kj ′ ; i.e.,

kj ′ =
√

E2 − �2
j ′ . Note that �(E) is the Lamb shift induced

by the waveguide modes and �(E) is the decay rate of the TLS
into the waveguide modes.

IV. SINGLE-CHANNEL SCATTERING AND ITS LOSS

It is known that a TLS acts as a quantum switch for single
photons confined in a single-mode waveguide [6–9]. To keep a
photon propagating in a single quantum channel, this realistic
waveguide requires that (i) the cross section must be small
enough that �2 − �1 is large enough and (ii) the energy of the
input photon ω1,k is below the cutoff frequency �2, i.e., k <√

�2
2 − �2

1. Under these conditions, the input state is |φin〉 =
a
†
1,k1

|∅〉 and the outgoing state |φout〉 = S|φin〉 is obtained as

|φout〉 = ra
†
1,−k1

|∅〉 + (1 + r)a†
1,k1

|∅〉, (11)

where r is the reflection amplitude, given by

r = −i�(ω1,k1 )

ω1,k1 − ωa − �(ω1,k1 ) + i�(ω1,k1 )
, (12)

and the reflectance is R = |r|2. The total reflection R = 1
occurs when the energy of the incident photon ω1,k1 is resonant
with the renormalized transition frequency of the TLS ωA,
which is ω1,k1 = ωA 	 ωa + �(ωa) in the weak-coupling limit
g → 0+. Note that in previous studies [6,8,9,22], the Lamb
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shift �(ωa), which arises from the renormalization of the
TLS’s energy level, has been ignored due to the use of a linear
or quadratic dispersion approximation.

This total reflection can be interpreted with Fano resonance
with the asymmetry parameter q = 0 [20,21]. With the TLS
coupled to the waveguide continuum, Fano interference occurs
between the photon directly transmitted and the photon re-
emitted by the TLS. When the photon energy is tuned to be on
resonance with the renormalized TLS, the photon amplitudes
from the two paths differ by a phase shift π , resulting in
completely destructive interference of transmitted amplitudes.

If the photon energy is so high that the cross section of
the waveguide is not small enough to confine it in the lowest
mode, then the effects of higher modes should be taken into
account. In the case E ∈ (�2,�3), Eq. (9) is simplified as

�(E) = �1(E) + �2(E), (13)

�1(E) = 2πρ1(E)g1,k1g1,k1 , (14)

�2(E) = 2πρ2(E)g2,k2g2,k2 , (15)

where E = ω1,k1 = ω2,k2 , k2 =
√

E2 − �2
2. The outgoing state

becomes

|φout〉 = r1a
†
1,−k1

|∅〉 + t1a
†
1,k1

|∅〉 + r2a
†
2,−k2

|∅〉 + t2a
†
2,k2

|∅〉,
(16)

where the reflection and transmission amplitudes are given by

r1 = −i�1(E)

E − ωa − �(E) + i�(E)
, (17)

t1 = E − ωa − �(E) + i�2(E)

E − ωa − �(E) + i�(E)
, (18)

r2 = −i2πρ2(E)g1,k1g2,k2

E − ωa − �(E) + i�(E)
, (19)

t2 = −i2πρ2(E)g1,k1g2,k2

E − ωa − �(E) + i�(E)
. (20)

The reflectance and transmittance in the second mode are
given by R2 = |r2|2ρ1(E)/ρ2(E) and T2 = |t2|2ρ1(E)/ρ2(E),
respectively, while those in the first mode are given by
R1 = |r1|2 and T1 = |t1|2. It is observed that the probability
conservation T1 + R1 + T2 + R2 = 1 holds and the photon is
partly lost into the higher mode. At the Fano resonance point
E = ER [with ER − ωa − �(ER) = 0], there are

R1 =
[
�1(ER)

�(ER)

]2

, (21)

R2 = �1(ER)�2(ER)

[�(ER)]2
, (22)

and the total reflectance R = R1 + R2 = �1(ER)/�(ER) < 1,
implying no total reflection on Fano resonance. In the scatter-
ing process the photon is partly lost into higher modes, which
cannot interfere due to mode mismatch, and consequently, the
Fano resonance cannot induce total reflections.

In Fig. 2, we plot the reflectance R = |r|2 as a function
of the incident energy E = ω1,k . (with E is in units of π/a.)
A single photon confined in the TM11 mode [see Fig. 2(a)]
is indeed perfectly reflected by the TLS provided that ωa is
in the central domain of [�1,�2]. However, the position of
the total reflection experiences a Lamb shift from ωa due to
the renormalization, which becomes larger as the coupling
strength increases. It is observed that the total reflection
also occurs when E → �1 + 0+, which is referred to as
the cutoff frequency resonance [22], and its mechanism is
due to the divergent decay rate �(E) → ∞ caused by the
divergence in the photon density of states. When the incident
energy E is above �2, higher order modes and the induced
multichannel interference effects must be taken into account.
The reflectance with E ∈ [�2,�3] is plotted in Fig. 2(b).
Although ωA still determines the reflection peak, the peak
maximum becomes smaller than unity, showing that single
photons in the TM11 mode experience a finite loss due to
the existence of higher order modes in a realistic waveguide.
Actually, this loss is caused by the TLS mediating the
resonant tunneling process between the TM11 mode and higher
order modes.

FIG. 2. (Color online) Reflectance spectrum for a single photon incident in the TM11 mode. (a) E ∈ (�1,�2); ωa = (�1 + �2)/2.
(b) E ∈ (�2,�3); ωa = (�2 + �3)/2.
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V. MULTICHANNEL SCATTERING AND
THE CONTROLLABLE CHANNEL

As demonstrated in the preceding section, single photons
with energy E > �2 cannot be well controlled due to loss into
higher modes. However, as we show below, this problem can
be overcome by the quantum interference between different
transverse modes. In this section we study the quantum
interference among different TMmn modes. We assume that
a single photon with energy E is incident in this superposition
state,

|φin〉 =
jmax(E)∑

j=1

ϕja
†
j,kj

|φj,kj
〉, (23)

where jmax(E) is the highest mode a photon with energy E

can reach, fixed by the condition �jmax(E) < E < �jmax(E)+1.
The complex coefficients ϕj (with j = 1,2,3, . . . ) represent
the amplitudes in the j th mode. Here, kj =

√
E2 − �2

j

(j = 1,2,3, . . . ) takes the discrete values illustrated in
Fig. 1(c), i.e., the crossing points between the horizontal
line ωj,k = E and the dispersion curves. With the scattering
matrix elements in Eq. (10), the multichannel outgoing state
|φout〉 ≡ Ŝ|φin〉 reads

|φout〉 = |φin〉 − 2πi

∑
j ′ ϕj ′gj ′,kj ′

E − ωa − �(E) + i�(E)

×
∑

j

gj,kj
ρj (E)(a†

j,kj
+ a

†
j,−kj

) |∅〉 , (24)

where ρj (E) ≡ E/
√

E2 − �2
j is the photon density of states in

the j th mode. For a photon with energy E, the Hilbert space can
be decomposed as the vector ϕ(c), which is proportional to the
vector g ≡ (g1,k1 ,g2,k2 , . . . ,gjmax,kjmax

), and the complementary
subspace, which is spanned by the vectors ϕ(F ) orthogonal to
g; i.e.,

∑jmax(E)
j=1 gj,kj

ϕ
(F )
j = 0. It is easy to verify that single

photons incident in states ϕ(F ) will be freely transmitted.
Thus, the vectors ϕ(F ) define the SFCs, which are decoupled
from the TLS and span the scattering-free subspace. This
phenomenon is similar to the dark state of a three-level atom
to support the electromagnetic induced transparency. Actually,
the scattering-free state |ϕ(F )〉 = ∑jmax(E)

j=1 ϕ
(F )
j |φj,kj

〉 (with
photon energy E) can be understood as a multicomponent
dark state as illustrated in Fig. 1(b). There exist multichannel
transitions from |g; j,kj 〉 ≡ |φj,kj

〉 (j = 1,2, . . . ,jmax) to |e〉.
The quantum interference among these transition channels
results in the transparency of the TLS with respect to
the incident photon and thus the incident photon is freely
transmitted.

The remaining state vector orthogonal to the scattering-free
subspace, defined by ϕ

(c)
j ∝ gj,kj

, can be well controlled by the
TLS and thus we name it the CC. In the CC, the incident photon
is scattered by the TLS into a superposition of transmitted and
reflected waves, described by the outgoing state

|φout〉 =
jmax(E)∑

j=1

ϕ
(c)
j

[
t(E)a†

j,kj
+ r(E)a†

j,−kj

]|∅〉, (25)

where r(E) is the reflection amplitude, given by

r(E) = −i�(E)

E − ωa − �(E) + i�(E)
, (26)

and t(E) is the transmission amplitude, given by t(E) = 1 +
r(E).

It is observed from Eq. (25) that both the transmitted and
the reflected photons remain in the transverse state ϕ

(c)
j of

the incident photon. The probability conservation |r(E)|2 +
|t(E)|2 = 1 holds for each transverse mode, implying that the
photon never transfers from one mode to the other in elastic
scattering. It follows from Eq. (26) that the scattering of a
single photon in the CC exhibits the same features as that in
the single-mode model [see Eq. (12)]. Total reflection occurs
on Fano resonance, with the energy ER fixed by the equation
[E − ωa − �(E)]E=ER

= 0. Besides, total reflections also
occur whenever E → �j + 0+ (j = 1,2,3, . . . ), since at the
band edge the divergence in the photon density of states causes
�(E) → ∞.

It is well known that when the cross section of the
waveguide becomes larger or the frequency of the incident
photon becomes higher, the photon will be transmitted more
easily. This is because while the dimension of the scattering-
free subspace increases, that of the CC remains only 1. In
spite of this, we can always make the photon totally reflected
provided it is precisely prepared in the unique CC. As inferred
from Eq. (24), the spontaneous emission of the TLS is in
the CC. Thus, the initial state of the photon can be prepared
in the CC by another excited TLS, which is coupled to the
waveguide. We can direct the spontaneously emitted photons
along the waveguide to act as incident photons.

The reflectance spectrum for a single photon incident in
the CC and that in the TM11 mode are compared in Fig. 3(a).
For a single photon incident in the TM11 mode, the loss into
higher order modes mediated by the TLS cannot interfere with
the incident wave due to mode mismatch. As a result, the
transmitted wave can never be completely canceled by Fano
interference and thus the reflection peak on Fano resonance is
less than unity. For the single photon incident in the CC, the
photon loss into each mode from the other modes is exactly
canceled and thus actually no photon transfers from one mode
to another. In consequence, the single photons guided in the
CC can be as well controlled by the TLS as in the single-mode
model, as shown in Fig. 3(b). Note that the position of the total
reflection is also shifted from the atomic transition frequency
due to the Lamb shift.

For a finite waveguide-TLS coupling which is in the
weak-coupling regime, the Fano resonance energy should
be determined by solving the transcendental equation
[E − ωa − �(E)]E=ER

= 0, which may have more than one
solution, rather than the single solution ER = ωA 	 ωa +
�(ωa) in the weak-coupling limit g → 0+. Here, we consider
the contribution of several low modes to the Lamb shift and
a precise calculation shall be presented elsewhere. With the
inclusion of more modes, multipeaks are observed in the
reflectance spectrum as illustrated in Fig. 4. The additional
emergent peaks are cutoff frequency resonances.
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FIG. 3. (Color online) (a) Reflectance spectrum with E ∈ (�2,�3). A single photon is input in TM11 [dashed (red) line] or input in the
CC (solid black line). g2 = 0.01; ωa = (�2 + �3)/2. (b) Reflectance spectrum with E ∈ (�2,�3) for a single photon input in the CC. (A)
ωa = 0.8�2 + 0.2�3, g2 = 0.01; (B) ωa = 0.5(�2 + �3), g2 = 0.01; (C) ωa = 0.5(�2 + �3), g2 = 0.02.

VI. THE COUNTER-ROTATING INTERACTION

To explore the effects of counter-rotating terms which
violate the excitation-number conservation, we carry out a
perturbative calculation based on the RWA result by treating
Vd as a perturbation. The scattering state with the first-order
correction of Vd is obtained as

|φ̃(+)
j,k 〉 = |φ(+)

j,k 〉 + 1

ωj,k − Ĥ0 + i0+ Vd |φ(+)
j,k 〉, (27)

where |φ(+)
j,k 〉 is the scattering state in the RWA as shown in

Eq. (4) and the second term is the correction contributed by
the three-excitation process. Accordingly, the scattering matrix
element is obtained as

〈φj ′,k′ |Ŝ|φj,k〉
= 〈φj ′,k′ |φj,k〉 − 2πiδ(ωj ′,k′ − ωj,k)〈φj ′,k′ |V |φ̃(+)

j,k 〉. (28)

Using Eq. (27) in Eq. (28) we obtain the first-order cor-
rection to the scattering matrix element as −2πiδ(ωj ′,k′ −
ωj,k)T1(φj ′,k′ ← φj,k),

T1(φj ′,k′ ← φj,k) = gj ′,k′gj,k[−F (ωj,k)]

ωj,k − ωa − �(ωj,k) + i�(ωj,k)
, (29)

where

F (ωj,k) ≡ ωj,k − ωa + �a

ωj,k + ωa

, (30)

�(ωj,k) ≡ π
∑
j1

∫
dk1|gj1,k1 |2δ(ωj,k − ωj1,k1 ), (31)

�a ≡
∑
j1

∫
dk1|gj1,k1 |2

1

ωj1,k1 + ωa

. (32)

Note that the term 2πiδ(ωj ′,k′ − ωj,k)Ug(j ′,k′; j,k)∑
j2

∫
dk2g

2
j2,k2

/(ωj2,k2 + ωa) contributed by the “vacuum
bubble diagrams” is discarded [23,24]. Thus, the scattering
matrix element incorporating the first-order effects of the
counter-rotating interaction is given by

〈φj ′,k′ |Ŝ|φj,k〉
= δj,j ′δ(k − k′) − 2πiδ(ωj ′,k′ − ωj,k)[1 − F (ωj,k)]

× gj ′,k′gj,k

ωj,k − ωa − �(ωj,k) + i�(ωj,k)
. (33)

It is inferred from Eq. (33) that the counter-rotating terms will
not change the multichannel interference phenomena, since

FIG. 4. (Color online) Reflectance spectrum with E ∈ (�1,�5) for a single photon input in the CC. (a) g2 = 0.01; ωa = (�1 + �5)/2.
(b) g2 = 0.0; ωa = (�2 + �5)/2.
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the only effect is a quantitative modulation of the reflection
amplitude. In the CC, the reflection amplitude becomes

r(E) = −i�(E)[1 − F (E)]

E − ωa − �(E) + i�(E)
. (34)

In the regime E � ωa , 1 − F (E) 	 0, r(E) 	 0, implying
that multipeaks at the cutoff frequency of each transverse mode
(see Fig. 4) would be lowered or even removed. In comparison
with the RWA result, the reflection amplitude with the first-
order counter-rotating correction is modulated by the function
1 − F (E), which implies that the multipeaks in the of-resonant
regime will be lower and even removed due to the counter-
rotating interaction.

VII. CONCLUSIONS

In a realistic waveguide of a rectangular cross section, the
TLS embedded acts as a quantum switch for single photons
with energy E ∈ (�1,�2). At a higher energy, E ∈ (�2,∞),
single photons incident in TM11 will be” lost” into higher order
modes via the TLS, resulting in the breakdown of the quantum
switch. Fortunately, by guiding single photons into the CC
instead of TM11, the quantum switch can be restored due to
multichannel quantum interference.

For an artificial atom of transition frequency ωA 	
10.2 GHz [25] to work as a quantum switch, the cutoff fre-
quencies of the waveguide should satisfy (�1 + �2)/2 	 ωA,
leading to the cross section a/2 = b 	 2.1 cm. Correspond-
ingly, �2 	 79.1 GHz, so that the scattering of microwave
photons with energy E � 79.1 GHz cannot be confined in
TM11 and multichannel effects (loss and interference) are
thus involved. In order to control photons with a higher
energy, e.g., ωA 	 1000 GHz, we should use a waveguide
of size a/2 = b 	 2.1 μm to work in the single-mode region;
otherwise, if b > 2.7 μm, i.e., �2 < 1000 GHz, the waveguide
will work in the multichannel region. Consequently, we should
utilize the CC scheme to overcome the channel loss. The
existence of the unique TLS CC and the complementary SFCs
guarantees success in controlling single photons in the realistic
waveguide of a finite cross section.

For physical implementation of the waveguide-QED sys-
tem, apart from the metallic rectangular waveguide considered
here, other architectures, such as a defect waveguide in a 3D
(or 2D) photonic crystal coupled to a quantum dot [26,27], an
optical fiber with a TLA embedded, or an x-ray waveguide
[28] with a localized nucleon, can also be used. Actually,
the multichannel interference phenomena found here can
be displayed in any Fano interference model in which the
continuum of propagation modes is degenerate (the guiding
modes here are degenerate labeled by transverse modes).
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APPENDIX

The quantization of the waveguide field is based on the
classical Maxwell equations with the boundary condition of
metallic rectangular waveguides. The electric field can be
expanded by the mode functions as

E(r,t) = i
∑
λ=1,2

∑
k

√
1

2
ωk(ck,λ(t)uk,λ(r) − c∗

k,λ(t)u∗
k,λ(r)),

(A1)

with k ≡ (kx,ky,k). The Maxwell equation of the electric
field reads (∇2 − ∂2

∂t2 )E(r,t) = 0, and thus the mode functions
obey the wave equation (∇2 + ω2

k)uk,λ(r) = 0 with ck,λ(t) =
ck,λe

−iωkt . With the boundary condition of metallic rectangular
waveguides, the wave equation gives the mode functions as

u(x)
k,λ(r) = C(x)

k,λ cos(kxx) sin(kyy)eikz, (A2)

u(y)
k,λ(r) = C(y)

k,λ sin(kxx) cos(kyy)eikz, (A3)

u(z)
k,λ(r) = C(z)

k,λ sin(kxx) sin(kyy)eikz, (A4)

where kx = mπ
a

, ky = nπ
b

, m and n are non-negative inte-

gers, ωk =
√

�2
m,n + k2, �m,n =

√
k2
x + k2

y , and C(x,y,z)
k,λ is the

normalization constant. In addition, the Maxwell equations
require ∇ · E = 0, which means kxC(x)

k,λ + kyC(y)
k,λ − ikC(z)

k,λ =
0. Therefore, there are two mode functions, reading

uk,1(r) = 2√
2πA

1

�m,n

[
nπ

b
cos

(
mπ

a
x

)
sin

(
nπ

b
y

)
eikzex

− mπ

a
sin

(
mπ

a
x

)
cos

(
nπ

b
y

)
eikzey

]
, (A5)

uk,2(r) = 2√
2πA

1

�m,n

k

ωk

[
mπ

a
cos

(
mπ

a
x

)
sin

(
nπ

b
y

)

× eikzex + nπ

b
sin

(
mπ

a
x

)
cos

(
nπ

b
y

)
eikzey

− i
1

k
�2

m,n sin

(
mπ

a
x

)
sin

(
nπ

b
y

)
eikzez

]
. (A6)

The magnetic field is obtained from the electric field via
∂B/∂t = −∇×E. It is easy to verify that uk,1(r) is the TE
mode function and uk,2(r) is the TM mode function. The total
energy of the waveguide field is

E = 1

2

∫
dr (E · E + B · B)

=
∑
λ=1,2

∑
k

1

2
ωk(c∗

k,λck,λ + ck,λc
∗
k,λ). (A7)

The quantization is carried out by promoting the expansion
coefficients to operators,

ck,λ → ĉk,λ,

c∗
k,λ → ĉ

†
k,λ,
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which obey the commutation relations

[ĉk,λ,ĉ
†
k′,λ′ ] = δλ,λ′δk,k′δ(k − k′),

[ĉk,λ,ĉk′,λ′ ] = 0,

[ĉ†k,λ,ĉ
†
k′,λ′ ] = 0.

Thus, the Hamiltonian of the waveguide field is

Ĥw =
∑
λ=1,2

∑
k

ωk

(
ĉ
†
k,λĉk,λ + 1

2

)
. (A8)

Hereafter we neglect the hat on operators. The dipole of the
TLS oriented along the z direction is only coupled to the TM
modes. The TM field alone is described by

Hw =
∑

k

ωk

(
c
†
kck + 1

2

)
. (A9)

The dipole coupling of the TLS to the TM field is given by
−d · E(ra), where d is the dipole of the TLS and ra is

the location of the TLS. With ra = (a/2,b/2,0), the dipole
interaction reads

V =
∑

j

∫ +∞

−∞
dkgj,k(a†

j,k + aj,k)(σ+ + σ−), (A10)

where j ≡ (m,n), k ≡ (m,n,k) ≡ (j,k), aj,k ≡ ck, σ+ (σ−) is
the transition operator of the TLS, and the coupling coefficient
gj,k is given by

gj,k = − d√
πA

�j√
ωj,k

sin

(
mπ

2

)
sin

(
nπ

2

)
. (A11)

Here, ωj,k =
√

�2
j + k2, d = 〈e |d| g〉 · ez, and d is set to

be real. Note that gj,k = 0 for even integer m or n. The
TMmn mode (with odd integers m and n) is labeled by
the sequence number j according to the ascending order
of the cutoff frequencies, or more specifically, 1 ≡ (1,1),
2 ≡ (3,1), 3 ≡ (1,3), 4 ≡ (3,3), etc.
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