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Controllable single-photon frequency converter via a one-dimensional waveguide
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We propose a single-photon frequency converter via a one-dimensional waveguide coupled to a three-level
V -type atom. An on-demand classical driving field is used to couple to the atom, allowing it to absorb a photon
with a given frequency and then emit a photon with a different carried frequency. We study such a single-photon
frequency conversion mechanism in two kinds of realistic physical systems: the system of coupled-resonator
waveguide with cosine dispersion relation and the one of waveguide with linear dispersion relation. To demonstrate
the single-photon transfer efficiency, we introduce the concept of scattering flows via the calculation of group
velocities and find that the driving field prefers to be weak in the coupled-resonator waveguide but arbitrarily
strong in the linear waveguide to achieve an optimal transfer efficiency. Furthermore, we demonstrate that our
theoretical model is experimentally feasible with currently available technologies.
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I. INTRODUCTION

Photon frequency conversion [1–3] refers to transducing the
input photons with a given frequency into the output photons
with a different frequency while preserving the nonclassical
properties. Experimentally, the photon frequency conversion
has been achieved in the nonlinear medium by frequency
mixing technologies [4–8]. In particular, the single-photon
frequency conversion [9] has many applications in quantum
communication and quantum information processing, and the
effective single-photon frequency conversion scheme [10] has
been proposed in a waveguide channel with the assistance
of the Sagnac interferometer, which couples to a multilevel
emitter [11–13].

Recently, the coherent control of single photons has been
studied in the one-dimensional (1D) waveguide(s) with linear
[14] or nonlinear [15–17] dispersion relation, where an
additional two-level or three-level system acts as a quantum
switch. In particular, when a three-level system is applied
to couple to two 1D waveguides simultaneously [18,19], the
single photons can be transferred from one waveguide to the
other, and the carried frequency can be the same or different,
depending on whether or not the atom experiences the internal
state transition in the scattering process. In the present study,
we aim to investigate a single-photon frequency conversion
mechanism within only a single 1D waveguide.

To this end, we theoretically propose a single-photon
transmission network composed of a waveguide and an
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embedded three-level atom (or artificial atom) with V -type
configuration. One of the two atomic transitions is coupled
to the electromagnetic field in the waveguide and the other
to the on-demand classical driving field, which is applied to
allow the atom to absorb a photon with a given frequency and
reemit it with the same or a different frequency. In this sense,
the atom provides two scattering channels for the incident
photon and functions as a single-photon frequency converter.
In our scheme, the transfer efficiency and the frequency
difference between the two channels can be controlled by
readily adjusting the frequency and strength of the driving
field, instead of the atomic energy level configuration, which
is usually difficult to tune in realistic physical systems.

In this paper, first we give a general description for
the single-photon transmission and frequency conversion
mechanism in a 1D waveguide based on the Lippman-
Schwinger equation [20]. Then we consider two explicit
models: the coupled-resonator waveguide (CRW) [15–19]
and linear waveguide [21–23]. For the case of CRW, the
single-excitation spectrum of each of the two channels has
the structure of one energy band and two discrete bound
states, with one of them being above the energy band and the
other below it. For the case of a linear waveguide, the related
spectrum structures of the channels have only the lower energy
bounds with the absence of the upper ones and the bound states.
In both cases, the frequency converter only works when the
energy of the incident state is within the overlap regime of
the spectra of the two channels. To demonstrate the efficiency
for the single photon transferring from one channel to the
other, we introduce the concept of the scattering flows via
calculation of the group velocities in different channels. We
find that the classical driving field prefers to be weak in the
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FIG. 1. (Color online) The schematic diagram of the model. A
V -type atom is located in a 1D waveguide, serving as a frequency
converter for the single photon injected from the left side of the
waveguide.

case of CRW, but arbitrarily strong in the case of a linear
waveguide to achieve an optimal transfer efficiency.

The rest of the paper is organized as follows. In Sec. II,
we present the Hamiltonian in a general waveguide-atom
coupled system and give the scattering amplitudes based
on the Lippman-Schwinger equation. With these results, we
discuss the single-photon scattering and frequency conversion
in the 1D CRW with cosine dispersion relation and linear
waveguide in Secs. III and IV, respectively. Subsequently, the
experimental feasibility of our theoretical model is discussed
in Sec. V. In Sec. VI, we draw the conclusions.

II. FORMALISM OF THE FREQUENCY CONVERTER

A. The model and Hamiltonian

As shown in Fig. 1, the system we consider contains a 1D
waveguide and a three-level V -type atom. The V -type atom
is characterized by a ground state |g〉, an intermediate state
|f 〉, and an excited state |e〉, whose energies are denoted as
ωg , ωf , and ωe, respectively. The ground-state energy ωg is
set to zero as reference. The kth electromagnetic mode in the
waveguide couples to the transition |g〉 ↔ |e〉 with the strength
Jk , while the classical driving field with frequency ν drives the
transition |g〉 ↔ |f 〉 with the Rabi frequency η. In the rotating
frame with respect to H ′

0 = ν|f 〉〈f |, the Hamiltonian of the
system is written as (� = 1)

H = �|f 〉〈f | + ωe|e〉〈e| + η(|g〉〈f | + |f 〉〈g|)
+

∑
k

ωka
†
kak +

∑
k

(Jkak|e〉〈g| + J ∗
k a

†
k|g〉〈e|), (1)

where ak is the annihilation operators for the kth-mode
electromagnetic field with frequency ωk in the waveguide.
The dispersion relation between the frequency ωk and the wave
vector k depends on the realistic physical system. � ≡ ωf − ν

is the detuning between the atomic transition |g〉 ↔ |f 〉 and
the classical field.

The first line of the Hamiltonian (1), which describes the
coupling between the classical field and the transition |g〉 ↔
|f 〉, leads to two dressed states,

|φ+〉 = sin
θ

2
|g〉 + cos

θ

2
|f 〉, (2a)

|φ−〉 = − cos
θ

2
|g〉 + sin

θ

2
|f 〉, (2b)

with the corresponding eigenenergies

ν± = � ±
√

�2 + 4η2

2
, (3)

where tan θ = 2η/�. In the dressed-state representation, the
Hamiltonian can be separated as H = H0 + V , where

H0 =
∑

k

ωka
†
kak + ωe|e〉〈e| +

∑
n=±

νn|φn〉〈φn| (4)

is the free Hamiltonian for the waveguide and the atom, and

V =
∑

k

[
Jkak

(
sin

θ

2
|e〉〈φ+| − cos

θ

2
|e〉〈φ−|

)
+ H.c.

]
(5)

represents their interaction.

B. The Lippman-Schwinger equation and scattering amplitudes

We assume the single photon is initially input from the left
end of the 1D waveguide and take the input state as |k,φn〉 ≡
a
†
k|0〉 ⊗ |φn〉 (|0〉 is the photonic vacuum state in the waveguide

and n = ±), which represents the atom in the internal state |φn〉
and the photon in the kth mode. Then the scattering state |ψ (+)

kn 〉
is given by the Lippman-Schwinger equation [20,24,25] as

|ψ (+)
kn 〉 = |k,φn〉 + 1

ωkn − H0 + i0+ V |ψ (+)
kn 〉, (6)

where the energy of the incident state is ωkn = ωk + νn.
Since the excitation number N = ∑

k a
†
kak + |e〉〈e| is con-

served in this system, the eigenstate with one excitation can
be written as

|ψ (+)
kn 〉 =

∑
p

(αpn|p,φ−〉 + βpn|p,φ+〉) + ukn|0,e〉. (7)

Here, ukn is the probability amplitude of the atom in the excited
state, αpn (βpn) is the amplitude for finding one output photon
with wave vector p in the waveguide and the atom in the state
|φ−〉(|φ+〉).

By combining Eqs. (6) and (7), one can get the amplitude
for the atom in the excited state,

ukn =
(

sin θ
2 δn,+ − cos θ

2 δn,−
)
Jk

ωkn − ωe − sin2 θ
2 A+ − cos2 θ

2 A− + i0+ , (8)

with

A± =
∑

p

|Jp|2
ωkn − ωp± + i0+ . (9)

The single-photon scattering process can be formulated as
follows. The atom initially prepared in one of the dressed
states |φn〉 (n = ±) absorbs the incident photon with frequency
ωk , and emits an outgoing photon with frequency ωk′ , with
itself passing into either of the dressed states |φl〉 (l = ±).
The energy conservation of the waveguide-atom coupled
system implies that ωk′ = ωk if |φl〉 = |φn〉, and ωk′ 	= ωk if
|φl〉 	= |φn〉. The evidence on the conservation of energy in the
scattering process can be found in the element of the S matrix,

Sk′,l←k,n = δl,nδk,k′ − 2πiδ(ωk′,l − ωk,n)Tk′,l←k,n, (10)
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where the elements of the on-shell T matrix are obtained as
[20]

Tk′,l←k,n ≡ 〈k′,φl|V |ψ (+)
kn 〉

= uknJ
∗
k′

(
sin

θ

2
δl,+ − cos

θ

2
δl,−

)
. (11)

It can be found from Eq. (10) that when the photonic flow
is confined to the incident channel, the frequency of the
emitted photon is equal to the absorbed one. However, when
the incident photon is transferred to another channel, the
frequency of the emitted photon will be lowered or raised
by the amount |ν+ − ν−|. Consequently, the three-level atom
acts as a frequency converter for single photons propagating
in the 1D waveguide.

According to the above discussions, the absorption and
emission of the single photon by the atom can be formalized
as a two-channel scattering process due to the existence of
the two available atomic dressed states. Hereafter, we will
call them “negative channel” and “positive channel” according
to the related atomic states |φ−〉 and |φ+〉, respectively. In
the following discussions, we restrict our consideration to the
case in which the single photon is incident from the negative
channel with wave vector k (> 0); then the element of the S

matrix in the negative channel is

Sk′,−←k,− = r−δk′,−k + t−δk′,k, (12)

where r− (t−) is the reflection (transmission) amplitude. The
element of the S matrix in the positive channel is

Sk′,+←k,− = t+[δk′,q(k) + δk′,−q(k)], (13)

where the forward and backward transfer amplitudes are
equal and denoted by t+. For the sake of simplicity, in what
follows we will write the wave vector q(k) (>0) as q, whose
dependence on the input wave vector k is given by the implicit
relation

ωq = ωk − ν+ + ν−. (14)

It shows from Eqs. (12) and (13) that the wave vector of the
scattering photon k′ satisfies k′ = ±k when the incident photon
is still confined in the negative channel, and k′ = ±q when it
is transferred to the positive channel.

III. SINGLE-PHOTON SCATTERING IN 1D CRW

A 1D CRW is typically made of single-mode resonators. We
assume that all of the resonators have the same frequency ω and
that the hopping energies ξ between any two nearest-neighbor
resonators, which are determined by the inter-resonator cou-
pling, are the same. Then the 1D CRW is characterized by the
dispersion relation [15]

ωk = ω − 2ξ cos kl, (15)

where l is the distance between arbitrary two-nearest-neighbor
resonators. In the rest of this section, the wave vector k is
dimensionless by setting l = 1.

For a three-level V -type atom located in the ath resonator,
the atomic |e〉 ↔ |g〉 transition couples with the kth field
mode in the CRW with the coupling strength Jk = Jeika (J
is assumed real). As we have mentioned above, the atomic
|f 〉 ↔ |g〉 transition couples with the driving field, which

ωe

ω + ν−
ω + ν+

2ξ

(a) (b)

negative
channel

positive
channel

ω + ν−

ω + ν+

2ξ

negative
channel

positive
channel

FIG. 2. (Color online) The energy-band configurations for the
two channels in the CRW. (a) The energy bands are partially
overlapped. (b) The energy bands are completely separated. In
this case, the dispersion relation of the incident photon is ωk =
ω − 2ξ cos k. The green thick lines represent the bound states in
the corresponding channels and the red dashed line represents the
energy of the atomic excited state |e〉.

forms two dressed states with energies ν∓ (with respect to
the rotating frame), corresponding to the negative and positive
channels in the scattering process, respectively. The energies
for the free particle states of the atom-CRW system (governed
by H0) in the negative (positive) channel form an energy
band with the bandwidth 4ξ , which is centralized at ω + ν−
(ω + ν+). The broken translation symmetry of the CRW due to
the existence of the atom supports a pair of bound states below
and above the energy band, respectively, for each channel
[18]. There are two following band configurations, as shown
in Fig. 2: (a) partial overlap between the two bands, and (b) no
overlap between them.

For a state of incident photon confined in the negative
channel, the reflection and transfer amplitudes are obtained
from Eqs. (12) and (13) utilizing the residue theorem as

rc
− = e−2ika cos2 θ

2

2iξ
(

ωk−−ωe

J 2 + i sin2 θ
2

2ξ sin q

)
sin k − cos2 θ

2

, (16a)

t c+ = ei(q−k)a cos θ
2 sin θ

2

2iξ
(

ωk−−ωe

J 2 + i cos2 θ
2

2ξ sin k

)
sin q − sin2 θ

2

, (16b)

where the superscript c refers to CRW and the subscript − (+)
refers to the negative (positive) channel.

The cosine-type dispersion in Eq. (15) characterizes the
nonlinear relation between the frequency and the wave vector
of the traveling photon in the CRW. For the incident photon
with a fixed wave vector k, the group velocity is vg = 2ξ sin k.
Meanwhile, the scattered photon in different channels will
have different group velocities, that is, vg = 2ξ sin k in the
negative channel and vg = 2ξ sin q in the positive channel,
where the wave vector q is defined in Eq. (14). Note that the
group velocities have the same units as the frequency.
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In this sense, we define the scattering flows of the single
photons as the square modulus of the scattering amplitudes
multiplying the group velocities in the corresponding channels.
For the sake of simplicity, we set the incident flow as unit; then
the reflection and transmission flows in the negative channel
are calculated as J r

c = |rc
−|2 and J t

c = |t c−|2, respectively. In
addition, the transfer flow to the positive channel is obtained
as J tr

c = 2|t c+|2 sin q/ sin k or J tr
c = 0, depending on whether

the energy of the incident photon is inside or outside the energy
band of the positive channel. It then follows from Eqs. (16)
that the scattering flows are independent of the atom position.

Now, we consider the case where the two energy bands
partially overlap, as shown in Fig. 2(a). Here, the incident fre-
quency may be either inside or outside the continuous regime
of the positive channel. In Fig. 3(a), we plot the reflection flow
J r

c , the transmission flow J t
c , the summation J r

c + J t
c in the

negative channel, and the total flow J r
c + J t

c + J tr
c as functions

of the frequency of the incident photon. It can be observed that
the single photon is confined in the negative channel when the
energy of the incident state is out of the overlap region of the
two continuum bands. Consequently, the flow’s conservation is
described by J r

c + J t
c = 1. When the incident energy is within

the overlap region of the two continuum bands, the flow in
the negative channel satisfies J r

c + J t
c < 1, which means the

incident photons can be transferred to the positive channel,
and the flow conservation is changed as J r

c + J t
c + J tr

c = 1.
In Fig. 3(a), we can also observe that the photon incident

from the negative channel is completely reflected when the
incident frequency is ωk = 0.988 (in units of ω). The complete
reflection arises from the Feshbach resonance mechanism
which is predicted by Feshbach [26]: when the energy of
the particle incident from the open channel is fine tuned to
match that of the bound state in the closed channel, it will
be completely reflected. In our system, the open channel is
provided by the negative channel and the closed channel is
provided by the positive channel. The bound state in the closed
(positive) channel arises from the existence of the atom, which
breaks the translation symmetry of the CRW. The energy of
this bound state can be obtained by the transcendental equation

ωk− − ωe = J 2 sin2(θ/2)

2iξ sin q
. (17)

Actually, the bound-state energy of the positive channel
corresponds to the poles of the scattering matrix of the system
studied in Ref. [15], i.e., a two-level system embedded in the
positive channel.

In Fig. 3(b), we plot the transfer flow J tr
c as a function of

the frequency of the incident photon in the negative channel
when the driving field is resonant with the atomic transition
|g〉 ↔ |f 〉. It can be observed that when the frequency of
the incident photon is resonant with the transition frequency
between the atomic excited state |e〉 and the dressed state
|φ−〉 (ωk = ωe − ν−), the transfer flow reaches its maximum.
As the Rabi frequency η increases, the maximum of the
transfer flow decreases monotonically. When the driving field
is strong enough such that the two energy bands are completely
separated [as shown in Fig. 2(b)], the transfer flow vanishes,
i.e., the incident single photon remains in the initial negative
channel and cannot travel in the positive channel. In Fig. 3(c),
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0.4

0.6

0.8

1

ωk

(a) Jr
c

Jt
c

Jt
c + Jr

c

Jt
c + Jr

c + Jtr
c

0.98 0.99 1 1.01 1.02
0

0.1

0.2

0.3

0.4

0.5

ωk

ωk

J
tr c

(b)

η = 0.002
η = 0.005
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−0.01

−0.005

0

0.005

0.01

0.1

0.2

0.3

0.4

FIG. 3. (Color online) The scattering flows (in units of the in-
cident flow) as functions of the frequency of incident photon in
the CRW when the two energy bands are partially overlapped. (a)
The reflection and transmission flows when � = 0 and η = 0.005. (b)
The transfer flows for different η under the resonance situation � = 0.
(c) The contour of the transfer flow vs � and ωk with ωf = 0.95 and
η = 0.005. The other parameters are set as ξ = 0.01,ωe = 0.9995
and J = 0.015. All the frequencies and the energies are in units of
ω = 1.

we have plotted the transfer flow versus the detuning � and
the incident frequency ωk by fixing the atomic |g〉 ↔ |f 〉
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transition frequency ωf = 0.95 and the Rabi frequency η =
0.005 in units of ω = 1. It can be found that the transfer flow
reaches its maximum only when the classical field is resonant
with the atomic transition |g〉 ↔ |f 〉, that is, � = 0.

The above discussions show that the overlap of the two
bands is necessary for the atom to fulfill the function of a
photonic frequency converter. Here, the driving field prefers
to be weak such that the frequency difference in the two bands
cannot be too large. However, the preference for weak driving
field is not necessary when the CRW is replaced by a 1D
waveguide with a linear dispersion relation, which will be
discussed in the next section.

IV. SINGLE-PHOTON SCATTERING
IN 1D LINEAR WAVEGUIDE

In this section, we focus on the single-photon scattering in a
1D waveguide with the linear dispersion relation ωk = vg|k|,
where k is the wave vector and vg is the group velocity of
the light in the waveguide. We consider that the V -type atom
is located at the position x = a, and the atomic |e〉 ↔ |g〉
transition couples to the kth field mode in the waveguide with
the coupling strength Jk = Jeika , where J is assumed to be
real. As before, a classical field is applied to couple to the
atomic |g〉 ↔ |f 〉 transition, and the induced dressed states
support two channels for the photons in the waveguide. As
shown in Fig. 4, the energy bands of the negative and positive
channels have the lower energy bounds at ν− and ν+ (in the
rotating frame), respectively, but without the upper bounds.

For single photons with the wave vector k incident from
the negative channel, the reflection and transfer amplitudes in
the linear waveguide are calculated from Eqs. (12) and (13)
utilizing the residue theorem as

rl
− = e−2ikaJ 2 cos2 θ

2

ivg(ωk− − ωe)/L − J 2
, (18a)

t l+ = J 2ei(|q|−k)a cos θ
2 sin θ

2

ivg(ωk− − ωe)/L − J 2
. (18b)

ν−
ν+

negative channel

positive channel

ωe

FIG. 4. (Color online) The energy-level configurations for the
two channels in the linear waveguide with the dispersion relation
ωk = vg|k|. The red dashed line represents the frequency of the atomic
excited state.

Here, the superscript l implies the “linear” waveguide and L

is the length of the waveguide. The relationship between the
wave vector q in the positive channel and k in the negative
channel is obtained from Eq. (14) as

|q| = |k| − ν+ − ν−
vg

. (19)

Similar to Sec. III, we can also define the scattering flows.
Since the group velocities in both of the channels are the same,
the reflection and transmission flows in the negative channel
are J r

l = |rl
−|2 and J t

l = |t l−|2, and the transfer flow to the
positive channel is J tr

l = 2|t l+|2 as if the energy of the incident
photon locates inside the overlap regime of the energy bands
for the two channels. It is the same as the case of the CRW
in which the scattering flows are independent of the atomic
position.

In Fig. 5, we plot the scattering flows as functions of the
frequency of the incident photon with the assumption that
the classical field resonantly drives the atomic |g〉 ↔ |f 〉
transition (� = 0). The reflection flow, the transmission flow,
the flow in the negative channel, and the total flow in the
system are displayed in Fig. 5(a) and the transfer flow is
depicted in Fig. 5(b). It can be observed from Fig. 5(a)
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η = 0.005

η = 0.01

η = 0.015

FIG. 5. (Color online) The scattering flows (in units of the inci-
dent flow) as functions of the frequency of the incident photon in the
linear waveguide. The parameters are set as ωe = 0.9995,J = 0.015,
and � = 0. Under these parameters, the energy for the atomic dressed
ground states are ν± = ±η. (a) The reflection and transmission flows
when η = 0.005. (b) The transfer flows for different η. All the
frequencies and the energies are in units of vg/L = 1.
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[also in Fig. 5(b)] that when the incident frequency is below
the difference between the lower bounds of the positive
and negative channels (ωk < ν+ − ν− = 2η), the photon is
confined in the negative channel. Consequently, J tr

l = 0 and
the flow conservation equation is J r

l + J t
l = 1. However,

the single photon is transferred to the positive channel once the
incident frequency surpasses the energy difference of the
lower bounds of the two channels and the flow conservation
equation becomes J r

l + J t
l + J tr

l = 1. Seen from Fig. 5(b),
when the incident photon is resonant with the |e〉 ↔ |φ−〉
transition, i.e., ωk = ωe − ν−, the transfer flow J tr

l achieves
its maximum with the value 0.5, which is independent of the
strength of the driving field. However, when the frequency
of the incident photon is far off resonance from the atomic
|e〉 ↔ |φ−〉 transition, the transfer flow is close to zero, and
the photon is nearly perfectly transmitted in the initial channel
[as shown in Fig. 5(a)]. When the classical field is off resonant
with the atomic |g〉 ↔ |f 〉 transition, the maximum of the
transfer flow is lowered, i.e., always smaller than 0.5. These
can be understood from Eq. (18b): For a resonant classical
field, � = 0 and θ = π/2, the value of the numerator in
Eq. (18b) achieves its maximum. For an off-resonant classical
field (� 	= 0 and θ < π/2), the value of the numerator in
Eq. (18b) is lowered.

The above discussions show that the V -type atom functions
as a photonic frequency converter in a 1D linear waveguide
as long as the energy of the incident state lies inside the
overlap region in the energy spectrum of the two channels.
Due to the disappearance of the upper energy bounds in the
linear waveguide, the driving field can be arbitrarily strong in
principle. This is evidently different from the case of CRW,
where the driving field is expected to be weak.

V. EXPERIMENTAL FEASIBILITY

To demonstrate our theoretical results about the single-
photon frequency conversion mechanism, we now propose an
experimentally accessible quantum device which is composed
of the superconducting transmission line resonator(s) and
the spin of nitrogen-vacancy (NV) center in the diamond.
The superconducting transmission line resonator supports the
single-mode electromagnetic field with the resonant frequency
ω/2π ≈ 3 GHz [27], and serves as a linear waveguide or
a CRW by being cut into N equal segments. For the CRW
situation, the coupling between the neighbor segments can be
realized via the tunable capacitances and the coupling strength
can be achieved, ξ/2π = 5–100 MHz [27,28]. The NV center,
which acts as the V -type atom, has the S = 1 triplet ground
states (as shown in Fig. 6). The Hamiltonian for the single NV
center is written as [29]

HNV = DS2
z + E

(
S2

x − S2
y

) + geμB
B · S, (20)

where D/2π = 2.88 GHz is the ground-state zero-field
splitting between the ms = 0 (denoted by |0〉) and ms = ±1
(denoted by |1±〉) states, S are the conventional Pauli
spin-1 operators, and E is the ground-state strain-induced
splitting coefficient. ge = 2 is the ground-state Lande factor
and μB/2π = 14 MHz/mT is the Bohr magneton. In our
consideration, the strain-induced splitting is much smaller

 

 

 

 GHz 

(b) (a) 

FIG. 6. (Color online) (a) The possible realistic system to imple-
ment one-photon frequency conversion: the superconducting trans-
mission line coupled with NV or ensemble of NVs. (b) Schematics of
the S = 1 ground states of the NV center applied as the single-photon
scatterer.

than the Zeeman splitting induced by the external magnetic
field, and the second term in the Hamiltonian HNV can be
neglected.

The superconducting transmission line resonator magnet-
ically couples to the NV’s transition between the states |0〉
and |1+〉 and the coupling strength for a single NV center
is Jsingle/2π ≈ 20 Hz [30], which can be enhanced by

√
N

times via introducing an ensemble of N (≈1012) such NV
centers and the collective coupling strength achieves J/2π ≈
20 MHz. An on-demand classical microwave field drives the
transition between the states |0〉 and |1−〉 with the Rabi
frequency η/2π ≈ 5 MHz [31]. These parameters are suitable
for our consideration in the theoretical discussions in Secs. III
and IV.

In addition to the NV center(s) mentioned above, the
superconducting Josephson junction can also be used to couple
with the transmission line resonator(s) [32] and function
as a single-photon frequency converter. In addition, the
system of high-Q photonic crystal resonators coupled with
defect [33] or NV centers [34–36] is a candidate to demon-
strate the single-photon frequency conversion mechanism we
propose.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we discussed the single-photon frequency
conversion mechanism in a 1D waveguide coupled to a
three-level V -type atom. The on-demand classical driving
field introduces a pair of dressed states, and supplies the
negative and positive channels for the incident single photons.
In our studies, we have shown that the single-photon incident
from the negative channel can be transferred to the positive
channel with the carried frequency being red-shifted. Also,
the single-photon incident from the positive channel can be
transferred to the negative channel. However, the carried
frequency will be blue-shifted instead of red-shifted due to the
energy conservation of the atom-waveguide coupled system.

In conclusion, we have studied the single-photon scattering
in the system composed of 1D waveguide and an embedded
three-level V -type atom. In our system, the absorption and
reemission processes of single photons is formulated by a
two-channel scattering process. To demonstrate the transfer
efficiency from one channel to the other with a different carried
frequency, we analytically investigate the scattering flows in a
1D CRW with cosine dispersion and in a 1D waveguide with
linear dispersion. It is found that converting the frequency
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of single photons in a 1D waveguide requires that (1) there
is overlap between the continuums of the two channels, and
(2) the energy of the atomic excited state is in the continuums
of the two channels. As long as these requirements are satisfied,
the strength of the classical field can be arbitrarily large for
the waveguide with linear dispersion relation to achieve the
maximal probability of the outgoing photon with different
frequency; however, a weak classical field is preferred in the
1D CRW.
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