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Yao Yao,1 Xing Xiao,1 Li Ge,1 Xiao-guang Wang,2,* and Chang-pu Sun1,†
1Beijing Computational Science Research Center, Beijing 100084, China

2Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou 310027, China
(Received 24 February 2014; published 30 April 2014)

We investigate the performance of quantum Fisher information (QFI) under the Unruh-Hawking effect, where
one of the observers (e.g., Rob) is uniformly accelerated with respect to other partners. In the context of relativistic
quantum information theory, we demonstrate that quantum Fisher information, as an important measure of the
information content of quantum states, has a rich and subtle physical structure compared with entanglement
or Bell nonlocality. In this work, we mainly focus on the parametrized (and arbitrary) pure two-qubit states,
where the weight parameter θ and phase parameter φ are naturally introduced. Intriguingly, we prove that QFI
with respect to θ (Fθ ) remains unchanged for both scalar and Dirac fields. Meanwhile, we observe that QFI
with respect to φ (Fφ) decreases with the increase of acceleration r but remains finite in the limit of infinite
acceleration. More importantly, our results show that the symmetry of Fφ (with respect to θ = π/4) has been
broken by the influence of the Unruh effect for both cases.
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I. INTRODUCTION

Quite recently, quantum Fisher information (QFI) [1–4]
has attracted considerable attention, not only due to its
own significance in quantum estimation theory and quantum
information theory, but also associated with recent rapid
progress in quantum-enhanced metrology [5–7]. In fact, as an
important measure of information content of quantum states,
QFI has already played a critical role in quantum statistical in-
ference through its inextricable relationship with Cramér-Rao
inequality [8,9]. Moreover, QFI also has various applications
in other quantum information tasks such as characterization
of non-Markovianity [10], investigation of uncertainty rela-
tions [11–15], and entanglement detection [16], just to name a
few. Additionally, since every realistic system will inevitably
suffer from the decoherence induced by the coupling to its
surroundings, it is natural to explore the dynamics of QFI in
all sorts of noisy quantum channels [17,18], as we do when we
analyze quantum entanglement, quantum discord, and Bell
nonlocality. A great deal of research has been devoted to
this perspective of QFI, which is well motivated within the
framework of noisy quantum metrology [19,20].

On the other hand, the combination of quantum information
science and relativity theory leads us to a deeper interpretation
of quantum mechanics [21,22] and opens up a new way to
understand the information paradox when black holes are
involved [23–26]. In particular, what the community cares
about is how the Unruh-Hawking effect affects the “infor-
mation content” (or more specifically, correlation measures)
in quantum states. Therefore, diverse efforts have been made
to investigate the dynamics of teleportation fidelity [27,28],
quantum entanglement [29–39], quantum discord [40–45],
Bell nonlocality [46,47], and some other information quan-
tities in noninertial frames [48,49]. Intuitively, it was widely
believed that the Unruh effect can only cause the degradation
of quantum correlations shared between an inertial and an
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accelerated observer. However, Montero and Martı́n-Martı́nez
have pointed that the Unruh effect can create net quantum
entanglement depending on the choice of the inertial state [50].
Hence we cannot merely view the Unruh effect as a usual noisy
channel since some counterintuitive and subtle phenomena
will appear.

Consequently, it will be interesting to study how the
relativistic effect affects the quantum Fisher information or
the performance of parameter estimation protocols. However,
only a few authors have attempted to address this problem
[51–54]. Aspachs et al. discussed the optimal detection of the
Unruh-Hawking effect itself (e.g., the acceleration parameter
or Unruh temperature) and proved that Fock states can
achieve the maximal QFI when considering a scalar field in
a two-dimensional Minkowski space-time [51]. Hosler and
Kok numerically studied the NOON states based parameter
estimation protocol over an Unruh channel and found the
counterintuitive result that the single-rail encoding is superior
to the dual rail [52]. Furthermore, Ahmadi et al. provided
a framework of relativistic quantum metrology where the
relativistic effect can be viewed as a resource for quantum
technologies [54]. In this work, we investigate the performance
of quantum Fisher information for both scalar and Dirac fields
in noninertial frames. Here we consider the parametrized pure
two-qubit state as the initial state, where two parameters θ and
φ are introduced. Interestingly, our analytical results indicate
that even in this seemingly simple case the QFI has a rich
and subtle physical structure: (i) Fθ remains invariant for both
scalar and Dirac fields; (ii) for both cases Fφ decreases with
the increase of acceleration r but approaches a finite value
in the limit of infinite acceleration and more importantly, the
distribution symmetry of Fφ with respect to θ has been broken
by the influence of the Unruh effect.

The outline of the paper is as follows. In Sec. II, we review
the properties of QFI and summarize the recent progress on
its analytical calculation. In Sec. III, we investigate the effect
of Unruh noise on QFI of the parametrized (and arbitrary)
two-qubit states in both scalar and Dirac fields. Finally, Sec. IV
is devoted to the discussion and conclusion.

1050-2947/2014/89(4)/042336(8) 042336-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.042336


YAO, XIAO, GE, WANG, AND SUN PHYSICAL REVIEW A 89, 042336 (2014)

II. TECHNICAL PRELIMINARIES OF QFI

Consider we have an N -dimensional quantum state ρλ

depending on an unknown parameter λ. If we intend to extract
information about λ from ρλ, a set of quantum measurements
{E(ξ )} should be performed. According to classical statistical
theory, the quality of any measurement(s) can be specified by
a form of information called Fisher information [8,9,55],

Fλ =
∫

dξ p(ξ |λ)

[
∂ ln p(ξ |λ)

∂λ

]2

, (1)

where p(ξ |λ) = Tr[E(ξ )ρλ] denotes the conditional probabil-
ity of acquiring the measurement result ξ when the value of the
parameter is λ. Optimizing over all possible measurements, we
can define the quantum Fisher information [1,2,56]:

Fλ = max
E(ξ )

Fλ. (2)

To move forward, we can rewrite the QFI explicitly as

Fλ = Tr
(
ρλL

2
λ

)
(3)

by introducing the so-called symmetric logarithmic derivative
(SLD) Lλ satisfying the relation

∂ρλ

∂λ
= ρλLλ + Lλρλ

2
. (4)

It is worth pointing out that the complete set of eigenvectors of
Lλ constitutes the optimal positive operator-valued measure to
achieve the QFI (or equivalently, the maximal classical Fisher
information) [56].

Apart from the basic properties such as convexity and
monotonicity (e.g., nonincreasing under stochastic opera-
tions) [57], the QFI is naturally related to the Bures distance
or Uhlmann fidelity [1]:

d2
Bures(ρλ,ρλ+dλ) = 1

4Fλdλ2, (5)

where the Bures distance can be defined as [58–60]

dBures(ρ,σ ) =
√

2(1 − Tr
√

ρ1/2σρ1/2)1/2. (6)

Therefore, if we have obtained the explicit form of Bures
distance of the corresponding states, then the formula of
QFI can be straightforwardly derived applying this relation.
Recently, we note that this strategy has already been exploited
in several situations: the single qubit [18], single-mode
Gaussian [61], and two-mode Gaussian states [54].

On the other hand, based on the spectrum decomposition
ρλ = ∑N

i=1 pi |ψi〉〈ψi |, the QFI can be rephrased as [1,2,56]

Fλ = 2
N∑

m,n

|〈ψm|∂λρλ|ψn〉|2
pm + pn

, (7)

with the eigenvalues pi � 0 and
∑N

i pi = 1. However, this
expression is somewhat difficult to use especially when the
dimension of ρλ is very large, since the eigenvectors with
respect to zero eigenvalues are all involved in the calculation.
Fortunately, employing the completeness relation

N∑
i=M+1

|ψi〉〈ψi | = I −
M∑
i=1

|ψi〉〈ψi |, (8)

with M being the dimension of the support of ρλ, Refs. [62]
and [63] provided a new expression of the QFI for general
states (see also [64]):

Fλ =
M∑
i=1

(p′
i)

2

pi

+
M∑
i=1

piFλ,i −
M∑

i �=j

8pipj

pi + pj

|〈ψi |ψ ′
j 〉|2, (9)

where p′
i = ∂λpi , |ψ ′

i 〉 = |∂λψi〉, and Fλ,i is the QFI of pure
state |ψi〉:

Fλ,i = 4(〈∂λψi |∂λψi〉 − |〈ψi |∂λψi〉|2). (10)

From this expression we can see that the QFI of a non-full-rank
state is only determined by its support (e.g., by the subset of
{|ψi〉〈ψi |} with nonzero eigenvalues). Furthermore, one can
clearly identify that the QFI can also be divided into three parts:
The first term is just the classical contribution if we regard the
set of nonzero eigenvalues as a probability distribution; the sec-
ond term is a weighted average over all pure-state QFI; the last
term stems from the mixture of pure states and thus decrease
the total QFI. While Eq. (9) is relatively simple and has a clear
physical meaning, it will be a starting point for our analysis.

III. QUANTUM FISHER INFORMATION IN
NONINERTIAL FRAMES

In this section, we investigate how the Unruh effect affects
the QFI in both scalar and Dirac fields. Since the maximally
entangled states such as Bell or Greenberger-Horne-Zeilinger
(GHZ) states were adopted as the initial states to demonstrate
the effect of Unruh noise in most previous literature, here we
mainly focus on the parametrized (and arbitrary) two-qubit
pure states

|�θ,φ〉 = cos θ |00〉 + eiφ sin θ |11〉, (11)

where the unknown arguments θ and φ are to be estimated and
could be named as weight and phase parameters, respectively.
One can easily obtain the QFI with respect to θ and φ as

Fθ = 4, Fφ = sin2 2θ, (12)

which shows that the QFI of θ is irrespective of φ (and remains
constant), while the QFI of φ depends on the value of θ .
Moreover, when θ = π/4, Fφ reaches its maximum indicating
that the balance-weighted state is preferable. This observation
is reminiscent of previous results about the NOON state that
it has been widely exploited in quantum metrology to achieve
the Heisenberg limit [5,7]. In addition, we also note that Fφ

is symmetric with respect to θ = π/4 in the absence of the
Unruh effect.

A. The scalar field

To understand the Unruh effect [21,22,24], we assume that
one observer, Alice, stays in an inertial frame while her partner
Rob undergoes uniform acceleration a, each holding a mode
of a free massless scalar field in Minkowski space-time. In
order to describe what Rob perceives from his perspective, we
should transform from the Minkowski coordinates {t,z} to the
Rindler coordinates {τ,ξ}:

t = a−1eaξ sinh aτ, z = a−1eaξ cosh aτ, I,

t = −a−1eaξ sinh aτ, z = −a−1eaξ cosh aτ, II, (13)
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which defines the right (region I) and left (region II) Rindler
wedges. Usually we refer to the accelerating observer in
regions I and II as Rob and anti-Rob, respectively. According
to the Bogoliubov transformation [65,66], the Minkowski
vacuum state and single excitation state can be expressed in
terms of Rindler modes

|0k〉M = 1

cosh r

∞∑
n=0

tanhn r|nk〉I|nk〉II,

(14)

|1k〉M = 1

cosh2 r

∞∑
n=0

tanhn r
√

n + 1|(n + 1)k〉I|nk〉II,

where |nk〉I and |nk〉II denote the mode decomposition in
regions I and II, respectively, and cosh r = (1 − e−2π)−1/2

with  = |k|c/a. Since Rob is causally disconnected from
region II (e.g., anti-Rob is physically inaccessible), we must
trace over the state of region II. Therefore, one can verify that
an entangled pure state seen by Alice in inertial frame will be
recognized as a mixed state by the accelerated observer Rob.
Therefore, in the language of quantum formation theory, the
Unruh effect can be viewed as a noisy channel which consists
of two steps: (i) mapping the state in Minkowski space to
Rindler modes according to the transformation (14) and then
(ii) tracing over the causally disconnected region II.

Assume that Alice and Rob initially share the two-qubit
pure state, Eq. (11), from an inertial perspective, and then Rob
is uniformly accelerated with a. Due to the action of the Unruh
channel, we will arrive at a mixed state

ρAR = 1

cosh2 r

∞∑
n=0

tanh2n rρn, (15)

where

ρn = cos2 θ |0,n〉〈0,n| + (n + 1) sin2 θ

cosh2 r
|1,n + 1〉〈1,n + 1|

+
√

n + 1 sin θ cos θ

cosh r
(e−iφ|0,n〉〈1,n + 1| + H.c.), (16)

with |n,m〉 = |nA〉M|mR〉I . Further, we notice that the 2 ×
2 block composed by the basis {|0,n〉,|1,n + 1〉} can be
effectively regarded as a pure qubit since one-qubit pure states
ρ = 1

2 (I + �n · �σ ) have the form

ρ = 1

2

(
1 + n3 n1 − in2

n1 + in2 1 − n3

)

= 1

2

⎛
⎝ 1 + n3 e−iϑ

√
1 − n2

3

eiϑ

√
1 − n2

3 1 − n3

⎞
⎠ , (17)

where �n = {n1,n2,n3} is the Bloch vector and ϑ =
arctan n2/n1. Correspondingly, ρAR can be rewritten as (note
that ρn is unnormalized)

ρAR =
∞⊕

n=0

Pn|�n〉〈�n|

= 1

cosh2 r

∞∑
n=0

tanh2n r �n|�n〉〈�n|, (18)

where

Pn = tanh2n r

cosh2 r
�n, �n = cos2 θ + (n + 1) sin2 θ

cosh2 r
, (19)

|�n〉 =
{

cos θ√
�n

, eiφ

√
n + 1 sin θ

cosh r
√

�n

}T

. (20)

Therefore, the overall effect of the Unruh channel is mapping
the pure state |�θ,φ〉 into a mixture of pure states in distinct
blocks.

First, we consider the QFI associated with θ . Keeping in
mind that �n also contains information about θ , we obtain the
classical part of Fθ :

FC =
∞∑

n=0

1

Pn

(
∂Pn

∂θ

)2

=
∑

n

tanh2n r

cosh2 r

(∂θ�n)2

�n

. (21)

Meanwhile, utilizing the identities

∂θ�n = sin 2θ

(
n + 1

cosh2 r
− 1

)

= 2
√

�n∂θ (
√

�n), (22)

and formula (10), we can get the quantum part of Fθ :

FQ =
∞∑

n=0

PnFθ (|�n〉〈�n|)

=
∞∑

n=0

tanh2n r

cosh2 r

[
4�n − (∂θ�n)2

�n

]
, (23)

where

�n = sin2 θ + (n + 1) cos2 θ

cosh2 r
. (24)

It is worth emphasizing that the last term of Eq. (9) does not
contribute to Fθ because |�i〉 and |�j 〉 with i �= j locate on
different subspaces. Indeed, one can find that 〈�i |∂θ�i〉 is also
equal to zero by using the identities (22) again, that is,

〈�i |∂θ�j 〉 = 0, ∀i,j. (25)

All together, Fθ is given by

Fθ = FC + FQ = 1

cosh2 r

∞∑
n=0

4 tanh2n r�n. (26)

Moreover, we note that the following formulas hold:
∞∑

n=0

tanh2n r = cosh2 r,

(27)∞∑
n=0

(n + 1) tanh2n r = cosh4 r.

Intriguingly, we finally arrive at the conclusion thatFθ remains
invariant, that is, Fθ = 4 independent of the acceleration
parameter r . In fact, this result implies that the QFI about
θ is completely unaffected under the effect of the Unruh
channel. Therefore, if we encode the information on the weight
parameter θ , then the corresponding accuracy of the parameter
estimation will be immune to the Unruh effect. This strategy
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may find applications in the framework of relativistic quantum
metrology.

On the other hand, Pn or �n do not rely on the parameter φ

and then the classical part of Fφ is just zero. Therefore, Fφ can
only stem from the average QFI of the pure states |�n〉〈�n|:

Fφ =
∞∑

n=0

PnFφ(|�n〉〈�n|)

= sin2 2θ

cosh4 r

∞∑
n=0

(n + 1) tanh2n r

�n

. (28)

Furthermore, we can obtain the analytical expression of Fφ by
introducing the hypergeometric function [67] (for simplicity,
we put the formula in Appendix A).

One can check that the limitation limr→0 Fφ = sin2 2θ is
consistent with the initial value and indeed there are some
other points that deserve our attention: (i) We have plotted the
r dependence of Fφ for a series of values of θ in Fig. 1(a)
and found that as the acceleration r increases, Fφ gradually
decreases and converges to nonzero value in the limit of infinite
acceleration, which is in sharp contrast with entanglement [29].
(ii) We also observe that Fφ is no longer a monotonically
increasing function of θ in the interval [0,π/4] and does not
achieve the maximum at θ = π/4 for certain fixed value of
r . More remarkably, the symmetry of the function Fφ with
respect to θ = π/4 has been broken as we can see from
Fig. 1(b). For vanishing acceleration, �Fφ = Fφ(θ = π

3 ) −
Fφ(θ = π

6 ) = 0 as we expect. However, for small values of r ,

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

r

F Φ

(a)

0 1 2 3 4 5 6
�0.03

�0.02

�0.01

0.00

0.01

r

�
F Φ

(b)

FIG. 1. (Color online) (a) The QFI Fφ as a function of the
acceleration parameter r where θ = π/20,π/10,3π/20,π/5,π/4
from bottom to top; (b) �Fφ = Fφ(θ = π/3) − Fφ(θ = π/6) as a
function of the acceleration r . Note that π/6 and π/3 are symmetric
with respect to π/4.

�Fφ > 0 and when r → ∞, �Fφ < 0 and also approaches a
finite value.

If the initial probe state is maximally entangled (e.g.,
θ = π/4 and φ = 0), previous results show that even in
the limit of infinite acceleration, there still exists nonzero
amount of purely quantum correlations (quantified by quantum
discord) in the absence of quantum entanglement (quantified
by negativity) [29,40]. In contrast, QFI rapidly approaches a
finite stable value along with the increase of the acceleration.
More interestingly, from Fig. 1(a) one can figure out that the
Unruh effect may have negligible impact on Fφ , especially
when the parameter θ largely deviates from π/4 within the
interval θ ∈ [0,π/2].

We also notice that a series of papers by Brádler
[68–72], where the classical or quantum capacity of the Unruh
channels are explicitly calculated, would be very helpful in
understanding the present work. We realize that similarly to
the classical capacity, the computability of QFI is also based
on the block-diagonal structure of the reduced state ρAR , or
more precisely, the direct-sum form of the Unruh channel. As
pointed out in Ref. [69], the classical capacity of the Unruh
channel also converges to a nonzero value in the limit of infinite
acceleration, which implies that they are highly relevant in the
context of information transformation. However, we should
also note that there are still some differences between them:
Fφ only contains quantum contributions from pure states
|�n〉〈�n| and depends on both r and θ , while the classical
capacity only relies on the acceleration parameter r , which
characterizes the intrinsic property of the Unruh channel.

B. The Dirac field

Now we discuss the QFI for a free Dirac field. A similar
analysis shows that the Minkowski vacuum and one-excitation
state in terms of Rindler states is given by [30]

|0k〉M = cos r|0k〉I|0−k〉II + sin r|1k〉I|1−k〉II,

|1k〉M = |1k〉I|0−k〉II, (29)

where cos r = (1 + e−2πωc/a)−1/2 (note that ω = |k|) and
the range of the acceleration parameter is r ∈ [0,π/4) cor-
responding to a ∈ [0, + ∞). The distinction between the
transformations (14) and (29) pertaining, respectively, to scalar
and Dirac fields is physically induced by the differences
between the Bose-Einstein and Fermi-Dirac statistics [30].

Through the Unruh channel for the Dirac case, the reduced
density matrix between Alice and Rob takes the form

ρAR = cos2 r cos2 θ |00〉〈00| + sin2 r cos2 θ |01〉〈01|
+ 1

2 cos r sin 2θ (e−iφ|00〉〈11| + H.c.)

+ sin2 θ |11〉〈11|. (30)

With the help of Eq. (9), we only need the nonzero eigenvalues

λ1 = 1 − sin2 r cos2 θ, λ2 = sin2 r cos2 θ, (31)

and the corresponding (normalized) eigenvectors

|�1〉 = 1√
1 + cos2 r cot2 θ

{e−iφ cos r cot θ,0,0,1},
(32)

|�2〉 = {0,1,0,0}.
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Now we have all the information needed to calculate the QFI.
First, the classical contribution of Fθ is

FC = (∂θλ1)2

λ1
+ (∂θλ2)2

λ1
= 1

λ1λ2
(∂θλ1)2

= 4 sin2 r sin2 θ

1 − sin2 r cos2 θ
. (33)

Meanwhile, we notice that |�2〉 does not contain any informa-
tion about θ and φ. Hence we can obtain the quantum part of
Fθ :

FQ = 4λ1〈∂θ�1|∂θ�1〉 = 4 cos2 r

1 − sin2 r cos2 θ
, (34)

where we resort to the facts that ∂θ (cot θ ) = − csc2 θ and
〈�1|∂θ�1〉 = 0. Therefore, the QFI with respect to θ is given
by

Fθ = FC + FQ = 4. (35)

Interestingly, we have shown that Fθ also remains unchanged,
which is the same as the scalar case. It is worth stressing
that this is a highly nontrivial result, since for an arbitrary
single-qubit state Zhong et al. found that only a phase-damping
channel would cause no disturbance to Fθ [18].

Correspondingly, the QFI Fφ boils down to

Fφ = 4λ1(〈∂φ�1|∂φ�1〉 − |〈�1|∂φ�1〉|2)

= cos2 r sin2 2θ

1 − sin2 r cos2 θ
. (36)

Similarly, one can easily find that limr→0 Fφ = sin2 2θ . Inter-
estingly, the symmetry with respect to θ = π/4 is also broken
due to the Unruh effect (see Fig. 2), the same as the situation
of the scalar field.

However, one can prove that Fφ cannot be amplified
along with increasing the acceleration. In fact, the first order

0 Π
8

Π
4

3 Π
8

Π
2

0

Π
8

Π
4

Θ

r

FΦ

0.1

0.3

0.5

0.7

0.9

FIG. 2. (Color online) The contour plot of Fφ as a function of the
acceleration parameter r and θ .

derivative of Fφ is given by

∂Fφ

∂r
= −4 sin 2r sin4 θ cos2 θ

(1 − sin2 r cos2 θ )2
� 0. (37)

And yet, Fφ does not reduce to zero but remains finite in the
infinite acceleration limit; that is,

lim
r→π/4

Fφ = 1 − cos 4θ

3 − cos 2θ
. (38)

It is worth emphasizing that fermionic systems are subtle
objects to deal with and a number of incorrect conclu-
sions on fermionic entanglement have appeared as argued
in Refs. [73,74]. However, our result only depends on the
quantum field theory part of Ref. [30] [e.g., the transformation
equation (29)], where the canonical anticommutation relation
and superselection rule have been fully considered. The
situation that we encountered in calculating entanglement is
not involved in our derivation. For more details, we refer the
reader to Ref. [75].

Finally, we also investigate how the Unruh effect influences
the distribution of the QFI over subsystems [76]. It is
straightforward to show that

FA
θ = 4, FR

θ = 4 cos2 r sin2 θ

1 − cos2 r cos2 θ
,

FA
φ = FR

φ = 0, (39)

where FX
ξ denotes the QFI with respect to parameter ξ ∈

{θ,φ} in subsystem X ∈ {A,R}. One can easily check that
the reduced states ρA and ρR contain no information about
φ and hence Fφ � FA

φ + FR
φ irrespective of the values of r

and θ . Since limr→0 FR
θ = Fθ = 4 and FR

θ � 0, actually Fθ is
always smaller than the sum of QFI of the two subsystems. That
is to say, the QFI can be either subadditive or superadditive
under the Unruh effect depending on the specific parameter
that we are concerned with.

IV. DISCUSSION AND CONCLUSION

As an important measure of the information content
of quantum states, quantum Fisher information plays an
essential role in both statistical theory and quantum metrology.
However, unlike other correlation measures such as quantum
entanglement and discord, the QFI usually reveals intricate
and subtle behavior since the QFI characterizes the intrinsic
sensitivity of the system being discussed with respect to the
change of certain specific parameters. In this paper, we have
investigated the performance of QFI under the Unruh-Hawking
effect in the context of relativistic quantum information theory.
Here we mainly focus on the parametrized (and arbitrary) pure
two-qubit states where two corresponding parameters are nat-
urally introduced: the weight parameter θ and phase parameter
φ (see Appendix B). We assume that Alice and Rob each share
one mode of the two-qubit state, and then Rob is uniformly
accelerated. Meanwhile, from the perspective of quantum in-
formation theory, the Unruh effect can also be viewed as a par-
ticular quantum operation or noisy quantum channel [51,68].

To complete our analysis, both bosonic and fermionic fields
are detailedly considered. Our analytical results indicate that
the QFI has a rich and subtle physical structure in both cases.

042336-5



YAO, XIAO, GE, WANG, AND SUN PHYSICAL REVIEW A 89, 042336 (2014)

For the scalar field, Fθ remains constant irrespective of the
acceleration parameter r , while Fφ decreases gradually with
increasing acceleration but remains finite in the r → ∞ limit.
For the Dirac field, we have demonstrated that Fθ still remains
unchanged, similarly to the bosonic case. Meanwhile, we have
proved that Fφ can never be amplified for arbitrary values of
r and θ . Furthermore, we find that the symmetry of Fφ with
respect to θ = π/4 is broken by the Unruh effect in both cases.
Finally, we have also checked how the Unruh effect affects the
distribution of the QFI over subsystems of a Dirac field. It
is demonstrated that Fφ is obviously superadditive but Fθ is
always subadditive independent of the acceleration r and θ

itself [76].
In view of these findings, there are some further problems to

be addressed: (i) The relativistic effect on quantum metrology
and other quantum technologies is still not so clear. Indeed,
for specific setups, one should clarify whether the relativistic
effect could be a resource or an obstacle for corresponding
quantum tasks [54]. (ii) The distribution property of QFI in
tripartite (e.g., GHZ states) or multipartite systems would be

very interesting to investigate, especially when certain kinds
of noisy quantum channels are introduced.

Note added. Recently we became aware that our analytical
results can be regarded as a complement to the recent numerical
work by Hosler and Kok [52] (see Figs. 2 and 3 in their paper).
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APPENDIX A: THE ANALYTICAL EXPRESSION OF Fφ

Here, we present the analytical expression of the summation
of the series Eq. (28).

Fφ = sech4 r sin2 2θ [2F1(a1,b1; c1; z1)(cos2 θ + 2 sech2 r sin2 θ ) + 2F1(a2,b2; c2; z2)(cos2 θ + sech2 r sin2 θ ) tanh2 r]

cos4 θ + 3 sech2 r sin2 θ cos2 θ + 2 sech4 r sin4 θ
, (A1)

where

a1 = 1, b1 = 1 + cosh2 r cot2 θ, c1 = 2 + cosh2 r cot2 θ, z1 = tanh2 r;

a2 = 2, b2 = 2 + cosh2 r cot2 θ, c2 = 3 + cosh2 r cot2 θ, z2 = tanh2 r. (A2)

The hypergeometric function 2F1(a,b; c; z) is defined for |z| <

1 by the power series

2F1(a,b; c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, (A3)

where (q)n is Pochhammer symbol:

(q)n =
{

1 if n = 0
q(q + 1) · · · (q + n − 1) if n > 0.

(A4)

For more details about the hypergeometric function, we refer
the readers to Ref. [67].

APPENDIX B: ANOTHER CHOICE OF
THE INITIAL STATE

In fact, we can also choose the initial state such as

|�̃θ,φ〉 = cos θ |01〉 + eiφ sin θ |10〉. (B1)

In particular, we notice that |�̃〉 is related to the original |�〉
by a bit-flip operation (which can equivalently be regarded as
a local rotation) on the subsystem B:

|�̃θ,φ〉 = (I ⊗ σx)|�θ,φ〉. (B2)

For the scalar field, the reduced state shared by Alice and Rob
can be given as

ρ̃AR = 1

cosh2 r

∞∑
n=0

tanh2n rρ̃n, (B3)

where

ρ̃n = (n + 1) cos2 θ

cosh2 r
|0,n + 1〉〈0,n + 1| + sin2 θ |1,n〉〈1,n|

+
√

n + 1 sin θ cos θ

cosh r
(e−iφ|0,n + 1〉〈1,n| + H.c.).

(B4)

Correspondingly, ρ̃AR can be recast into the block-diagonal
structure

ρ̃AR =
∞⊕

n=0

P̃n|�̃n〉〈 �̃n|, (B5)

where

P̃n = tanh2n r

cosh2 r
�̃n, �̃n = sin2 θ + (n + 1) cos2 θ

cosh2 r
, (B6)

|�̃n〉 =
{√

n + 1 cos θ

cosh r
√

�n

,eiφ sin θ√
�n

}T

. (B7)

It is remarkable that we are now working in the new subspaces
{|0,n + 1〉,|1,n〉} and this is equivalent to a specific rearrange-
ment of the eigenbasis. Meanwhile, the only modification is the
interchange between sin θ and cos θ : sin θ ⇔ cos θ (that is,
θ ⇔ π/2 − θ ). Following the same procedure for the analysis
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of |�〉, one can easily obtain

F̃θ = 4, (B8)

F̃φ = sin2 2θ

cosh4 r

∞∑
n=0

(n + 1) tanh2n r

�̃n

. (B9)

We stress that the interchange between sin θ and cos θ is due
to the relation |�̃〉 = (I ⊗ σx)|�〉. As for the Dirac case, the
reduced state shared by Alice and Rob can be written as

ρ̃AR = cos2 θ |01〉〈01| + cos2 r sin2 θ |10〉〈10|
+ 1

2
cos r sin 2θ (e−iφ|01〉〈10| + H.c.)

+ sin2 r sin2 θ |11〉〈11|. (B10)

The only relevant eigenvalues and corresponding eigenvectors
are listed as follows:

λ̃1 = 1 − sin2 r sin2 θ,

|̃�1〉 = 1√
1 + sec2 r cot2 θ

{0,e−iφ sec r cot θ,0,1},

λ̃2 = sin2 r sin2 θ, |�̃2〉 = {0,0,0,1}. (B11)

After some tedious calculations, we finally arrive at the
formulas for QFI:

F̃θ = 4, F̃φ = cos2 r sin2 2θ

1 − sin2 r sin2 θ
. (B12)

As we expect, the only modification is still the interchange
θ ⇔ π/2 − θ . The above whole analysis can be regarded as a
complement to the original choice of the initial state |�〉.
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