
PHYSICAL REVIEW A 89, 012128 (2014)

Threshold for nonthermal stabilization of open quantum systems
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We generally study whether or not the information of open quantum systems would be totally erased by their
surrounding environments in thermalization processes. A complex system composed of a harmonic oscillator
and its environment is studied. When the interaction spectral density contains zero-value regions, there is a
threshold of system-bath coupling, ηc, above which the initial information of the system partially remains. We
estimated this threshold by the properties of the system and its bath, i.e., the density of the environment states.
Thus, its long-time stabilization deviates from the usual thermalization. This nonthermal stabilization happens
as a non-Markovian effect.
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I. INTRODUCTION

Thermalization is a dynamic process of an open system
reaching the thermal equilibrium at the same temperature T

as its surrounding heat bath. From the point of view of infor-
mation theory, thermalization is regarded as an information-
erasure process [1]. The open system initially prepared
in an arbitrary state will relax to a thermal state after a
long-time Markovian process. This steady state is irrelevant
to the system’s initial state at all, while it carries partial
information of the bath characterized by its temperature T .
Thus, the conventional thermalization plays a necessary role
in the initialization of a computation or thermodynamic cycle
[2–4]. This perspective results in a comprehensive understand-
ing of Landauer’s erasure principle [1,5].

Thermalization is dynamically associated with a Markovian
process [6] and can also be described by a Langevin equation
under the Wigner-Weisskopf approximation [7,8]. However, it
has been found that a strong system-bath coupling might result
in non-Markovian processes when the interaction spectral
density contains zero-value regions [9–14]. In such a process,
the stabilized open system still maintains partially its initial
information, which is quite different from the conventional
thermalization and is referred to as nonthermal stabilization.
Two questions naturally follow for further investigation:
(i) To what extent does the strength of a system-bath coupling
increase so that a nonthermal stabilization of the system
happens? (ii) How much initial information of the system is
left in the stabilized state for a nonthermal stabilization?

To answer these questions, we revisit the “standard model”
of open quantum systems, a harmonic oscillator (HO) coupled
to a bath of HOs. We analytically examine the mean occupation
number of the system through the exact solution to the total
system’s Heisenberg equation. The system’s mean occupation
number is divided into two parts. One of them only depends
on the system’s initial state. The other only depends on
the environment and can be neglected if the environment’s
temperature is small enough. A detailed asymptotic analysis
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shows that the first part does not vanish even when the system is
stabilized if the interaction spectrum contains some zero-value
regions and the coupling strength exceeds the threshold ηc.
The threshold depends on the structure of the interaction
spectral density, which is characterized by some physical
parameters, such as the density of the environment states. Thus
the threshold ηc acts as a critical point between conventional
thermalization and nonthermal stabilization. Our method can
be directly generalized to deal with the fermion case. For
the case of a spin interacting with a boson environment, our
method is also suitable when the environment’s temperature is
zero or the environment represents a vacuum.

The paper is organized as follows. In Sec. II we describe
the model of a quantum open system and point out that the
phenomenon of nonthermal stabilization is characterized by
the nonvanishing asymptotic behavior of u(t). In Sec. III,
the formal solution and the condition of the nonvanishing
asymptotic behavior of u(t) are presented. In Sec. IV, the
physical implication of this condition is studied, and it is
found that in many situations this condition corresponds to
the interaction threshold ηc. In Sec.V, some examples and the
corresponding numerical simulations are presented to verify
our theory. In Sec. VI, the effect of an environment with a
nonzero temperature is discussed. Conclusions and remarks
are given in Sec. VII.

II. MODELS OF OPEN QUANTUM SYSTEMS

We consider an open system consisting of a HO interacting
with its environment (or bath). The environment is modeled
as a collection of HOs with linear coupling to the system.
This has been extensively studied in much of the literature
on open quantum systems, since it can be universally utilized
to reveal the core spirit of the quantum dissipation process
according to Caldeira and Leggett [7]. We should emphasize
that the method used below is also suitable for a fermion case.
Another common model in the field of open quantum systems
is a two-level system interacting with a boson environment.
Our method can only partially deal with this system, which we
will discuss later.

1050-2947/2014/89(1)/012128(8) 012128-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.012128
http://www.csrc.ac.cn/suncp/


C. Y. CAI, LI-PING YANG, AND C. P. SUN PHYSICAL REVIEW A 89, 012128 (2014)

The total Hamiltonian of our model reads

H = �a†a +
∑

l

ωlb
†
l bl +

∑
l

(ηla
†bl + η∗

l b
†
l a), (1)

where a (a†) and bl (b†l ) are the annihilation (creation)
operators of the system and the lth mode of the environment,
respectively. The corresponding Heisenberg equation has the
following formal solutions [15,16],

a(t) = u(t)a +
∑

l

ul(t)bl, (2)

bl(t) = vl(t)a +
∑
m

vlm(t)bm, (3)

where a and bl are the abbreviations for a(t)|t=0 and bl(t)|t=0,
respectively, and the c-number time-dependent coefficients
u(t), ul(t), vl(t), and vlm(t) are determined by the following
differential equations,

du(t)

dt
= −i�u(t) − i

∑
l

ηlvl(t), (4)

dul(t)

dt
= −i�ul(t) − i

∑
m

ηmvml(t), (5)

dvl(t)

dt
= −iωlvl(t) − iη∗

l u(t), (6)

dvlm(t)

dt
= −iωlvlm(t) − iη∗

l um(t), (7)

with initial conditions u(t)|t=0 = 1, ul(t)|t=0 = vl(t)|t=0 = 0,
and vlm(t)|t=0 = δlm. Equations (4) and (6) form a closed
differential equation system, which leads to [15]

du(t)

dt
+ i�u(t) +

∫ t

0
G(t − τ )u(τ )dτ = 0. (8)

Here, the integral kernel

G(t) = F[J (ω)] ≡ 1

2π

∫ ∞

−∞
J (ω)e−iωtdω (9)

is the time-domain representation of the system-bath interac-
tion spectral density J (ω) ≡ 2π

∑
l |ηl|2δ(ω − ωl), which is

usually taken as a priori microscopic knowledge.
To reveal the non-Markovian property of the open system’s

evolution, we take the system’s mean occupation number as the
starting point. When the system and the bath are initially in
a direct product state ρ(0) = ρS(0) ⊗ ρE(0) and we assume
that the environment is initially in a thermal equilibrium
state at temperature T , the system’s mean occupation number
is [17]

n(t) = |u(t)|2〈a†a〉S +
∑

l

|ul(t)|2〈b†l bl〉E, (10)

where 〈· · · 〉S(E) = TrS(E)[ρS(E) · · · ] means the average over
the state ρS(E). In fact, a weaker assumption of the environment
that tr[blρE(0)] = 0 also makes the above equation valid. The
mean occupation number n(t) is divided into two parts. The
first part, which vanishes in a long-time Markovian process
and describes the erasing of the system’s initial information,

only depends on the system’s initial condition. The second
part, which usually leads to the thermalization of the system
in the weak-coupling case [15], characterizes the contribution
from the bath. If the temperature T of the bath is nearly zero,
or the bath represents some kind of vacuum, the second part is
negligible and one finds

n(t) � |u(t)|2n(0). (11)

Thus, the function u(t) acts as an amplitude factor in the erasing
process. When the temperature is finite, the second part may
be comparable to the first part. We discuss the effect of the
second part later in this paper.

As mentioned before, another important case of open
quantum systems is a two-level system interacting with a boson
environment, whose Hamiltonian reads

H = �|e〉〈e| +
∑

l

ωlb
†
l bl +

∑
l

(ηlbl|e〉〈g| + η∗
l b

†
l |g〉〈e|),

(12)
where |e〉 and |g〉 are the excited state and the ground state of
the two-level system, respectively, and � is its level spacing.
If the temperature of the bath is zero (as in the case to
discuss spontaneous emission [15]) and the two-level system
is initially in its excited state, the total system would evolve in
a subspace spanned by states as

|ψ(t)〉 = u(t)|e〉 ⊗ |vac〉 +
∑

l

vl(t)|g〉 ⊗ b
†
l |vac〉. (13)

The Schrödinger equation

i
d

dt
|ψ(t)〉 = H |ψ(t)〉 (14)

implies that

du(t)

dt
= −i�u(t) − i

∑
l

ηlvl(t), (15)

dvl(t)

dt
= −iωlvl(t) − iη∗

l u(t). (16)

Because the above expressions are the same as Eqs. (4) and (6),
u(t) satisfies the same differential-integral equation as Eq. (8).
Furthermore, the system’s mean occupation number is

n(t) = |〈e|ψ(t)〉|2 = |u(t)|2, (17)

which verifies the fact that u(t) is characterized as an amplitude
factor in the erasing process. For a nonzero temperature
environment, the above method does not work, and how to
deal with such a case still remains an open question.

As a conclusion of this section, we point out that in lots
of situations, the dynamics of an open system in the erasing
process can be characterized by a c-number function u(t)
which satisfies the differential-integral equation, Eq. (8). A
conventional thermalization process implies that u(t) → 0 as
t → ∞, while a nonvanishing u(t) at a long time corresponds
to the nonthermal stabilization.
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III. FORMAL SOLUTION AND ASYMPTOTIC
BEHAVIOR OF u(t)

In this section, we study the asymptotic behavior of u(t).
For convenience, we extend the time domain from [0,∞)
to (−∞,∞) by letting u(t) = 
(t)u(t), where 
(t) is a
step function. It is found that u(t) satisfies the following
differential-integral equation:

du(t)

dt
+ i�u(t) +

∫ t

−∞
dτG(t − τ )u(τ ) = δ(t). (18)

It is obvious that Eq. (18) is exactly equivalent to Eq. (8) in
the time domain (0,∞). A formal solution of u(t) is obtained
via the Fourier transformation as

u(t) = − 1

2πi

∫
e−iωtdω

F (ω)
, (19)

where the denominator in the integral is

F (ω) ≡ ω − � + 1

2π

∫
P

J (ω′)dω′

ω′ − ω
+ i

2
J (ω) + iε, (20)

and ε is an infinitesimal positive constant. For some special
spectrum, e.g., a Lorentzian-type spectrum, the above integral
can be carried out analytically [11].

We assume an asymptotic solution of Eq. (8) u(t) ∼
A exp(−iω0t) as t → ∞, which oscillates with a single
frequency ω0 and amplitude A. Due to the linearity of Eq. (8),
the superposition of several such single-mode solutions is also
an asymptotic solution of Eq. (8). Therefore, we only need to
investigate the existence conditions and the properties of the
single-mode case. To this end, we let ũ(t) ≡ exp(iω0t)u(t),
which satisfies an integral-differential equation similar to
Eq. (8) with modified frequency �̃ ≡ � − ω0 and modified
kernel G̃(t) ≡ F[J (ω + ω0)], namely,

dũ(t)

dt
+ i(� − ω0)ũ(t) +

∫ t

0
G̃(t − τ )ũ(τ )dτ = 0 (21)

and

G̃(t) = 1

2π

∫ ∞

−∞
J (ω + ω0)e−iωtdω. (22)

If u(t) has an asymptotic behavior such as u(t) ∼
A exp(−iω0t), then ũ(t) would be stabilized to a constant
ũ(t) ∼ A, which leads to dũ(t)/dt ∼ 0. To deal with the last
term of Eq. (21), note that∫ t

0
G̃(t − τ )ũ(τ )dτ =

∫ t

0
G̃(τ )ũ(t − τ )dτ. (23)

Because the integrant in the right-hand side of the above
equation is dominant in the range when τ is small, the
asymptotic behavior of this term is

A

∫ ∞

0
G̃(τ )dτ. (24)

By means of the identity∫ ∞

0

dτ

2π
e−iωτ = 1

2πi
P

1

ω
+ 1

2
δ(ω), (25)

one finds

A

∫ ∞

0
G̃(τ )dτ = A

(
1

2πi
P

∫ ∞

−∞

J (ω + ω0)

ω
dω + 1

2
J (ω0)

)
.

(26)

Thus, from Eq. (21), we find the relationship between
the frequency ω0 and the amplitude A of the single-mode
asymptotic behavior u(t) ∼ A exp(−iω0t):[

i(� − ω0)+ 1

2πi
P
∫ ∞

−∞

J (ω)

ω − ω0
dω+ 1

2
J (ω0)

]
A=0. (27)

If A �= 0, then the first factor in the left-hand side of Eq. (27)
vanishes, and its real part and its imaginary part read

J (ω0) = 0, (28a)

� − ω0 = 1

2π
P

∫ ∞

−∞

J (ω)

ω − ω0
dω. (28b)

The above system of equations thus constitutes the criteria
for the existence of the nonvanishing asymptotic solution of
Eq. (8) around a real oscillating frequency ω0. Generally, the
asymptotic behavior of u(t) may contain more than one mode.
Thus, the condition of a nonvanishing asymptotic solution of
u(t) is that the criteria, Eqs. (28a) and (28b), considered as
equations of ω0, do have solution(s).

As mentioned in the previous section, a nonvanishing
asymptotic solution of u(t) implies nonthermal stabilization
of the open system. Thus, we conclude that Eqs. (28a) and
(28b) are criteria of nonthermal stabilization. In next section,
we consider the physical implication of these criteria.

IV. CRITERIA FOR NONTHERMAL STABILIZATION

During a conventional thermalization process, u(t) decays
to 0 as t → ∞. This effect implies that the system’s initial
information will be totally erased by its environment. However,
there exist some clues reminding us that u(t) may not vanish at
a long time [9–11]. We have explicitly presented the criteria for
the occurrence of such nonthermal stabilization by Eqs. (28a)
and (28b). Now, we study the physical implication of these
criteria.

According to Ref. [11], the nonthermal stabilization first
requires the spectrum J (ω) to have at least one zero-value
region. This is true because Eq. (28a) holds. Thus, the
nonthermal stabilization would never happen if the spectrum
were of the Lorentzian type. However, in practice, the spectrum
one meets always has a cutoff, e.g., a cutoff Lorentzian-type
spectrum with J (ω < 0) = 0 instead of a pure Lorentzian-type
spectrum. Theoretically, the interaction spectrum of a boson
bath must be zero when ω < 0, otherwise the total Hamiltonian
would have no lower bound. Thus, it loses no generality to
study a spectrum that satisfies J (ω)|ω<0 = 0, called a half-side
spectrum [see Fig. 1(a)].

For a half-side spectrum, we consider whether there exists
a solution ω0 (ω0 < 0) satisfying Eq. (28b). The left-hand side
of Eq. (28b) is a monotonically increasing function of −ω0 and
has no upper limit, while the right-hand side is a monotonically
decreasing function of −ω0 (see Fig. 2). Thus, Eq. (28b) holds
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FIG. 1. (Color online) The four classes of spectrums studied in
this article: (a) half-side spectrum, (b) strictly half-side spectrum,
(c) symmetrical half-side spectrum, and (d) gapped spectrum.

if and only if

1

2π

∫ ∞

0

J (ω)

ω
dω ≥ �. (29)

If the above condition holds, there is only one solution of ω0

in the region (−∞,0). To see the physical significance of this
condition, we rewrite the spectral density as J (ω) = ηJ0(ω),
where η characterizes the system-bath interaction strength and
J0(ω) describes the structure of the spectrum. Then, the above
condition (29) becomes η ≥ ηc, where the threshold strength
ηc is

ηc = 2π�

(∫ ∞

0

J0(ω)

ω
dω

)−1

. (30)

The above arguments show that, if the coupling strength
η < ηc, u(t) asymptotically vanishes as t → ∞. Thus, we
have found the quantitative meaning of the sentence “coupling
is weak enough” in conventional text. When the coupling
strength exceeds the threshold ηc, the asymptotic value of
|u(t)| �= 0 and then the initial information of the system will
not be totally erased even at a long time. Consequently, the
Markovian approximation does not work when η > ηc. When
the half-side spectral density satisfies

∫ ∞
0 [J0(ω)/ω]dω = ∞,

the critical coupling strength becomes zero according to
Eq. (30) [see Fig. 2(b)]. Thus, no matter how weak the

FIG. 2. (Color online) Schematic for the criterion (28b) for a
half-side spectrum. The blue lines represent the left-hand side of
Eq. (28b) as a function of −ω0. The red lines represent the right-hand
side of Eq. (28b). The position where the red line crosses the y axis
is mainly determine by η. (a) ηc > 0. In this case, there exists one
solution for Eq. (28b) if η ≥ ηc, while there is no solution if η < ηc.
(b) ηc = 0. In this case, there always exists a solution as long as the
system couples to the bath.
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FIG. 3. (Color online) |u(t)| as a function of t for ohmic spectrum
with coupling strengths (a) η = 0.01 Hz, (b) η = 0.1 Hz, (c) η =
0.5 Hz, (d) η = 1 Hz, (e) η = 2 Hz, and (f) η = 10 Hz. The system’s
frequency is � = 1 Hz and the spectrum cutoff frequency is �c =
1 Hz, which implies the critical coupling strength ηc = 1 Hz.

system-bath interaction is, the stabilization is nonthermal
and the Markovian approximation or the Wigner-Weisskopf
approximation is not valid. In other words, such a spectrum is
born to be non-Markovian, e.g., the square spectrum.

Next, let us consider what happens when the spectral
density has a gap. Suppose the spectrum J (ω) = ηJ0(ω) to
be studied contains a gap between ω1 and ω2 as shown in
Fig. 3(d). In the gap region, ω0 ∈ (ω1,ω2), Eq. (28b) reads

� − ω0 = 1

2π

∫ ∞

ω2

ηJ0(ω)

ω − ω0
dω − 1

2π

∫ ω1

−∞

ηJ0(ω)

ω0 − ω
dω.

(31)

The left-hand side of the above equation is a monotonically
decreasing function of ω0 while the right-hand side is a
monotonically increasing function of ω0. Thus, Eq. (31) has
one solution of ω0 in the region [ω1,ω2] if and only if

� − ω1 ≥ ηA1, (32)

� − ω2 ≤ ηA2, (33)

where

A1 = 1

2π

∫ ∞

ω2

J0(ω)

ω − ω1
dω − 1

2π

∫ ω1

−∞

J0(ω)

ω1 − ω
dω, (34)

A2 = 1

2π

∫ ∞

ω2

J0(ω)

ω − ω2
dω − 1

2π

∫ ω1

−∞

J0(ω)

ω2 − ω
dω. (35)

There are three situations: (i) 0 < A1 < A2, (ii) A1 < A2 < 0,
and (iii) A1 < 0 < A2. For the first situation, the condition
becomes

� − ω2

A2
≤ η ≤ � − ω1

A1
, (36)
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and the second situation leads to
� − ω1

A1
≤ η ≤ � − ω2

A2
. (37)

In both case, the existence condition of a nonvanishing mode
of u(t) with frequency ω0 ∈ (ω1,ω2) has the form of

ηmin ≤ η ≤ ηmax. (38)

One notices that if the open system’s eigenfrequency � ∈
(ω1,ω2), ηmin < 0 and ηmax > 0. Thus, the condition holds
even when η → 0. This gives another case where the Marko-
vian approximation fails even when the interaction strength is
small enough. For the third situation, the condition reads

η ≥ η0, (39)

where

η0 = max

{
� − ω1

A1
,

� − ω2

A2

}
. (40)

In the case of a spectrum whose density is discontinuous at ω1

and ω2, one finds A1 = −∞ and A2 = +∞, which implies
that the condition, Eq. (39), is η ≥ 0. Again, we see that the
structure of the spectrum plays an important role in nonthermal
stabilization.

So far, we have discussed two basic cases where a spectrum
has a zero region, a cutoff or a gap. For a spectrum that contains
more than one cutoff or gap, each cutoff or gap contributes a
corresponding condition of the form η ≥ η0 or ηmin ≤ η ≤
ηmax. If the condition related to a particular zero region holds,
the asymptotic behavior of u(t) would have one and only one
nonvanishing mode with a frequency in this region.

Finally, we show how to estimate the amplitude A of the
single-mode asymptotic behavior u(t) ∼ A exp(−iω0t). For a
given solution ω0 of the Eqs. (28a) and (28b), F (ω0) vanishes.
Therefore, the integral around ω0 contributes most to the
integration in Eq. (19) and F (ω) can be approximately replaced
by F ′(ω0)(ω − ω0). According to the residue theorem, we
have u(t) � exp(−iω0t)/F ′(ω0). Then, the amplitude A is
approximated as 1/F ′(ω0), i.e.,

A �
(

1 + 1

2π

∫
P

J (ω)dω

(ω − ω0)2

)−1

. (41)

V. EXAMPLE OF NONTHERMAL STABILIZATIONS

A. Symmetrical spectrums

The first example of the nonthermal stabilization is the case
with a symmetrical half-side spectrum that satisfies J (� −
ω) = J (� + ω) with respect to the resonance point ω = � and
J (ω) does not vanish if and only if ω ∈ (0,2�) [see Fig. 1(c)].
Such a spectrum has two cutoffs. Due to the symmetry of
the spectrum, both cutoffs relate to the same critical coupling
strength ηc, which is determined by Eq. (30),

ηc = 2π�

(∫ �

−�

J0(ω + �)

ω + �
dω

)−1

. (42)

When the coupling strength η < ηc, u(t) vanishes as t → ∞.
On the contrary, in the nonthermal stabilization region η ≥ ηc,
u(t) has two single-mode solutions. One is A exp(−iω0t) and
another single-mode solution possesses the same amplitude A

TABLE I. Contrast between analytical results O (a) and numerical
results O (n) for a triangle spectrum with � = 1 and (i) η = 0.7321
and (ii) η = 7.9577.

η ω
(a)
0 ω

(n)
0 2A(a) 2A(b)

0.7321 −0.0027 −0.0026 0.4141 ∼0.4
7.9577 −1.8512 −1.8501 0.9782 ∼1.0

and the antipodal frequency 2� − ω0. Thus, the asymptotic
behavior of u(t) is described by the superposition of the two
single-mode solutions,

u(t) ∼ 2Ae−i�t cos(� − ω0)t. (43)

Strictly speaking, it is not a stabilization because of the
oscillation behavior of |u(t)|2.

We use these results to examine two kinds of spectra as
examples, the triangle spectrum,

J1(ω) =

⎧⎪⎨
⎪⎩

2πη ω
�

0 ≤ ω ≤ �,

2πη 2�−ω
�

� ≤ ω ≤ 2�,

0 otherwise,

(44)

and the square spectrum,

J2(ω) =
{

2πη 0 < ω < 2�,

0 otherwise.
(45)

According to Eq. (42), the critical strength for the triangle
spectrum is ηc = �/(2 ln 2) = 0.7213�, while the critical
strength for the square spectrum is zero. The contrasts between
analytical calculations [starting from Eq. (28b) to determine ω0

and Eq. (41) to determine A] and numerical results [obtained
by the numerical solution of Eq. (8)] are listed in Tables I
and II. By measuring the oscillation period of u0(t), one finds
out the oscillation frequency � − ω0. The agreement between
the analytical calculations and numerical results implies that
the criteria equation, Eq. (28b), and the estimation of the
amplitude, Eq. (41), indeed work well.

B. Ohmic spectrum

The second example is a more realistic one—the ohmic
spectrum with its density distribution reads

J (ω) = 2πηθ (ω)ωe−ω/�c . (46)

Here, η characterizes the coupling strength and �c is the cutoff
frequency. This spectrum is widely applied in open systems

TABLE II. Contrast between analytical results O (a) and numerical
results O (n) for a square spectrum with � = 1 and (i) η = 0.1,
(ii) η = 0.5, and (iii) η = 50. One should note that the actual
observable in the numerical test is π/(1 − ω0) instead of ω0, thus
ω

(a)
0 is indeed very close to ω

(n)
0 .

η ω
(a)
0 ω

(n)
0 2A(a) 2A(b)

0.1 −9.0722e-5 −5.0721e-4 0.0018 About 1e-3
0.5 −0.1997 −0.2006 0.6104 About 0.6
50 −9.0167 −9.0264 0.9967 About 1
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[18,19]. There exists a critical coupling strength, ηc = �/�c,
according to Eq. (30). In the nonthermal region, the oscillating
frequency is determined by the criteria equation (28b),

� − ω0 = η

∫ ∞

0

ω

ω − ω0
e−ω/�cdω, (47)

and its amplitude is

A �
(

� − η�c

ω0
− � − ω0

�c

)−1

. (48)

As shown by the numerical simulation of u(t) in Figs. 3(a)–
3(c), when η < ηc, u(t) decays exponentially, and the decay
rate increases with η increases. When η ≥ ηc, |u(t)| has
a nonvanishing asymptotic value |A|, which increases as
the coupling strength η increases. The numerical results
also confirm the former qualitative analysis from Eqs. (28b)
and (41). Sometimes, the spectrum that one meets in the
experiment may be a modified one, such as subohmic or
superohmic spectra. Our method can be applied to these cases
straightforwardly [11].

VI. THE INFORMATION FROM THE BATH
INHERITED BY THE SYSTEM

We have described how the first part of the system’s mean
occupation number can represent the residual information of
the system’s initial state. Now, we turn our attention to the
second part, which depends on the population distribution of
the bath.

The second part of the system’s mean occupation number
in Eq. (10) is rewritten as∑

l

|ul(t)|2〈b†l bl〉 =
∫

p(ω)fβ(ω)dω, (49)

where p(ω) = ∑
l |ul(t)|2δ(ω − ωl) is a distribution function

(which need not be normalized) and fβ (ω) = 1/[exp(βω) − 1]
is the average occupation number of the environment mode
with frequency ω at temperature T = 1/(kBβ).

To calculate p(ω), we first analyze the dynamic behavior of
ul(t). Following from Eqs. (4) and (6), we find that ul(t) obeys
the differential-integral equation

dul(t)

dt
+ i�ul(t) +

∫ t

0
G(t − τ )ul(τ )dτ = −iηle

−iωl t ,

(50)

with the initial condition ul(0) = 0. Comparing this equation
with Eq. (8), we express ul(t) in terms of u(t) as [10]

ul(t) = −iηl

∫ t

0
u(t − τ )e−iωlτ dτ. (51)

Thus ul(t) is determined by u(t) over the time domain [0,t].
As shown in Fig. 3, u(t) decays exponentially in a short time
and relaxes to an asymptotic form as A exp(−iω0t) at a long
time. For simplicity, we focus on the single-mode case here
and assume u(t) to be of the form

u(t) �
{

e−i�′t−γ t , t < t1,

Ae−iω0t , t ≥ t1.
(52)

Though it seems a rough approximation, it seizes the essence.
How to choose a suitable t1 will be pointed out later. Then we
obtain ul(t) as

ul(t)=−iηle
−iωl t

exp[−i(�′−ωl)t1 − γ t1] − 1

−i(�′ − ωl) − γ

− iηlAe−iωl t
exp[−i(ω0 − ωl)t]− exp[−i(ω0 − ωl)t1]

−i(ω0 − ωl)
.

(53)

Now, we consider two special cases: (i) A = 0 for small η,
and (ii) A �= 0 for large η. In the first case, the second term in
the right-hand side of Eq. (53) vanishes, which is equivalent
to choosing t1 = ∞ in Eq. (52). Then, the distribution of the
written information is

p(ω) = 1

2π

J (ω)

(ω − �′)2 + γ 2
. (54)

The two parameters �′ and γ can be estimated by the Wigner-
Weisskopf approximation:

�′ = � − 1

2π

∫
P

J (ω′)dω′

ω′ − �
, (55)

γ = J (�)/2. (56)

It is discovered that p(ω) is a sharp distribution centered at �′
with width γ :

p(ω) � 1

2π

2γ

(ω − �′)2 + γ 2
. (57)

Since A = 0, the first part of the system’s mean occupation
number vanishes, thus the mean occupation number of the
system reads

n(γ,�′) =
∫

1

2π

2γ

(ω − �′)2 + γ 2
fβ(ω)dω. (58)

In the weak coupling strength limit η → 0 (γ → 0), p(ω) →
δ(ω − �′), which leads to

n(γ → 0,�′) =
∫

δ(ω − �′)fβ(ω)dω

= fβ(�′). (59)

This implies that the system’s mean occupation number
actually inherits the population of the environment mode
with the renormalized mode frequency �′, which actually
corresponds to a conventional thermalization process [15].
If the coupling strength is small but finite, p(ω) becomes a
Lorentzian-type distribution with a broadened width and a
translated center. The center translation effect is characterized
by

�n = n(γ → 0,�′) − n(γ → 0,�)

� 1

2π
f ′

β(�)
∫

P
J (ω)dω

� − ω
, (60)
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which is proportional to the coupling strength. The broadening
width effect is denoted by

�n = n(γ,�) − n(γ → 0,�)

� 1

2
f ′′

β (�)〈(�ω)2〉, (61)

which is proportional to 〈(�ω)2〉 ∝ γ 2.
In the second case, γ is very large (γ ∝ η), then ul(t)

is dominated by the second term in the right-hand side of
Eq. (53):

|ul(t)|2 = A2|ηl|2 2 − 2 cos(ω0 − ωl)(t − t1)

(ω0 − ωl)2
. (62)

Since p(ω) appears in the integral over ω, the oscillation term
cos(ω0 − ωl)(t − t1) can be omitted. Then, the distribution of
the written information is approximated as

p(ω) = A2

2π

2J (ω)

(ω − ω0)2
. (63)

This distribution is totally different from that in the weak
coupling case in the two following ways. First, it is no longer
normalized to unity. This is a natural result since the system’s
mean occupation number now depends on both the bath and its
own initial condition. Second, it is a widespread distribution
instead of a sharp one, which implies that the information
written by the environment becomes more complicated.
However, it should be emphasized that when the temperature
is low enough [fβ(ω) → 0], the second term in Eq. (10) will
be small compared to the first term. Thus, in this situation, one
may physically observe the nonthermal stabilization effect by
measuring the system’s mean occupation number [20].

VII. CONCLUSIONS AND DISCUSSIONS

We have studied the nonthermal stabilization phenomenon
by calculating the open system’s mean occupation number. The

criteria for this non-Markovian effect have been presented.
For a spectrum with one cutoff, the criteria correspond
to the quantitative threshold ηc. In the nonthermal region,
η ≥ ηc, the system’s initial information is not erased totally
when stabilized.

Actually, ηc explicitly provides an upper limit of the
region where the Markovian approximation is valid. Our
investigation has undoubtedly clarified the misunderstanding
that the Markovian approximation is valid only when the
coupling strength is small enough. Furthermore, it has been
found that the nonthermal phenomenon is closely related to the
structure of the system-bath interaction spectral density. In this
sense the nonthermal stabilization effect due to non-Markovian
process above the threshold ηc provides us with a new way to
understand the information lost in open systems.

Apparently, our approach is universal and can be applied to
the fermion case. For a fermionlike system, such as a two-level
atom coupling to a boson bath, our method is workable only
when the bath is at zero temperature. As all the results and
criteria are temperature independent, one might guess that our
result may be generalized to low-temperature cases. However,
this has not been proven yet and remains an open question.
It is also worth discussing the impact of the nonthermal
stabilization on the entanglement evolution [21–23].

Note added in proof. Recently, we became aware of another
work dealing with a similar topic of non-Markovian dynamics
[24]. Starting from the same models as ours, they focus on
another aspect of non-Markovian effects, i.e., the form of the
system’s steady state.
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