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Master equation and dispersive probing of a non-Markovian process
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For a bosonic (fermionic) open system in a bath with many bosonic (fermionic) modes, we derive the exact
non-Markovian master equation in which the memory effect of the bath is reflected in the time-dependent
decay rates. In this approach, the reduced density operator is constructed from the formal solution of the
corresponding Heisenberg equations. As an application of the exact master equation, we study the active probing
of the non-Markovianity of the quantum dissipation of a single bosonic mode of an electromagnetic field in
a cavity-QED system. The non-Markovianity of the bath of the cavity is explicitly reflected by the atomic
decoherence factor.
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I. INTRODUCTION

The open quantum system approach is of much significance
due to its various applications in physics, e.g., quantum
information, quantum transport, and quantum chemistry, etc.
Since a realistic quantum system is inevitably coupled to many
degrees of freedom in its environment, that leads to decoher-
ence of the systems, a general approach to the open quantum
system is needed for its dissipative and dephasing processes.
The dynamics of an open system is conventionally described
by three approaches: effective Hamiltonian [1–5], quantum
master equations [6,7], and quantum Langevin equations [8,9].
The last two approaches are both based on modeling with the
system plus bath, whereas, the first one is phenomenologically
given by a time-dependent or non-Hermitian Hamiltonian,
which could lead to the dissipative motion equations.

About 20 years ago, Yu and one (C.P.S.) of the authors
revealed an intrinsic relation between the effective Hamil-
tonian and the quantum Langevin equation, obtained from
the Heisenberg equations [3,4]. By discarding the quantum
fluctuation for the wide wave packet, they derived the effective
Hamiltonian of the system through the formally exact solution
for the time-dependent wave function of the total system.
However, the resulting effective Hamiltonian ignores the
memory effect, which is induced by the backaction of the bath
with a time delay. Therefore, if one wanted to recover the non-
Markovian phenomenon with a memory effect, the quantum
fluctuation of the bath must be taken into account in the above
Heisenberg-equation-based approach. To this end, we need to
start from the Heisenberg equations of the total system, which
can reflect the original role of the bath. In this paper, without
any approximation, we derive the exact non-Markovian master
equation of the system from the formal solution of the Heisen-
berg equations. The non-Markovian effect is contained in the
time-dependent decay rates in a straightforward way [10].

It is commonly believed that the Markov process happens
when the system-bath coupling is weak. However, with
the rapid development of experimental technology, the
strong-coupling limit can be reached. The theory of open
quantum systems in the strong-coupling regime is required
for a proper description of the non-Markovian dynamics.
Recently, many papers on the exact quantum master equations

have been published [10–18]. In particular, one (W.-M.Z.)
of the authors and his collaborators derived the exact
non-Markovian master equations with a Lindblad form for
both Bose [13,14] and Fermi [10,15] systems by a path-integral
method in a coherent-state representation. We now revisit
these non-Markovian master equations by generalizing our
previous approach [5], which was used to derive a partially
factorized wave function for open quantum systems. Using the
present generalization to derive the reduced density matrix is
quite straightforward. Here, we first construct the total density
matrix in the coherent-state representation with the help of
the formal solution of the Heisenberg equations, instead of
using the Feynman-Vernon influence functional, as performed
in Refs. [10,14,15]. Then, the reduced density matrix of the
system, which covers the detailed information for quantum
manipulation, is obtained by tracing over the degrees of
freedom of the bath. It reproduces the same reduced density
matrix that satisfies a time-local master equation where the
non-Markovian memory effect is fully taken into account.

With the help of the exact reduced density matrix, the
dynamics of an open quantum system could be well described.
Meanwhile, there are several proposals to measure the degree
of the non-Markovianity of the open quantum process [19,20].
Very recently, the general non-Markovian dynamics of the
environment on its surrounding open quantum system were
explored within the exact master equation [21]. The question
is how to probe the general non-Markovian dynamics. In this
paper, we, thereby, propose a promising approach to probe
the time-dependent memory effect of a bath on a damped
microcavity by coupling the cavity to a two-level atom
dispersively. To probe the non-Markovianity of the dissipation
of the single-mode electromagnetic (EM) field in a cavity, we
let atoms of large detuning pass through the cavity. We found
that the non-Markovianity of the bath is explicitly reflected by
the atomic decoherence factor. In the weak-coupling region,
the periodically reviving amplitude decreases along with the
cavity-bath-coupling strength and decays to zero. On the
contrary, in the strong-coupling region, the reviving amplitude
increases with the coupling strength and almost does not
decay in the ultra-strong-coupling case as a significant non-
Markovian effect [21]. This atomic decoherence factor could
be detected through the Ramsey interference in experiments.
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In the next section, we solve the Heisenberg equations of the
unified quantum system plus the bath model (Bose and Fermi)
and obtain their formal solutions. In Sec. III, the derivation of
the exact master equation of the Bose system is presented. The
exact master equation of the Fermi case is addressed in Sec. IV.
In Sec. V, we propose probing the non-Markovian dynamics
of a damped cavity with largely detuned two-level atoms.
Finally, the summary of our main results is given in Sec. VI.
Some detailed calculations are displayed in the Appendices.

II. THE UNIFIED QUANTUM BATH MODEL
AND THE FORMAL SOLUTION OF

THE HEISENBERG EQUATIONS

We consider an open quantum system S, which interacts
with another large system B called the bath. The combined
system S + B is usually assumed to be closed, thus, is regarded
as a universe. The coupling of S to B will lead to the
dissipation and dephasing of S. There are various types of
baths, but the most commonly employed baths are modeled
with noninteracting bosons and fermions. In this paper, we
consider the specific cases: A Bose system is surrounded by
a Bose bath, or a Fermi system is immersed in a Fermi bath.
Here, we solve the Heisenberg equations for both the Bose and
the Fermi cases and obtain their formally exact solutions.

The universe Hamiltonian H = Hs + Hb + Hint is decom-
posed into three parts: The Hamiltonian of the system is taken
to be a quadratic form

Hs = [
a
†
1,a

†
2, . . . ,a

†
Ns

]
M

[
a1,a2, . . . ,aNs

]T
, (1)

which describes Ns linearly coupled bosons or fermions. ai(a
†
i )

is the annihilation (creation) operator of the ith mode of the
system satisfying the commutation relation [ai,a

†
i ′ ]∓ = δii ′

(∓ corresponds to the boson and fermion, respectively), and
M is a positive-definite Hermitian matrix. The Hamiltonian of
the Bose or Fermi bath is given by

Hb =
Nb∑
l=1

ωlb
†
l bl, (2)

with the number of the uncoupled modes of the bath
Nb (�Ns) and annihilation (creation) operators bl (b†l ), which
satisfy corresponding commutation relations [bl,b

†
l′ ]∓ = δll′ .

As proven in Ref. [6], the most usual environment coupled to
the open system could be well approximated as a collection
of harmonic oscillators with linear quadratic couplings. Here,
the interaction Hamiltonian is taken as the form of

Hint =
Ns∑
i=1

Nb∑
l=1

(ηila
†
i bl + η∗

ilb
†
l ai). (3)

In the Heisenberg picture, the dynamics of the system is
governed by the Heisenberg equations,

ȧi(t) = −i
∑

j

Mijaj (t) − i
∑

l

ηilbl(t), (4)

ḃl(t) = −iωlbl(t) − i
∑

i

η∗
liai(t). (5)

For convenience, we introduce the (Ns + Nb)-operator-valued
vector,

�c(t) = [�a,�b]T

= [
a1(t),a2(t), . . . ,aNs

(t),b1(t),b2(t), . . . ,bNb
(t)

]T
,

and the (Ns + Nb) × (Ns + Nb) coefficient matrix,

H =
[

M R

R† E

]
, (6)

where

R =

⎡
⎢⎢⎣

η11 η12 · · · η1Nb

η21 η22 · · · η2Nb

...
...

...
...

ηNs1 ηNs2 · · · ηNsNb

⎤
⎥⎥⎦,

and

E = diag
[
ω1,ω2, . . . ,ωNb

]
.

Then, Eqs. (4) and (5) are reexpressed in a compact form

d

dt
�c(t) = −iH�c(t). (7)

It follows from Eq. (6) that H is a time-independent Hermitian
matrix. Consequently, the formal solution of Eq. (7) is given
by

�c(t) = exp[−iHt]�c(0) ≡ U(t)�c(0),

whereU(t) = exp[−iHt] is the time-evolution operator. Split-
ting the matrix U(t) into four blocks,

U(t) ≡
[

[W (t)]Ns×Ns
[T (t)]Ns×Nb

[P (t)]Nb×Ns
[Q(t)]Nb×Nb

]
, (8)

we obtain the formal solution of Eq. (7) as

�a(t) = W (t)�a(0) + T (t)�b(0), (9)

�b(t) = P (t)�a(0) + Q(t)�b(0). (10)

The dynamics of the total system is governed by these
four time-dependent coefficient matrices W (t), T (t), Q(t),
and P (t).

Until now, all the results were obtained by formal operations
since these coefficient matrices need to be determined by the
differential equations. As shown in Appendix B, there are some
connections between these coefficient matrices, which play a
crucial role in the derivation of the exact master equation. We
should also point out that, even though the total Hamiltonian
(the system plus the bath) is a quadratic form of annihilation
and creation operators, it should not be simply considered as a
solvable model since the bath contains a continuous spectrum.
Practically, a bilinear system with a continuous number of
degrees of freedom is difficult to be solved explicitly.

A. Differential equations of the coefficient matrices

Substituting Eqs. (9) and (10) into Eqs. (4)
and (5), we obtain the equations of the coefficient
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matrices,

Ẇ (t) = −i[MW (t) + RP (t)], (11)

Ṫ (t) = −i[MT (t) + RQ(t)], (12)

Ṗ (t) = −i[EP (t) + R†W (t)], (13)

Q̇(t) = −i[EQ(t) + R†T (t)], (14)

with the initial conditions,

W (0) = I, T (0) = 0, P (0) = 0, Q(0) = I. (15)

Here, I is the identity matrix, and 0 is the null matrix.
The differential equations of P (t) and Q(t) are integrated to
yield

P (t) = −i

∫ t

0
dτ e−iE(t−τ )R†W (τ )dτ, (16)

Q(t) = e−iEt

[
−i

∫ t

0
dτ eiEτR†T (τ ) + I

]
. (17)

Then, we obtain the integrodifferential equations about W (t)
and T (t),

Ẇ (t) + iMW (t) +
∫ t

0
dτ G(t − τ )W (τ ) = 0, (18)

Ṫ (t) + iMT (t) +
∫ t

0
dτG (t − τ ) T (τ ) = −iRe−iEt . (19)

Here, the (Ns × Ns) kernel matrix G(t) = Re−iEtR† charac-
terizes the non-Markovian memory structure of S. Defining
the interaction spectral function,

Jij (ω) =
∑

l

ηilη
∗
lj δ(ω − ωl),

we rewrite the element of the kernel matrix G(t) as

Gij (t) =
∫

dω Jij (ω)e−iωt .

Thus, the matrix G(t) is fully determined by the interaction
spectrum.

On the other hand, the coefficient matrices W (t) and T (t)
are not independent. By taking the Laplace transform of the
integral differential equations (18) and (19), we get

W [p] = L (W ) = [p + iM + G (p)]−1 , (20)

T [p] = W [p]L
(−iRe−iEt

)
, (21)

where L(· · · ) represents the Laplace transform. Consequently,
after the inverse Laplace transform, the matrix T (t) is given
by

T (t) = −i

∫ t

0
dτW (t − τ ) Re−iEτ . (22)

Thus, the dynamics of S could be completely described
by a single coefficient matrix W (t). It is well known that,
under the Wigner-Weisskopff approximation, one can obtain
the quantum Langevin equations of the operators of S by means
of the approximate solution of Eqs. (18) and (19) together with
the Heisenberg equations (4) and (5) [9]. In this paper, it will

be shown that the exact master equation of the reduced density
matrix can also be obtained based on the formal solutions
(9) and (10) of the Heisenberg equations. And the Wigner-
Weisskopff approximation leads to the quantum Born-Markov
master equation.

III. THE BOSON CASE IN THE COHERENT-STATE
REPRESENTATION

The formally exact solution based on the Heisenberg equa-
tions of motion provides all conceivable information but not for
any of the detailed information on the quantum states, which
is the central part for quantum-information manipulation. The
detailed information on quantum states for an open system
is depicted by the reduced density matrix, whose dynamics
equation of motion is governed by the master equation. In this
section, we derive the exact master equation for Ns-coupled
bosons in a Bose bath. In the Schrödinger picture, the total
density matrix ρ(t) = U (t)ρ(0)U †(t) of S + B obeys the
Liouville–von Neumann equation ih̄ρ̇(t) = [H,ρ(t)], where
U (t) = exp(−iH t) is the time-evolution operator of the total
system. We assume that the total system is initially in the
direct product initial state ρ(0) = ρs(0) ⊗ ρb(0), with density
matrices ρs(0) and ρb(0) of S and B, respectively. Through a
lengthy calculation in Appendix C, the reduced density matrix
of S is expressed in terms of the coherent state |�x〉 of the
system,

ρs(t) =
∫

dμ(�α,�α′)dμ(�ξ,�ξ ′)|�α〉〈�α′|

×K(�α†,�α′,�ξ,�ξ ′†,t)〈�ξ |ρs(0)|�ξ ′〉, (23)

with �x = [x1,x2, . . . ,xNs
]T (�x = �α,�α′,�ξ,�ξ ′). The propagator,

which governs the dynamics of the reduced density matrix, is
defined as

K(�α†,�α′,�ξ,�ξ ′†; t) =
∫

dμ(�z)〈�α,�z|U (t)|�ξ〉

×〈�ξ ′|ρb(0)U †(t)|�α′,�z〉. (24)

Here, |�z〉 (�z = [z1,z2, . . . ,zNb
]) is the coherent state of B.

Different from the previous derivation [10,14,15] where the
propagating function is obtained using the coherent-state path-
integral method and tracing over the environmental degrees of
freedom completely through the Feynman-Vernon influence
functional, the propagator could also be evaluated in the
coherent-state representation by constructing the explicit total
wave function [5],

U †(t)|�α′,�z〉 = exp[�a†(t) · �α′ + �b†(t) · �z]|0〉, (25)

as shown in Appendix C. It deserves to be noted that we have
used the identities U †(t)|0〉 = |0〉 and O(t) = U †(t)OU (t).

A. Propagating function

Generally speaking, the bath is initially in its thermal
equilibrium state,

ρb(0) =
(∏

l

1

fl + 1

)
exp[−β �b†E�b], (26)
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where fl = 1/[exp(βωl) − 1] is the mean-occupation number
of the lth bath mode at temperature T = 1/(kBβ). In this case,
the integral over the bath in the propagator (24) is carried out
to give (please refer to Appendix C for the details)

K(�α†,�α′,�ξ,�ξ ′†,t)

= A(t) exp[�α†J1(t)�ξ + �ξ ′†J †
1 (t)�α′ + �α†J2(t)�α′ + �ξ ′†J3�ξ ],

(27)

where

A(t) = det{[I + V (t)]−1},
J1(t) = [I + V (t)]−1W (t),

J2(t) = V [I + V (t)]−1,

J3(t) = I − W †(t)[I + V (t)]−1W (t).

This reproduces the propagating function obtained by the
coherent-state path-integral method in the previous papers,
e.g., Eq. (31) in Ref. [14]. For convenience, we have intro-
duced a new Ns × Ns Hermitian matrix V (t) = T (t)f T †(t).
Utilizing the relationship in Eq. (22) between matrices T (t)
and W (t), we have

V (t) =
∫ t

0
dτ1

∫ t

0
dτ2W (τ1)G̃(τ2 − τ1)W †(τ2), (28)

with

G̃(t) = Rf e−iEtR†. (29)

Without any additional hypotheses, the exact propagating
function of the reduced density matrix of S is obtained.
The dynamics of S is governed by the single coefficient
matrix W (t), which is determined by the integral differential
equation (18). And the influence of the bath on the dynamics
of S is characterized by two memory-kernel matrices G(t) and
G̃(t) [10,14,15].

B. The exact non-Markovian master equation for bosons

In the preceding subsection, we have obtained the exact
reduced density matrix of S as in Eq. (23). Now, we construct
the master equation through its time derivative,

ρ̇s =
∫

dμ(�α,�α′)dμ(�ξ,�ξ ′)|�α〉〈�α′|

×K̇(�α†,�α′,�ξ,�ξ ′†; t)〈�ξ |ρs(0)|�ξ ′〉. (30)

And it is found that the time differential of the propagating
function takes the following form (please refer to Appendix D
for the details):

K̇ = �α†
̃K �α′ − Tr[
̃]K − �α†(
 + i�̃ + 
̃) �∇α∗K

− ( �∇T
α′K

)
(
 − i�̃ + 
̃)�α′ + �∇T

α′(
̃ + 2
) �∇α∗K, (31)

with Hermitian matrices,


̃(t) = V̇ (t) − Ẇ (t)W−1(t)V (t) − V [Ẇ (t)W−1(t)]†, (32)


(t) = − 1
2 {Ẇ (t)W−1(t) + [Ẇ (t)W−1(t)]†}, (33)

and

�̃(t) = i

2
{Ẇ (t)W−1(t) − [Ẇ (t)W−1(t)]†}. (34)

For the coherent state defined in Eq. (A1), there exist the
following relations [22]:

�αt |�α〉 = �a|�α〉, �α†〈�α| = 〈�α|�a†,

�∇T
α′ |α〉 = �a†|�α〉, �∇α∗ 〈�α| = 〈�α|�a.

With these mappings, we can construct the exact master
equation of the reduced density matrix of the Bose system
S, i.e., Eq. (32) in Ref. [14],

ρ̇s(t) = −i[H̃s(t),ρs(t)] +
∑
ij

[
̃ij (t) + 2
ij (t)]

×
[
ajρs(t)a

†
i − 1

2
a
†
i ajρs(t) − 1

2
ρsa

†
i aj

]

+
∑
ij


̃ij (t)

[
a
†
i ρs(t)aj − 1

2
aja

†
i ρs(t) − 1

2
ρs(t)aja

†
i

]
,

(35)

where H̃s = �a†�̃�a is the effective time-dependent Hamiltonian
of the system S. The diagonal elements of �̃(t) are the
modified time-dependent frequencies of the different modes of
S, and the off-diagonals represent the new interaction strength
between the modes of the system. Without Markov approx-
imation, the dissipation of the system and the fluctuation of
the bath could not be separated. The original role of the bath
is reflected by the time-dependent decay coefficients 
(t) and

̃(t) [14].

C. From the Wigner-Weisskopff approximation
to the Markov master equation

In this subsection, it will be shown that the Markov
master equation can be obtained from the exact master
equation by taking the Wiger-Weisskopff approximation [9],
instead of performing a direct Markov approximation [16].
Here, the exact master equation is applied to the simplest
dissipative system consisting of a single harmonic oscillator
with frequency �0 and a Bose environment. In this case,
�̃, 
(t), and 
̃(t) are just time-dependent numbers instead of
matrices, which are all determined by W (t) in Eqs. (32)–(34).
Under the Wigner-Weisskopff approximation, the solution of
Eq. (18) is given by

W (t) = exp[−
0t − i(�0 + �ω)t], (36)

where


0 = πJ (�0) (37)

is the decay rate of the oscillator induced by the coupling to
the vacuum and

�ω = −P
∫

J (�0)

ω − �0
dω (38)

is the small frequency shift with the interaction spectrum J (ω).
It is easy to find that, in this case, the parameters of the master
equation become time independent,

�̃ = �0 + �ω, 
 = 
0, 
̃ = 2f (�0)γ0, (39)

where f (�0) is the mean-occupation number of the oscillator.
As we know, 
 characterizes the dissipation of the system, and

̃ corresponds to the fluctuation in the bath.
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Then, the Born-Markov master equation of a damped
harmonic resonator is obtained as

ρ̇s(t) = −i[�̃a†a,ρs(t)] + [1 + f (�0)]
0{2aρs(t)a
†

− [a†aρs(t) + ρs(t)a
†a]} + f (�0)
0{2a†ρs(t)a

− [aa†ρs(t) − ρs(t)aa†]}. (40)

It is known that, for a damped harmonic oscillator, the quantum
Langevin equation of the number operator obtained from
the Markov approximation is the same as the one from the
Wigner-Weisskopff approximation [9]. In this sense, these two
approximations are equivalent.

IV. THE FERMI CASE IN THE COHERENT-STATE
REPRESENTATION

In the previous section, we obtained the exact master
equation of the Bose system. Analogously, in the case of
the Fermi system, the reduced density matrix in the fermion
coherent-state representation [23,24] reads

ρs(t) =
∫

dμ(�α,�α′)dμ(�ξ,�ξ ′)|�α〉〈�α′|

×K(�α†,�α′,�ξ,�ξ ′†,t)〈�ξ |ρs(0)|�ξ ′〉, (41)

where the components of vectors �α, �α′, �ξ , and �ξ ′ are Grass-
mann variables and ρs(0) is the initial state of S. And the initial
state of the bath is still assumed to be the thermal state,

ρb(0) =
∏

l

(1 − fl) exp[−β �b†E�b]. (42)

where fk = 1/[exp(βωl) + 1] is the mean-occupation number
of the lth Fermi mode with β = 1/(kBT ). After tracing over
the degrees of freedom of the bath, we find that the propagator
is of the same form as the Bose case [10],

K = A exp[�α†J1�ξ + �ξ ′J †
1 �α′ + �αJ2 �α′ + �ξ ′†J3�ξ ],

but the matrices in K change into

A(t) = det{[I − V (t)]−1},
J1(t) = [I − V (t)]−1W (t),

J2(t) = [I − V (t)]−1 − I,

J3(t) = W †(t)[I − V (t)]−1W (t) − I.

After the same procedure as the Bose system, the exact
master equation of the Fermi system is obtained as the same
one given by Eq. (8) in Ref. [15],

ρ̇s(t) = −i[H̃s(t),ρs(t)] +
∑
ij

[2
ij (t) − 
̃ij (t)]

×
[
ajρs(t)a

†
i − 1

2
a
†
i ajρs(t) − 1

2
ρs(t)a

†
i aj

]

+
∑
ij


̃ij (t)

[
a
†
i ρs(t)aj − 1

2
aja

†
i ρs(t) − 1

2
ρs(t)aja

†
i

]
,

(43)

where H̃s(t), 
(t), and 
̃(t) are defined in the same way as the
bosons’ [10,15].

V. PROBING THE NON-MARKOVIANITY
OF AN OPEN QUANTUM SYSTEM

In this section, we consider how to probe the non-
Markovianity of a quantum dissipation process in a realistic
physical system. We understand that such an ideal probing
scheme is usually based on the nondemolition measurement
[25]. The interaction between the probing apparatus and the
system to be detected commutes with the free Hamiltonian
of the system, thus, such a measurement does not change
the energy of the system. But it will retain the information
of the system on the probing apparatus. Such nondemolition
interaction can be implemented in the cavity QED as the
dispersive interaction between the atom and the cavity [26,27].
On the other hand, it is feasible to prepare and to analyze
a two-level Rydberg atom in a state corresponding to an
arbitrary point on the Bloch sphere in the quantum optics
experiments.

To realize the probing non-Markovianity in the cavity-QED
system, we consider an open quantum system: a single-cavity
mode coupled to its bath of many bosonic excitation modes
resulting from the cavity leakage. Let an atom pass through the
cavity, and then, examine the quantum coherence of the atom
(see Fig. 1). In this case, the atom could record the intrinsic
information of the cavity field to accomplish the probing
of the non-Markovianity of the cavity dynamics. This kind of
approach was also used to probe the quantum criticality of
the many-body system [28] where the sensitive change in
the atom decoherence factor, which was characterized by the
Loschmidt echo [29], could reflect the quantum criticality of
its surrounding environment.

In our case, the frequency of atom ωa is drastically detuned
from the cavity resonance frequency ω0, i.e., � = ω0 − ωa �
ga−f , where ga−f is the vacuum Rabi frequency characterizing
the atom-cavity coupling. By making use of an adiabatic
elimination procedure, we obtain the effective Hamiltonian,

Hp = h̄ω0a
†a + h̄ωaσz + h̄ δa†aσz (44)

FIG. 1. (Color online) Schematic for probing the non-Markovian
dynamics of an open quantum system: a leaking cavity. The two-level
atom passing through the cavity is largely detuned from the frequency
of the cavity mode to approach the nondemolition measurement.
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for our probing scheme from the usual Jaynes-Cummings
model [30]. Here, a(a†) is the annihilation (creation) operator
of the cavity, σz = |e〉〈e| − |g〉〈g| is the Pauli matrix of the
atom with the ground (excited) state of atom |g〉(|e〉), and δ =
g2

a−f /� is the effective dispersive coupling constant [31,32].
Meanwhile, the cavity is coupled to a bosonic bath,

Hb + Hint =
∑

l

h̄ωlb
†
l bl + h̄

∑
l

(ηla
†bl + H.c.).

Here, the atom has enough long coherence time, and we neglect
the decay of the atom during the strong probing process.

Before entering the cavity, the atom is initialized in the
superposition state (|e〉 + |g〉)/√2, and the cavity is initially
in the coherent state |α〉. For simplicity, we assume that the
bath is at zero temperature with initial density matrix ρb(0) =
|0〉〈0|, where |0〉 is the vacuum state of the bath. It is well
known that the bath of the cavity decreases the coherence of
the atom by disturbing the phase of the cavity field, but it
does not change the population of the atom as the result of
the dispersive atom-cavity coupling. However, we can detect
this decoherence effect by observing the Ramsey interference
fringes of the outcoming atom. The exact density matrix of
the atom and field is obtained by tracing over the degrees of
freedom of the bath,

ρa−f = Trb{e−iH t [|ψ(0)〉〈ψ(0)|] ⊗ ρb(0)eiHt }, (45)

where H = Hp + Hb + Hint and |ψ(0)〉 = (|e〉 + |g〉) ⊗
|α〉/2. In order to describe the decoherence process of the
atom, we introduce the decoherence factor [33],

D(t) = 1
2e−|α|2 Trf [〈g|ρa−f |e〉], (46)

where we have added a normalization factor exp(−|α|2).
If there were no bath present, the decoherence factor would

read

D0(t) = 1
2 exp[|α|2(e−2i δt − 1)], (47)

which is similar to the result in Ref. [32]. Thus, the norm
of the decoherence factor will decline to a very small value
for |α|2 � 1 at the beginning and will revive at δt = nπ

(n = 1,2,3, . . .) as depicted by the gray solid lines in Fig. 2.
Since the cavity evolves along the two-pronged path in the
Hilbert space corresponding to different atomic states, the two
paths cross periodically.

When the environment of the cavity is taken into account,
we obtain the decoherence factor from Eq. (46),

D(t) = 1
2 exp{[W ∗

σ (t)Wσ ′(t) + J3,σσ ′ (t) − 1]|α|2}, (48)

where Wσ is determined by Eq. (18) with M = ω0 ± δ

(± corresponding to |e〉 and |g〉 states, respectively), and

J3,σσ ′ =
∫ t

0
dτ

∫ t

0
dτ ′W ∗

σ ′(τ )Wσ (τ ′)
∫ ∞

0
dω J (ω)e−iω(τ−τ ′).

Here, we choose the Ohmic spectral density with cutoff
frequency �c,

J (ω) = λω exp

(
− ω

�c

)
,

where λ is a dimensionless constant characterizing the cavity-
bath-coupling strength.
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FIG. 2. (Color online) Decoherence factor for different cavity-
bath coupling strengths with or without the Markov approximation.
(a) λ = 0.002. (b) λ = 0.01. (c) λ = 0.1.
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Next, we numerically calculate the norm of the deco-
herence factor with or without the Markov approximation
with parameters: ω0 = 1, δ = 0.1, |α|2 = 5, and �c = 10.
It is found that, when the cavity-bath coupling is small
(λ = 0.002), the decoherence factors with or without the
Markov approximation are nearly the same as in Fig. 2(a),
but they diverge from each other when the coupling strength
becomes large (λ = 0.01) as in Fig. 2(b). And the Markov
approximation loses its validity in the strong-coupling regime
(λ = 0.1). From the insets of Figs. 2(a)–2(c), we find that
the Markov approximation also becomes invalid for a short-
time dynamics (the norm of the decoherence factor under the
Markov approximation exceeds 0.5).

When the cavity-bath coupling is weak, the decoherence
factor without the Markov approximation still revives at δt =
nπ (n = 1,2,3, . . .), but the recovering amplitude decreases
along with the cavity-bath coupling λ and decays to zero
[Fig. 3(a)] due to the dephasing of the cavity field induced
by the bath. On the contrary, if the cavity-bath coupling
becomes strong enough, the reviving magnitude increases
with the coupling strength λ [Fig. 3(b)]. Especially, when
the coupling strength becomes ultrastrong (λ > 0.1), the
recovering amplitude almost does not decay, just like the
fact that the bath does not exist. This is because, when
λ > ω0/�c = 0.1 (for the Ohmic bath), the cavity stays in
the system-bath coupling-induced dissipationless localized

0 1 2 3
0

0.25

0.5

δt/π

δt/π

|D (t)|

(a)

 

 

λ=0

λ=0.0005

λ=0.002

λ=0.01

0 1 2 3
0

0.25

0.5

|D (t)|

(b)
 

λ=0

λ=0.09

λ=0.1

λ=0.11

λ=0.2

λ=0.8

FIG. 3. (Color online) Norm of the decoherence factor without
the Markov approximation. (a) If the cavity-bath-coupling strength is
weak, the recovering amplitude of the decoherence factor decreases
along with λ. (b) When the cavity-bath-coupling strength is large
enough, the recovering amplitude of the decoherence factor increases
along with λ, but its recovering period is changed by the bath.

mode [21]. As a result, the recovering amplitude almost does
not decay, but the recovering period is shifted.

Finally, we can utilize the Ramsey interference to detect
the decoherence factor. After interacting with the cavity, the
atom undergoes an additional resonant microwave π/2 pulse
performing the following transformation:

|e〉 → 1√
2

(|e〉 + |g〉), |g〉 → 1√
2

(−|e〉 + |g〉).

And it is found that (please refer to Appendix E for the detailed
calculation),

Re[D(t)] = 1
2 [�g(t) − �e(t)], (49)

where

�σ = e−|α|2 Trf {〈σ |e−iθσy/2ρa−f eiθσy/2|σ 〉} (50)

is the population of the atoms in the rotated state
exp(iθσy/2)|σ 〉 (σ = g,e) with rotation angle θ = π/2 cor-
responding to the final π/2 pulse. Thus, we can measure
the real part of the decoherence factor through detecting the
population difference of the outcoming atom. As shown in
Fig. 4, the real part of the decoherence factor can also reflect
the non-Markovianity of the bath.

0 1 2 3

−0.1

0.1

0.3

0.5

δt/π

δt/π

Re[D]

Re[D]

(a)
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0 1 2 3
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0.5
(b)

 

 

λ=0

λ=0.09
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FIG. 4. (Color online) Ramsey interference is used to detect
the decoherence factor. (a) The real part of the decoherence factor
in the weak-coupling region without the Markov approximation.
(b) The real part of the decoherence factor in the strong-coupling
region without the Markov approximation.
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VI. SUMMARY

By constructing the reduced density matrix from the formal
solution of the Heisenberg equations, we revisited the exact
non-Markovian master equations for open quantum systems of
the Bose or Fermi type. The non-Markovianity can be reflected
by the time-dependent decay coefficients, such as 
(t) and 
̃(t)
with historical memory. To probe the non-Markovianity of the
dissipation of the single-mode EM field in a cavity, we let
large detuning atoms pass through the cavity. It displayed that
the non-Markovianity of the bath was explicitly reflected by
the atomic decoherence factor. In the weak-coupling regime,
the periodically reviving amplitude decreases along with the
cavity-bath-coupling strength λ and decays to zero. However,
in the strong-coupling regime, the reviving amplitude increases
with λ and almost does not decay in the ultra-strong-coupling
case. But the recovering period is shifted by the bath. We
expect our results to be verified by experiments.
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APPENDIX A: BOSON AND FERMION
COHERENT STATES

1. Boson coherent state

For an arbitrary complex number α = r exp(iϕ), the
coherent state of a Bose mode with frequency ω0 could be
defined as

|α〉 ≡ eαa† |0〉 =
∞∑

n=0

αn

√
n!

|n〉, (A1)

where a† is the creation operator of the boson and |n〉 is the
nth Fock state. It is found that the coherent state defined in
Eq. (A1) is not normalized, and different coherent states are
generally not orthogonal,

〈α|α′〉 = 〈0|eα∗aeα′a† |0〉 = exp(α∗α′). (A2)

All the coherent states form an overcomplete set,∫
dμ(α)|α〉〈α| = 1, (A3)

with the measures,

dμ(α) ≡ e−|α|2 d2α

π
= e−|α|2 r

π
dr dϕ. (A4)

And the density matrix of the thermal equilibrium state in this
coherent-state representation reads

ρT = 1

1 + f (ω0)
exp(−βω0a

†a) (A5)

=
∫

dμ(α)
1

f (ω0)
exp

[
− |α|2

f (ω0)

]
|α〉〈a|, (A6)

where f (ω0) = 1/[exp(βω0) − 1] is the mean-occupation
number with temperature T = 1/(kBβ).

2. Fermion coherent state

The fermion coherent state is defined in a similar form as
bosons,

|α〉 ≡ e−αa† |0〉. (A7)

The only difference lies in the fact that α is a generator of
a Grassmann algebra instead of an ordinary complex number
and a† is the creation operator for Fermi particles and they
satisfy the anticommutation relations,

{α,α′} = {α,a} = {α,a†} = 0. (A8)

The overlap of two fermion coherent states is

〈α|α′〉 = exp(α∗α′), (A9)

and the completeness relation reads∫
dμ (α) |α〉 〈α| = 1, (A10)

with

dμ(α) = dα∗dα e−α∗α. (A11)

APPENDIX B: CONSTRAINTS OF BLOCKS OF U (t)

Due to the Hermiticity of matrix H, the time-evolution
operator U(t) in Liouville space is a unitary matrix, i.e.,[

W (t) T (t)
P (t) Q(t)

][
W †(t) P †(t)
T †(t) Q†(t)

]
= I, (B1)

which leads to

WW † + T T † = I, (B2)

PP † + QQ† = I, (B3)

WP † + T Q† = 0, (B4)

PW † + QT † = 0. (B5)

Except for some special time t , the matrices W (t) and Q(t)
are reversible. Then, we have

P = −QT †(W †)−1, (B6)

P † = −W−1T Q†. (B7)

APPENDIX C: CALCULATION OF THE
PROPAGATING FUNCTION

The reduced density matrix ρs(t) of the system is obtained
by tracing over the degrees of freedom of B in ρ(t),

ρs(t) =
∫

dμ(�z)〈�z|ρ(t)|�z〉 (C1)

≡
∫

dμ(�α,�α′)ρs(�α,�α′; t)|�α〉〈�α′|, (C2)

where |�α〉(|�α′〉) and |�z〉 are coherent states of S and B,
respectively. The element of the reduced density matrix is
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explicitly given by

ρs(�α,�α′; t) =
∫

dμ(�z)〈�α,�z|ρ(t)|�α′,�z〉 (C3)

=
∫

dμ(�z)dμ(�ξ,�z′,�ξ ′,�z′′)〈�α,�z|U (t)|�ξ,�z′〉

×〈�ξ,�z′|ρs(0)ρb(0)|�ξ ′,�z′′〉〈�ξ ′,�z′′|U †|�α′,�z〉 (C4)

≡
∫

dμ(�ξ,�ξ ′)K(�α†,�α′,�ξ,�ξ ′†,t)〈�ξ |ρs(0)|�ξ ′〉, (C5)

with

K =
∫

dμ(�z)〈�α,�z|U (t)|�ξ〉〈�ξ ′|ρb(0)U †(t)|�α′,�z〉. (C6)

Here, we have used the fact that the initial state of the total
system is of the direct product form and the completeness of
the coherent states {|�z′〉} and {|�z′′〉} of the bath.

With the help of Eqs. (9), (10), and (24)–(26), the propagator
is reexpressed in terms of the coefficient matrices,

K(�α†,�α′,�ξ,�ξ ′†; t)

=
∫

dμ(�z)〈W †�α + P †�z|�ξ〉〈�ξ ′|W †�α′ + P †�z〉
(∏

l

1

fl + 1

)

×〈T †�α + !Q†�z| exp[−�b†βE�b]|T †�α′ + Q†�z〉. (C7)

Using formulas 〈α| exp(δb†b)|α′〉 = exp[α∗α′ exp(δ)] and∫
dμ(�z)e�z†D�z+�u†·�z+�z†·�v = exp[�u†(I − D)−1�v]

det[I − D]
(C8)

[for any Ns × Ns Hermitian matrix, D makes (I − D) positive
definite], one goes to

K(�α†,�α′,�ξ,�ξ ′†,t)

= A(t) exp[�α†J1(t)�ξ + �ξ ′†J †
1 (t)�α′ + �α†J2(t)�α′ + �ξ ′†J3�ξ ],

(C9)

where

A =
(∏

l

1

fl + 1

)
det[I − Qf (I + f )−1Q†]−1, (C10)

J1 = W + Tf (I + f )−1Q†[I − Qf (I + f )−1Q†]−1P,

(C11)

J2 = Tf (I + f )−1T † + Tf (I + f )−1Q†

×[I − Qf (I + f )−1Q†]−1Qf (I + f )−1T †, (C12)

J3 = P †[I − Qf (I + f )−1Q†]−1P, (C13)

and we have introduced a diagonal matrix f =
diag[f1,f2, . . . ,fNb

].
Then, we will deal with these four terms one by one. First,

we perform some pretreatment to obtain an expanding series.
From Eqs. (B3), (B6), and (B7), one finds

I − Qf (I + f )−1Q† = Q[T †(WW †)−1T + (I + f )−1]Q†.

(C14)

So that

[I − Qf (I + f )−1Q†]−1

= (Q†)−1(I + f )
∞∑

n=0

(−1)n[T †(WW †)−1T (I + f )]nQ−1.

(C15)

1. J1(t), J2(t), and J3(t)

According to Eqs. (B6), (C11), and (C15), J1(t) is explicitly
expanded to

J1 = W − Tf

∞∑
n=0

(−1)n[T †(WW †)−1T (I + f )]nT †(W †)−1

= W − Tf T †
∞∑

n=0

(−1)n[(WW †)−1T (I + f )T †]n(W †)−1

= W − V [1 + (WW †)−1T (I + f )T †]−1(W †)−1

= W − V [WW † + T (I + f )T †]−1W (C16)

= (1 + V )−1W. (C17)

The third step we have introduced is a new Ns × Ns matrix
V (t) = T (t)f T †(t). Similarly, one obtains

J3 = I − W †(1 + V )−1W. (C18)

The calculation of J2 is a little more complicated

J2 = T

{
I + f

∞∑
n=0

(−1)n[T †(WW †)−1T (I + f )]n
}

×f (I + f )−1T † (C19)

= V + Tf

( ∞∑
n=1

(−1)n[T †(WW †)−1T (I + f )]n−1

)

×T †(WW †)−1Tf T † (C20)

= V + Tf

( ∞∑
n=1

(−1)n[T †(WW †)−1T (I + f )]n−1

)

×T †(WW †)−1T (I + f − I )T † (C21)

= V

{
I +

∞∑
n=1

(−1)n[(WW †)−1T (I + f )T †]n
}

+V

∞∑
n=0

(−1)n[(WW †)−1T (I + f )T †]n(WW †)−1T T †

(C22)

= V [WW † + T (I + f )T †]−1(WW † + T T †) (C23)

= V (I + V )−1. (C24)

2. A(t)

Matrix A(t) is determined by the normalization condition,

1 = Tr[ρs(t)] (C25)

=
∫

dμ(�α)dμ(�ξ,�ξ ′)K(�α,�α,�ξ,�ξ ′,t)〈�ξ |ρs(0)|�ξ ′〉 (C26)

012110-9



YANG, CAI, XU, ZHANG, AND SUN PHYSICAL REVIEW A 87, 012110 (2013)

= A det[I + V ]
∫

dμ(�ξ,�ξ ′)〈�ξ |ρs(0)|�ξ ′〉 exp(�ξ ′† · �ξ )

(C27)

= A det[I + V ]
∫

dμ(�ξ )〈�ξ |ρs(0)|�ξ〉. (C28)

In the second step, we carried out the integral over �α of Eq. (27)
and used the identity,

J3(t) + J
†
1 (I + V )J1(t) = I. (C29)

And, in the last step, the following formula is used:∫
dμ(α′)(α′)neα′∗α = αn. (C30)

Since the initial density matrix is also normalized, thus,

A(t) = det[(I + V )−1].

APPENDIX D: TIME DIFFERENTIAL
OF THE PROPAGATING FUNCTION

The time differential of the propagating function is given
by

K̇ =
[
Ȧ

A
+ �α†J̇1�ξ + �ξ ′†J̇ †

1 �α′ + �α†J̇2 �α′ + �ξ ′†J̇3�ξ
]

K. (D1)

We define the differential operators,

�∇α∗ ≡
[

∂

∂α∗
1

,
∂

∂α∗
2

, . . . ,
∂

∂α∗
Ns

]T

, (D2)

and

�∇T
α′ ≡

[
∂

∂α1
,

∂

∂α2
, . . . ,

∂

∂αNs

]
. (D3)

We are ready to find that

�ξK = J−1
1 ( �∇α∗ − J2 �α′)K, (D4)

�ξ ′†K = ( �∇T
α′ − �α†J2

)
(J †

1 )−1K, (D5)

�ξ ′†K�ξ = ( �∇T
α′ − �α†J2

)
(J †

1 )−1J−1
1 ( �∇α∗ − J2 �α′)K. (D6)

These relations lead to

K̇ = �α†[J̇2 − J̇1J
−1
1 J2 − J2(J †

1 )−1J̇
†
1 + J2(J †

1 )−1J̇3J
−1
1 J2

]
K �α′

+
{

Ȧ

A
− Tr

[
(J †

1 )−1J̇3J
−1
1 J2

]}
K

+ �α†[J̇1J
−1
1 − J2(J †

1 )−1J̇3J
−1
1

] �∇α∗K

+ ( �∇T
α′K

)[
(J †

1 )−1J̇
†
1 − (J †

1 )−1J̇3J
−1
1 J2

]�α′

+ �∇T
α′ (J

†
1 )−1J̇3J

−1
1

�∇α∗K (D7)

≡ �α†
̃K �α′ − Tr[
̃]K − �α†(
 + i�̃ + 
̃) �∇α∗K

− ( �∇T
α′K

)
(
 − i�̃ + 
̃)�α′ + �∇T

α′ (
̃ + 2
) �∇α∗K, (D8)

with Hermitian matrices,


̃ = V̇ − ẆW−1V − V (ẆW−1)†, (D9)


 = − 1
2 [ẆW−1 + (ẆW−1)†], (D10)

and

�̃ = i

2
[ẆW−1 − (ẆW−1)†]. (D11)

In the last step, the following relations have been used:

J̇1J
−1
1 =

[
d

dt
(I + V )−1

]
(I + V )

+ (I + V )−1(ẆW−1)(I + V ) (D12)

= −[(I + V )−1V̇ (I + V )−1](I + V )

+ (I + V )−1(ẆW−1)(I + V ) (D13)

= −(I + V )−1[V̇ − (ẆW−1)(I + V )], (D14)

(J †
1 )−1J̇3J

−1
1 = −(I + V )(ẆW−1)† − ẆW−1(I + V ) + V̇ ,

(D15)

and

Ȧ

A
− Tr

[
(J †

1 )−1J̇3J
−1
1 J2

]
= d

dt
ln A + Tr[V (ẆW−1)† + (ẆW−1)V

− V̇ [I − (I + V )−1]] (D16)

= d

dt
Tr[ln(I + V )−1] + Tr[−
̃ + V̇ (I + V )−1] (D17)

= −Tr[
̃]. (D18)

APPENDIX E: DECOHERENCE FACTOR

Through the approach in Appendix C, we can obtain the
element of the reduced density in Eq. (45),

ρa−f (αf ,σ ; α′
f ,σ ′) = 1

2Aσσ ′ exp[α∗
f J1,σσ ′α + α∗J †

1,σ ′σα′
f

+α∗
f J2,σσ ′α′

f + α∗J3,σσ ′α], (E1)

where, in the case of the zero-temperature bath,

Aσσ ′ = 1, J1,σσ ′ = Wσ (t), J2,σσ ′ = 0, J3,σσ ′ = P
†
σ ′Pσ .

(E2)

Here, Wσ is determined by Eq. (18) with M = ω0 ± δ (±
corresponding to |e〉 and |g〉 states, respectively), and Pσ is
given by Eq. (16). Following from Eq. (46), we find that the
population difference of the outcoming atom just gives the
decoherence factor,

�g(t) − �e(t)

= e−|α|2 Trf {〈g|e−iθσy/2ρa−f eiθσy/2|g〉
− 〈e|e−iθσy/2ρa−f eiθσy/2|e〉} (E3)

= D(t), (E4)

where θ = π/2 and σy = i(|g〉〈e| − |e〉〈g|). With the help of
Eq. (E1), we obtain the decoherence factor as

D(t) = Re(exp{[W ∗
σ (t)Wσ ′(t) + J3,σσ ′ (t) − 1]|α|2}). (E5)
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