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Generalized Holstein model for spin-dependent electron-transfer reactions
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Some chemical reactions are described by electron transfer (ET) processes. The underlying mechanism could
be modeled as a polaron motion in the molecular crystal—the Holstein model. By taking spin degrees of freedom
into consideration, we generalize the Holstein model (molecular crystal model) to microscopically describe an
ET chemical reaction. In our model, the electron spins in the radical pair simultaneously interact with a magnetic
field and their nuclear-spin environments. By virtue of the perturbation approach, we obtain the chemical reaction
rates for different initial states. It is discovered that the chemical reaction rate of the triplet state demonstrates
its dependence on the direction of the magnetic field while the counterpart of the singlet state does not. This
difference is attributed to the explicit dependence of the triplet state on the direction when the axis is rotated. Our
model may provide a possible candidate for the microscopic origin of the avian compass.
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I. INTRODUCTION

Nowadays, it has been prevailing in both experimental and
theoretical explorations that quantum coherence effects due
to the role of phase in quantum superposition may exist in
living processes. This essentially implies that there may exist
quantum coherence effect in chemical reactions in some living
processes, such as charge and energy transfer in photosynthesis
[1–6] and singlet-and-triplet transition in the avian compass
[7–18].

It has long been questioned how migratory birds can
navigate to their destination over hundreds of miles. One of the
possible answers is given by the radical pair mechanism [11–
13]. Two unpaired electron spins in the radical pair are initially
prepared in the singlet state. Due to their interactions with the
geomagnetic field and their environmental nuclear spins, the
electron spins coherently transit between the singlet and triplet
states. Since the singlet and triplet states could result in differ-
ent products of chemical reactions, the direction and magni-
tude of the geomagnetic field determine the relative yields of
two distinct products. By sensing the information incorporated
in the final products of the chemical reactions in their retinas,
the birds can find their way to their destination. Therefore,
quantum coherence underlies the avian compass since the sin-
glet and triplet spin states correspond to different types of quan-
tum entanglement. Ever since it was proposed a decade ago, the
radical-pair-mechanism–based avian compass has been sup-
ported by a series of biological and chemical experiments [7,9].

In this hypothesis, the nuclear spins play a crucial role
because there would be no coherent transition between the
singlet and the triplet states if there were no nuclear spins
[13]. Previous studies mainly concentrated on the nuclear-spin
environment without intercoupling [15–17]. Mostly recently,
by taking into account the intercoupling of the nuclear spins,
we studied a special avian compass model with the nuclear
environments modeled by an Ising model in a transverse field
[18]. The rationality of this model lies in the fact that the weak
internuclear-spin coupling is comparable with the Zeeman

*suncp@itp.ac.cn; http://power.itp.ac.cn/∼suncp

energy splitting induced by the weak geomagnetic field. It
was discovered that quantum criticality in the environment
enhances the sensitivity of magneto-reception. On the other
hand, although various master-equation approaches were
proposed to deal with such spin-dependent chemical reactions
in the avian compass [9], the underlying physical mechanism
is still missing in studying the quantum coherence with
microscopic models. Thus, it is urgent to propose appropriate
microscopic models for different kinds of chemical reactions
to better understand the quantum coherence effect in those
processes. A case in point is the Holstein’s molecular crystal
model, which is also regarded as a microscopic model of
chemical reactions with electron transfer (ET) [19].

The Holstein model was originally proposed to characterize
vibration-assisted ET in a one-electron molecular crystal [19].
Here, in order to describe the chemical reaction of spin
dependence as well as direction dependence, the Holstein
model is generalized to incorporate the degrees of freedom
of spin to make electrons naturally interact with a magnetic
field. Additionally, due to the presence of the nuclear-spin
environments surrounding the electron spins, there would be
coherent transition between the singlet and triplet states of the
two electron spins. In contrast to the previous investigation
using anisotropic hyperfine coupling [13], the hyperfine inter-
action between the electron spin and its nuclear environment
is isotropic in our model. Based on this generalized model, we
calculate the chemical reaction rates of the singlet and triplet
states of the electron spins. Here, the chemical reaction rate is
determined by the transition rate of one electron in a localized
molecular orbit to another at a distance. It is discovered that
the reaction rate of the triplet state sensitively responds to the
variation of the direction of the magnetic field with respect
to the polarization of two electron spins. On the contrary, the
chemical reaction of the singlet state does not demonstrate
such dependence on the direction of the magnetic field. The
above results are attributed to the invariance of the singlet
state under the rotation of the system around the y axis, while
the triplet state will change along with the rotation according
to the irreducible tensor of the SO(3) group. Therefore, our
proposed model may serve as a microscopic origin for the
chemical reaction in the avian compass.
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In the next section, we generalize the Holstein model to
incorporate the electron spin degrees. In Sec. III, we consider
a general case with an external magnetic field and nuclear-spin
environments. In Sec. IV, we study the dynamic evolution
of the radical pair and obtain the chemical reaction rates
for different initial states. Finally, we summarize our main
results in the conclusion. Furthermore, we show the detailed
calculations for the chemical reaction probability, the chemical
reaction rate, and the transition probability from the triplet state
to the singlet state in Appendix A and B, respectively.

II. GENERALIZED HOLSTEIN MODEL

Many chemical reactions are accompanied by ET, where
the electron is transferred from one site to another (Fig. 1).
A very important but simple quantum-mechanical model for
ET reactions is the molecular crystal model, which was
originally developed by Holstein to describe so-called polaron
motion in narrow-band conductors [20] and then under-
stood as a microscopic model in describing simple chemical
reactions [19].

The model Hamiltonian H = Hv + He + Hev is decom-
posed into two parts; that is, the ionic vibration part

Hv = 1

2

2∑
j=1

(
− h̄2

mj

∂2

∂x2
j

+ mjω
2
j x

2
j

)
+ √

m1m2f x1x2, (1)

and the electron-phonon hybrid part

He + Hev =
∑
j,α

ε̄j (x1,x2)c†jαcjα − J
∑

α

(c†1αc2α + H.c.),

(2)

FIG. 1. (Color online) Schematic of the generalized Holstein
model. It is composed of a radical pair with nuclear spins. Two
electrons are initially prepared in a correlated state (i.e., the singlet
state or triplet state), which can be interconverted by the hyperfine
interaction in combination with an external magnetic field. The
chemical reaction occurs once both electrons are in the same site
due to the tunneling effect.

where xj is the displacement of the j th ion, ωj is the harmonic
vibration frequency with the reduced mass mj , f is the
coupling constant of the two molecules, and cjα (c†jα) is the
fermionic annihilation (creation) operator of the electron at
molecule j with spin α. Since the orbital energy ε̄(x1,x2) is
linearized as

ε̄j (x1,x2) ≈ εj +
∑

i

(
∂εj

∂xi

)
xi, (3)

we explicitly obtain the electronic Hamiltonian

He =
∑
j,α

εj c
†
jαcjα − J

∑
α

(c†1αc2α + H.c.), (4)

and the electron-vibration coupling

Hev = −1

2

∑
j,α

Ajc
†
jαcjαxj . (5)

Here, the molecular orbital energy εj is spin-independent. In
the next section, we will consider a more general case with an
external magnetic field. The tunneling integral J is assumed to
be independent of the displacement xj and Aj = √

2∂εj/∂xj

denotes the electron-vibration coupling, where the factor
∂εj/∂xi for i �= j is neglected because the molecular orbital
energy of the j th molecule changes negligibly when the
displacement of the ith molecule varies.

For simplicity, we assume two identical molecules (i.e.,
m1 = m2 = m, ω1 = ω2, and A1 = A2 = A). Choosing coor-
dinates X = (x1 + x2)/

√
2 and x = (x1 − x2)/

√
2, we decom-

pose the Hamiltonian H = Hr + Hc into two decoupled parts;
that is, the one for the motion of the center of mass,

Hc = − h̄2

2m

∂2

∂X2
+ 1

2
m�2X2 + AX, (6)

with � =
√

ω2
1 + f , and the other for the relative motion,

Hr = h̄ω

(
b†b + 1

2

)
+

∑
j,α

εj c
†
jαcjα − J

∑
α

(c†1αc2α + H.c.)

− 1

2
A

√
h̄

2mω
(b† + b)

∑
α

(c†2αc2α − c
†
1αc1α), (7)

where we have introduced the bosonic operators

b =
√

mω

2h̄

(
x + h̄

mω

∂

∂x

)
, b† =

√
mω

2h̄

(
x − h̄

mω

∂

∂x

)
,

(8)

where ω =
√

ω2
1 − f is the effective frequency.

Next, we make the Van Vleck transformation, also called
the polaron transformation [21,22],

Ȟ = eisHe−is (9)

for the above generalized Holstein model, where

s = −i
∑
j,α

φj (b† − b)c†jαcjα (10)

is the transformation kernel and

φ1 = −φ2 = A

2h̄ω

√
h̄

2mω
≡ φ. (11)
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Thus, we can formally decouple the degrees of freedom of
electron and vibration, obtaining Ȟr = Ȟ (0)

r + Ȟ (1)
r , with

Ȟ (0)
r = h̄ωb†b +

∑
jα

εj c
†
jαcjα − h̄ω

( ∑
jα

φj c
†
jαcjα

)2

, (12)

and

Ȟ (1)
r = −J

∑
α

(c†1αc2αe2φ(b†−b) + c
†
2αc1αe−2φ(b†−b)). (13)

This molecular crystal Hamiltonian (12) describes the ET
process for a two-local-orbit system. Here, we generalize the
Holstein model by taking into consideration the degrees of
freedom of the electron spins. Up to now, the above generaliza-
tion seems to be trivial, since we could totally separate the spin
and orbital degrees of freedom. However, when a local external
magnetic field is applied to the radical pair to form asymmetric
couplings to the two electron spins, spin-orbit coupling is
induced. In this case, a spin-dependent ET process takes
place. These asymmetric couplings can also be implemented
by coupling to their nuclear-spin environments.

III. SPIN MOLECULAR CRYSTAL IN MAGNETIC FIELD
AND NUCLEAR ENVIRONMENT

In the previous section, we described the generalized
Holstein model, with spin degree of freedom. In this section,
on account of an external magnetic field and nuclear-spin en-
vironments, we investigate how a chemical reaction responds
to its magnetic environment.

Choosing the polarization direction of the spin state as the
z direction, we define the singlet state |s〉 and triplet state |t〉
of the electron spins as

|s〉 = 1√
2

(∣∣↑e
1↓e

2

〉 − ∣∣↓e
1↑e

2

〉) = 1√
2

(c†1↑c
†
2↓ − c

†
1↓c

†
2↑)|0〉,

(14)

and

|t〉 = 1√
2

(∣∣↑e
1↓e

2

〉 + ∣∣↓e
1↑e

2

〉) = 1√
2

(c†1↑c
†
2↓ + c

†
1↓c

†
2↑)|0〉,

(15)

respectively, with |0〉 being the vacuum state. Here, we remark
that the polarization of the spin state should be initialized in a
specific direction in order to make the consequential chemical
reaction respond to the external magnetic field. This is one of
the essences lying at the core of the radical-pair mechanism
[8,13].

In a simple case where the hyperfine couplings are isotropic,
the Hamiltonian, which describes the interaction between the
electron spins and their asymmetric magnetic environments
(the magnetic field plus the nuclear spins), reads

Hs = −
2∑

j=1

(μB

B0 · Ŝj + gj Îj · Ŝj ), (16)

where 
B0 = B0(sin �,0, cos �) (B0 > 0) is the external geo-
magnetic field with the inclination angle �, μB is the Bohr
magneton, Ŝj = (Sx

j ,S
y

j ,Sz
j ) are the Pauli operators for the j th

electron spin, Îj = (I x
j ,I

y

j ,I z
j ) are the Pauli operators for the

FIG. 2. (Color online) The inclination angle between the external
geomagnetic field and the z direction is �, and the coordinate system
is rotated around the y axis with � to coincide with the direction of the
the magnetic field. The hyperfine-coupling–induced interconversion
between the singlet and triplet states is modulated by the direction of
the magnetic field (i.e., �).

j th nuclear spin, and gj is the hyperfine coupling constant
between the j th electron spin and its environmental nuclear
spin.

Combining the relative vibration and spin Hamiltonians,
the total Hamiltonian for a spin-dependent ET reaction is
obtained as Htot = Hr + Hs . After a rotation around the y

axis by the angle � (Fig. 2), combined with the Van Vleck
transformation defined in Eq. (9), we obtain H̃tot = H̃r + H̃s ,
where the relative vibration Hamiltonian H̃r = Ȟr is the same
as that given in Eqs. (12) and (13), but the Hamiltonian of the
spin part is changed into

H̃s = −
∑

j

(μBB0Sjz + gj Îj · Ŝj ). (17)

Meanwhile, we make the same rotation and transformation
for the quantum states of the whole system as in Eq. (9).
Straightforwardly, after the combined transformation, the
singlet and triplet states read as |s̃〉 = |s〉 and

|t̃〉 = cos �|t〉 + 1√
2

sin �
(∣∣↑e

1↑e
2

〉 − ∣∣↓e
1↓e

2

〉)
, (18)

respectively.
It is obvious that the singlet state is not � dependent,

while the triplet state is. In the next section, we will study
the dependence of the chemical reaction rate on the direction
of the geomagnetic field. As shown in the following, it is this
explicit dependence on the direction in the rotated triplet state
that results in the variation of its chemical reaction rate along
with the changes of the magnetic field direction.
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IV. MAGNETIC DIRECTION CONTROLLING
CHEMICAL REACTION

In this section, by means of the perturbation method, we
analytically obtain the probability for one electron to transfer to
the other local orbit to complete a chemical reaction. Assuming
that, at the initial time, the vibration and nuclear spins are
both in thermal equilibrium states and the electron spins are
in the triplet state, the density matrix of the whole system
ρ(0) = ρv ⊗ ρn ⊗ ρt includes three parts. The first part

ρv = 1

Z

∞∑
m=0

exp

(
− mh̄ω

kBT

)
|m〉〈m| (19)

denotes the relative vibration of the molecules, where Z =
1/[1 − exp(−h̄ω/kBT )], where kB the Boltzmann constant
and T is the temperature of the environment. The second part
is the density matrix of the nuclear spins. Since μnB0 � kBT

with μn being the nuclear magneton, the nuclear spins are in
the state

ρn = 1

4

4∑
j=1

∣∣χn
j

〉 〈
χn

j

∣∣, (20)

where |χn
1 〉 = | ↓n

1↓n
2〉, |χn

2 〉 = | ↓n
1↑n

2〉, |χn
3 〉 = | ↑n

1↓n
2〉, and

|χn
4 〉 = | ↑n

1↑n
2〉. The last one,

ρt = |t〉〈t |, (21)

describes the electrons.
Starting from the above initial state, we calculate the total

ET reaction probability of the triplet state (for details please
refer to Appendix A):

Pt (τ ) = 1

4Z

∞∑
m,n=0

4∑
j=1

24∑
p=1

e−βmh̄ωPjmnp(τ ), (22)

where

Pjmnp(τ ) =
∣∣∣∣∣
∑

q

cjmqH̃
(1)
np,mq

1 − eiωnp,mqτ

h̄ωnp,mq

∣∣∣∣∣
2

, (23)

and cjmq = 〈ψ (0)
mq |t̃〉|χn

j 〉|m〉 is the expanding coefficient. And
the chemical reaction rate is determined by the reaction
probability per unit time in the long-time limit [23]

kt = ∂

∂τ
lim

τ→∞ Pt (τ ), (24)

where the explicit expression which displays direction depen-
dence is given in Appendix A.

To show the above results in an intuitive way, we turn to
numerical examples. We take the orbital energy difference
� = ε1 − ε2 = 0.01 eV and the relative vibration frequency
ω = 107 Hz. We assume the tunneling integral J = 0.01�

and φ = 0.2. The magnitude of the geomagnetic field is
B0 = 50 μT and the hyperfine coupling constant is g1 =
g2 = 10−8 eV. In the following calculations, we need to take
a cut of the phonon occupation number, which is defined
by an effective temperature of the environment. We find
that the chemical reaction probability is not sensitive to the
temperature of the environment. For these parameters, the
perturbation condition holds. Then we numerically calculate
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FIG. 3. (Color online) (a) Chemical reaction probability vs time
and �. (b) Chemical reaction probability for triplet state at a given
time t = 0.5/ω for effective temperature T = 5 mK (red dashed line)
and T = 10 mK (blue solid line).

the transition probability for the initial triplet state from
Eq. (22) as shown in Fig. 3.

Obviously, the ET probability displays its dependence on
the angle �. At a given time, the ET probability falls to its
minimum value when the magnetic field is perpendicular to the
z direction, while it reaches its maximum when the direction
of the external field is parallel to the z axis. Besides, the
probability is symmetrical about � = π/2, which coincides
with the experimental result of Ref. [7]. When we come to
the initial singlet state, there is no such dependence on the
angle �. This is a reasonable result for isotropic hyperfine
coupling case since both the singlet state and the transformed
Hamiltonian do not explicitly depend on the angle.

On the other hand, the chemical reaction rate for triplet
state would vanish if there were no interaction between the
electron spins and their nuclear environments (i.e., gj = 0),
while the ET reaction happens when the electron spins are
in the singlet state. This can be seen from the fact that
H (1)

r |t〉 = 0 but H (1)
r |s〉 �= 0. The coupling of electron spins to

the nuclear-spin environments can induce the transition from
the triplet to the singlet states to make the ET happen. Then the
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spatial ET leads to the chemical reaction. In order to illustrate
the mechanism of magnetic-direction-controlling chemical
reaction more clearly, we study the dynamic evolution of the
radical pair. Using the same parameters as those in Fig. 3,
we plot the transition probability from the triplet state to the
singlet state,

Pt→s = Trv,n,e[ρ̃se
−iH̃ t/h̄ρ̃(0)eiH̃ t/h̄], (25)

in Fig. 4. Due to the presence of the nuclear-spin environ-
ments, there is periodical interconversion between the singlet
and triplet states. Besides, the amplitude of this periodical
oscillation is adjusted by the direction of the magnetic field.
For one thing, the singlet-triplet interconversion is induced
by the hyperfine couplings, not the uniform magnetic field,
but it is modulated by the geomagnetic field. Our conjecture,
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FIG. 4. (Color online) Transition probability from triplet state
to singlet state. (a) Probability vs time for different angles. (b)
The maximum probability varies with angle for the applied field
with different magnitudes. The inset shows that the contrast of the
maximum transition probability also changes with the magnitude of
the magnetic field.

that the triplet state is converted to the singlet state to
complete the ET reaction, is confirmed by the same line shape
of the maximum conversion probability as that of the chemical
reaction probability of the triplet state.

Now we define the contrast C of the maximum probability
of triplet-singlet transition as

C = P max
t→s (� = 0) − P max

t→s (� = π/2)

P max
t→s (� = 0) + P max

t→s (� = π/2)
. (26)

As shown in the inset of Fig. 4(b), with increasing magnitude
of the magnetic field, the contrast increases and finally
reaches unity when B → ∞. In order not to break down
the perturbation theory, since a strong magnetic field will
induce level crossing, it is required that the Zeeman splitting
of the electron spins is much smaller than the orbital energy
difference (i.e., B0 � �/μB ∼ 1T). It should be noted that,
all the above results are valid just for B0 > 0. When there is
no external magnetic field, we can also calculate the triplet-
singlet transition probability in the perturbation approach.
It is straightforward to find that the triplet-singlet transition
probability is not zero, but independent of the inclination angle
�. As a result, the chemical reaction rate is neither vanishing
nor � dependent.

V. CONCLUSION

On account of electron spin degrees of freedom, we study
the effect of the direction of the magnetic field on the chemical
reaction by generalizing the Holstein model. By means of the
perturbation approach, we obtain the ET reaction probability
and chemical reaction rate of the singlet and triplet states.
The chemical reaction rate of the triplet state displays its
sensitive dependence on the direction of the magnetic field in
contrast to the counterpart of the singlet state. We demonstrate
that the triplet state indirectly participates in the chemical
reaction. It must be converted to the singlet state by the
hyperfine coupling between electrons and nuclear spins to
take part in the ET reaction. We emphasize that the hyperfine
couplings are isotropic in our model which are different from
the anisotropic couplings in the previous study [13]. With the
above comprehensive consideration, it could be concluded that
our model may serve as a possible microscopic origin for the
avian compass.
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APPENDIX A: CHEMICAL REACTION RATE

In this appendix, we calculate the ET reaction probability
to first order.

First of all, the Hamiltonian of the electron spin-j part H̃
(j )
s

is diagonalized with eigenstates∣∣e(j )
1

〉 = ∣∣↓e
j

〉∣∣↓n
j

〉
, (A1)∣∣e(j )

2

〉 = cos
θj

2

∣∣↓e
j

〉∣∣↑n
j

〉 − sin
θj

2

∣∣↑e
j

〉∣∣↓n
j

〉
, (A2)
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TABLE I. All 24 eigenstates and eigenvalues of H̃ ′
s , where the

two electrons are located in two distant orbits respectively for the
first 16 eigenstates, while for the other 8 eigenstates, both electrons
are in the same site.

Eigenstate Eigenvalue

|ϕ1〉 = |e(1)
1 〉 ⊗ |e(2)

1 〉 Es1 = e
(1)
1 + e

(2)
1 + ε1 + ε2

|ϕ2〉 = |e(1)
1 〉 ⊗ |e(2)

2 〉 Es2 = e
(1)
1 + e

(2)
2 + ε1 + ε2

|ϕ3〉 = |e(1)
1 〉 ⊗ |e(2)

3 〉 Es3 = e
(1)
1 + e

(2)
3 + ε1 + ε2

|ϕ4〉 = |e(1)
1 〉 ⊗ |e(2)

4 〉 Es4 = e
(1)
1 + e

(2)
4 + ε1 + ε2

|ϕ5〉 = |e(1)
2 〉 ⊗ |e(2)

1 〉 Es5 = e
(1)
2 + e

(2)
1 + ε1 + ε2

|ϕ6〉 = |e(1)
2 〉 ⊗ |e(2)

2 〉 Es6 = e
(1)
2 + e

(2)
2 + ε1 + ε2

|ϕ7〉 = |e(1)
2 〉 ⊗ |e(2)

3 〉 Es7 = e
(1)
2 + e

(2)
3 + ε1 + ε2

|ϕ8〉 = |e(1)
2 〉 ⊗ |e(2)

4 〉 Es8 = e
(1)
2 + e

(2)
4 + ε1 + ε2

|ϕ9〉 = |e(1)
3 〉 ⊗ |e(2)

1 〉 Es9 = e
(1)
3 + e

(2)
1 + ε1 + ε2

|ϕ10〉 = |e(1)
3 〉 ⊗ |e(2)

2 〉 Es10 = e
(1)
3 + e

(2)
2 + ε1 + ε2

|ϕ11〉 = |e(1)
3 〉 ⊗ |e(2)

3 〉 Es11 = e
(1)
3 + e

(2)
3 + ε1 + ε2

|ϕ12〉 = |e(1)
3 〉 ⊗ |e(2)

4 〉 Es12 = e
(1)
3 + e

(2)
4 + ε1 + ε2

|ϕ13〉 = |e(1)
4 〉 ⊗ |e(2)

1 〉 Es13 = e
(1)
4 + e

(2)
1 + ε1 + ε2

|ϕ14〉 = |e(1)
4 〉 ⊗ |e(2)

2 〉 Es14 = e
(1)
4 + e

(2)
2 + ε1 + ε2

|ϕ15〉 = |e(1)
4 〉 ⊗ |e(2)

3 〉 Es15 = e
(1)
4 + e

(2)
3 + ε1 + ε2

|ϕ16〉 = |e(1)
4 〉 ⊗ |e(2)

4 〉 Es16 = e
(1)
4 + e

(2)
4 + ε1 + ε2

|ϕ17〉 = |↑e
1↓e

1〉 ⊗ |↓n
1↓n

2〉 Es17 = −4h̄ωφ2 + 2ε1

|ϕ18〉 = |↑e
1↓e

1〉 ⊗ |↓n
1↑n

2〉 Es18 = −4h̄ωφ2 + 2ε1

|ϕ19〉 = |↑e
1↓e

1〉 ⊗ |↑n
1↓n

2〉 Es19 = −4h̄ωφ2 + 2ε1

|ϕ20〉 = |↑e
1↓e

1〉 ⊗ |↑n
1↑n

2〉 Es20 = −4h̄ωφ2 + 2ε1

|ϕ21〉 = |↑e
2↓e

2〉 ⊗ |↓n
1↓n

2〉 Es21 = −4h̄ωφ2 + 2ε2

|ϕ22〉 = |↑e
2↓e

2〉 ⊗ |↓n
1↑n

2〉 Es21 = −4h̄ωφ2 + 2ε2

|ϕ23〉 = |↑e
2↓e

2〉 ⊗ |↑n
1↓n

2〉 Es22 = −4h̄ωφ2 + 2ε2

|ϕ24〉 = |↑e
2↓e

2〉 ⊗ |↑n
1↑n

2〉 Es24 = −4h̄ωφ2 + 2ε2

∣∣e(j )
3

〉 = sin
θj

2

∣∣↓e
j

〉∣∣↑n
j

〉 + cos
θj

2

∣∣↑e
j

〉∣∣↓n
j

〉
, (A3)∣∣e(j )

4

〉 = ∣∣↑e
j

〉∣∣↑n
j

〉
, (A4)

and the corresponding eigenvalues

e
(j )
1 = μBB0 − gj , (A5)

e
(j )
2 = gj +

√
μ2

BB2
0 + 4g2

j , (A6)

e
(j )
3 = gj −

√
μ2

BB2
0 + 4g2

j , (A7)

e
(j )
4 = −μBB0 − gj . (A8)

Here, the mixing angles is defined as

θj = tan−1

(
2gj

μBB0

)
. (A9)

Straightforwardly, we explicitly calculate the eigenstates
and eigenvalues of the total Hamiltonian (including the
orbital energy) for the spins H̃ ′

s = ∑
j H̃

(j )
s + ∑

jα εj c
†
jαcjα −

h̄ω(
∑

jα φj c
†
jαcjα)2, listed in Table I.

The total Hamiltonian H̃ = H̃ (0) + H̃ (1) is split into two
parts; namely, H̃ (0) = H̃ (0)

r + H̃s governing the free dynamic
evolution and H̃ (1) = H̃ (1)

r for the ET process. |ψ (0)
mq〉 = |ϕq〉 ⊗

|m〉 are the eigenstates of H̃ (0) with eigenvalues E(0)
mq = mh̄ω +

Esq . Here, m (m = 0, . . . ,∞) denotes the relative vibrational
quantum number. A given initial state is expanded as

|�m(0)〉 =
24∑

q=1

cmq(0)
∣∣ψ (0)

mq

〉
, (A10)

and then the wave function at time t is given by

|�(t)〉 =
∞∑

n=0

24∑
p=1

cnp(t) exp
[ − iE(0)

np t/h̄
]∣∣ψ (0)

np

〉
, (A11)

where cnp(t) are the coefficients determined by the Schrödinger
equation

ih̄ċnp(t) =
∑
n′,p′

eiωnp,n′p′ t H̃
(1)
np,n′p′cn′,p′ (t). (A12)

Here,

ωnp,n′p′ = [
E(0)

np − E
(0)
n′p′

]/
h̄, (A13)

and

H̃
(1)
np,n′p′ = 〈

ψ (0)
np

∣∣H (1)
∣∣ψ (0)

n′p′
〉
. (A14)

To the first-order approximation, as cn′p′ (t) on the right-
hand side of Eq. (A12) is approximated as cmp′ (0)δn′,m, it is
straightforward to obtain

cnp(τ ) = cnp(0) −
∑

q

cmq(0)H̃ (1)
np,mq

eiωnp,mqτ − 1

h̄ωnp,mq

. (A15)

The square of its norm gives the probability Pnp of finding the
system in the state |ψ (0)

np 〉 at time τ . Thus, for (n,p) �= (m,q),
we have

Pnp(τ ) =
∣∣∣∣∣
∑

q

cmq(0)H̃ (1)
np,mq

eiωnp,mqτ − 1

h̄ωnp,mq

∣∣∣∣∣
2

. (A16)

The total ET reaction probability is P (τ ) = ∑
np Pnp(τ ). And

the chemical reaction rate is determined by the reaction
probability per unit time in the long-time limit [23]; namely,

k = ∂

∂τ
lim

τ→∞ P (τ ). (A17)

In our case, the system is initially in the state ρ(0) = ρv ⊗
ρn ⊗ ρt ; namely, the relative vibration part

ρv = 1

Z

∞∑
m=0

e−βmh̄ω|m〉〈m|, (A18)

with

Z = 1/[1 − exp(−h̄ω/kBT )], (A19)

the nuclear spin part

ρn = 1

4

4∑
j=1

∣∣χn
j

〉 〈
χn

j

∣∣, (A20)

and the electron spin part

ρt = |t〉〈t |. (A21)

After the Van Vleck transformation (9) and the rotation for
the system, the initial state is transformed as ρ̃(0) = ρ̃v ⊗ ρ̃n⊗
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TABLE II. Coefficients for chemical reaction rate of triplet state.

Coefficient Explicit expression

R1,mn,21
cos2 �[sin2 θ2

2 sin2 θ2
2 δ(E(0)

n,21 − E
(0)
m,2) + cos2 θ2

2 cos2 θ2
2 δ(E(0)

n,21 − E
(0)
m,3)

+ sin2 θ1
2 sin2 θ1

2 δ(E(0)
n,21 − E

(0)
m,5) + cos2 θ1

2 cos2 θ1
2 δ(E(0)

n,21 − E
(0)
m,9)]

R1,mn,22

1
4 sin2 �[sin4 θ1

2 sin2 θ2δ(E(0)
n,22 − E

(0)
m,6) + sin4 θ1

2 sin2 θ2δ(E(0)
n,22 − E

(0)
m,7)

+ cos4 θ1
2 sin2 θ2δ(E(0)

n,22 − E
(0)
m,10) + cos4 θ1

2 sin2 θ2δ(E(0)
n,22 − E

(0)
m,11)]

R1,mn,23

1
4 sin2 �[sin2 θ1 sin4 θ2

2 δ(E(0)
n,23 − E

(0)
m,6) + sin2 θ1 cos4 θ2

2 δ(E(0)
n,23 − E

(0)
m,7)

+ sin2 θ1 sin4 θ2
2 δ(E(0)

n,23 − E
(0)
m,10) + sin2 θ1 cos4 θ2

2 δ(E(0)
n,23 − E

(0)
m,11)]

R1,mn,24 0

R2,mn,21 sin2 �[cos2 θ2
2 sin2 θ2

2 δ(E(0)
n,21 − E

(0)
m,2) + sin2 θ2

2 cos2 θ2
2 δ(E(0)

n,21 − E
(0)
m,3)]

R2,mn,22
cos2 �[δ(E(0)

n,22 − E
(0)
m,4) + sin4 θ1

2 cos4 θ2
2 δ(E(0)

n,22 − E
(0)
m,6) + sin4 θ1

2 sin4 θ2
2 δ(E(0)

n,22 − E
(0)
m,7)

+ cos4 θ1
2 cos4 θ2

2 δ(E(0)
n,22 − E

(0)
m,10) + cos4 θ1

2 sin4 θ2
2 δ(E(0)

n,22 − E
(0)
m,11)]

R2,nm,23

1
16 cos2 �[sin2 θ1 sin2 θ2δ(E(0)

n,23 − E
(0)
m,6) + sin2 θ1 sin2 θ2δ(E(0)

n,23 − E
(0)
m,7)

+ sin2 θ1 sin2 θ2δ(E(0)
n,23 − E

(0)
m,10) + sin2 θ1 sin2 θ2δ(E(0)

n,23 − E
(0)
m,11)]

R2,nm,24 sin2 �[sin2 θ1
2 cos2 θ1

2 δ(E(0)
n,24 − E

(0)
m,8) + cos2 θ1

2 sin2 θ1
2 δ(E(0)

n,24 − E
(0)
m,12)]

R3,mn,21 sin2 �[sin2 θ1
2 cos2 θ1

2 δ(E(0)
n,21 − E

(0)
m,5) + sin2 θ1

2 cos2 θ1
2 δ(E(0)

n,21 − E
(0)
m,9)]

R3,mn,22

1
16 cos2 �[sin2 θ1 sin2 θ2δ(E(0)

n,22 − E
(0)
m,6) + sin2 θ1 sin2 θ2δ(E(0)

n,22 − E
(0)
m,7)

+ sin2 θ1 sin2 θ2δ(E(0)
n,22 − E

(0)
m,10) + sin2 θ1 sin2 θ2δ(E(0)

n,22 − E
(0)
m,11)]

R3,mn,23
cos2 �[δ(E(0)

n,23 − E
(0)
m,11) + cos4 θ1

2 sin4 θ2
2 δ(E(0)

n,23 − E
(0)
m,6) + cos4 θ1

2 cos4 θ2
2 δ(E(0)

n,23 − E
(0)
m,7)

+ sin4 θ1
2 sin4 θ2

2 δ(E(0)
n,23 − E

(0)
m,10) + sin4 θ1

2 cos4 θ2
2 δ(E(0)

n,23 − E
(0)
m,11)]

R3,mn,24 sin2 �[sin2 θ2
2 cos2 θ2

2 δ(E(0)
n,24 − E

(0)
m,14) + sin2 θ2

2 cos2 θ2
2 δ(E(0)

n,24 − E
(0)
m,15)]

R4,mn,21 0

R4,mn,22

sin2 �

4 [sin2 θ1 cos4 θ2
2 δ(E(0)

n,22 − E
(0)
m,6) + sin2 θ1 sin4 θ2

2 δ(E(0)
n,22 − E

(0)
m,7)

+ sin2 θ1 cos4 θ2
2 δ(E(0)

n,22 − E
(0)
m,10) + sin2 θ1 cos2 θ2

2 δ(E(0)
n,22 − E

(0)
m,11)]

R4,mn,23

sin2 �

4 [cos4 θ1
2 sin2 θ2δ(E(0)

n,23 − E
(0)
m,6) + cos4 θ1

2 sin2 θ2δ(E(0)
n,23 − E

(0)
m,7)

+ sin4 θ1
2 sin2 θ2δ(E(0)

n,23 − E
(0)
m,10) + sin4 θ1

2 sin2 θ2δ(E(0)
n,23 − E

(0)
m,11)]

R4,mn,24 cos2 �[cos4 θ1
2 δ(E(0)

n,24 − E
(0)
m,8) + sin4 θ1

2 δ(E(0)
n,24 − E

(0)
m,11) + cos4 θ2

2 δ(E(0)
n,24 − E

(0)
m,14) + sin2 θ2

2 δ(E(0)
n,24 − E

(0)
m,15)]

TABLE III. Coefficients for the probability from triplet to singlet state at time t .

Coefficient Explicit expression

Dm,1,1
1
2 [− sin θ2

2 sin θ2
2 cos �e−iEm,2 t/h̄ − cos θ2

2 cos θ2
2 cos �e−iEm,3 t/h̄ + sin θ1

2 sin θ1
2 cos �e−iEm,5 t/h̄ + cos θ1

2 cos θ1
2 cos �e−iEm,9 t/h̄]

Dm,1,2
1
4 [− sin2 θ1

2 sin θ2 sin �e−iEm,6t/h̄ + sin2 θ1
2 sin θ2 sin �e−iEm,7 t/h̄ − cos2 θ1

2 sin θ2 sin �e−iEm,10t/h̄ + cos2 θ1
2 sin θ2 sin �e−iEm,11t/h̄]

Dm,1,3
1
4 [sin θ1 sin2 θ2

2 sin �e−iEm,6 t/h̄ + sin θ1 cos2 θ2
2 sin �e−iEm,7 t/h̄ − sin θ1 sin2 θ2

2 sin �e−iEm,10t/h̄ − sin θ1 cos2 θ2
2 sin �e−iEm,11t/h̄]

Dm,1,4 0

Dm,2,1
1
2 [− sin θ2

2 cos θ2
2 sin �e−iEm,2 t/h̄ + cos θ2

2 sin θ2
2 sin �e−iEm,3 t/h̄]

Dm,2,2

1
2 [− cos �e−iEm,4 t/h̄ + sin2 θ1

2 cos2 θ2
2 cos �e−iEm,6 t/h̄ + sin2 θ1

2 sin2 θ2
2 cos �e−iEm,7t/h̄

+ cos2 θ1
2 cos2 θ2

2 cos �e−iEm,10t/h̄ + cos2 θ1
2 sin2 θ2

2 cos �e−iEm,11 t/h̄]

Dm,2,3
1
8 [− sin θ1 sin θ2 cos �e−iEm,6 t/h̄ + sin θ1 sin θ2 cos �e−iEm,7t/h̄ + sin θ1 sin θ2 cos �e−iEm,10t/h̄ − sin θ1 sin θ2 cos �e−iEm,11 t/h̄]

Dm,2,4
1
2 [cos θ1

2 sin θ1
2 sin �e−iEm,8t/h̄ − sin θ1

2 cos θ1
2 sin �e−iEm,12t/h̄]

Dm,3,1
1
2 [sin θ1

2 cos θ1
2 sin �e−iEm,5t/h̄ − cos θ1

2 sin θ1
2 sin �e−iEm,9t/h̄]

Dm,3,2

1
8 [sin θ1 sin θ2 cos �e−iEm,6t/h̄ − sin θ1 sin θ2 cos �e−iEm,7t/h̄

− sin θ1 sin θ2 cos �e−iEm,10t/h̄ + sin θ1 sin θ2 cos �e−iEm,11t/h̄]

Dm,3,3

1
2 [− cos2 θ1

2 sin2 θ2
2 cos �e−iEm,6t/h̄ − cos2 θ1

2 cos2 θ2
2 cos �e−iEm,7t/h̄

− sin2 θ1
2 sin2 θ2

2 cos �e−iEm,10(ϕ10)t/h̄ − sin2 θ1
2 cos2 θ2

2 cos �e−iEm,11t/h̄ + cos �e−iEm,13t/h̄]

Dm,3,4
1
2 [− cos θ2

2 sin θ2
2 sin �e−iEm,14(ϕ14)t/h̄ + sin θ2

2 cos θ2
2 sin �e−iEm,15(ϕ15)t/h̄]

Dm,4,1 0

Dm,4,2
1
4 [sin θ1 cos2 θ2

2 sin �e−iEm,6t/h̄ + sin θ1 sin2 θ2
2 sin �e−iEm,7 t/h̄ − sin θ1 cos2 θ2

2 sin �e−iEm,10t/h̄ − sin θ1 sin2 θ2
2 sin �e−iEm,11t/h̄]

Dm,4,3
1
4 [− cos2 θ1

2 sin θ2 sin �e−iEm,6 t/h̄ + cos2 θ1
2 sin θ2 sin �e−iEm,7 t/h̄ − sin2 θ1

2 sin θ2 sin �e−iEm,10t/h̄ + sin2 θ1
2 sin θ2 sin �e−iEm,11t/h̄]

Dm,4,4
1
2 [− cos θ1

2 cos θ1
2 cos �e−iEm,8t/h̄ − sin θ1

2 sin θ1
2 cos �e−iEm,12 t/h̄ + cos θ2

2 cos θ2
2 cos �e−iEm,14 t/h̄ + sin θ2

2 sin θ2
2 cos �e−iEm,15t/h̄]
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ρ̃t , where ρ̃v = ρv , ρ̃n = ρn, and ρ̃t = |t̃〉〈t̃ |. And we calculate
the total chemical reaction probability as

Pt (τ ) = 1

4Z

∞∑
m,n=0

4∑
j=1

24∑
p=1

e−βmh̄ωPjmnp(τ ), (A22)

where

Pjmnp(τ ) =
∣∣∣∣∣
∑

q

cjmqH̃
(1)
np,mq

1 − eiωnp,mqτ

h̄ωnp,mq

∣∣∣∣∣
2

, (A23)

cjmq = 〈
ψ (0)

mq

∣∣t̃ 〉∣∣χn
j

〉 |m〉. (A24)

As a matter of fact, those energy-increasing terms with
q = 17, 18, 19, 20 (corresponding to the final states with both
electrons at the orbits of the donor) and the cross-product
terms with ωnp,mq �= 0 of Eq. (A23) do not contribute much
to the chemical reaction probability. Therefore, a Fermi’s
golden-rule-like chemical reaction rate is obtained as

kt = πJ 2

4Zh̄

∞∑
m,n=0

4∑
j=1

24∑
p=21

e−βmh̄ω|〈n|e−2φ(b†−b)|m〉|2Rjmnp

(A25)

with the coefficients listed in Table II.

APPENDIX B: SINGLET AND TRIPLET STATES
INTERCONVERSION

For the system initially in the state

ρ̃(0) = ρ̃v ⊗ ρ̃n ⊗ ρ̃t , (B1)

the probability of the electrons converted to the singlet state at
time t reads

Pt→s = Trv,n,e[ρ̃se
−iH̃ t/h̄ρ̃(0)eiH̃ t/h̄] (B2)

= 1

4Z

∑
m,n

∑
i,j

e−βmh̄ω

× |〈s̃|〈χn
i

∣∣〈n|e−iH̃ t/h̄|m〉∣∣χn
j

〉|t̃〉|2 (B3)

The eigenfunction of H̃ is approximated to the first order
as

|ψmq〉 = ∣∣ψ (0)
mq

〉 + ∞∑
n=0

24∑
p=1

ξ (m,n,q,p)
∣∣ψ (0)

np

〉
, (B4)

with

ξ (m,n,q,p) =
〈
ψ (0)

np

∣∣H̃ (1)
∣∣ψ (0)

mq

〉
E

(0)
mq − E

(0)
np

, (B5)

while the eigenenergy is obtained to the second order
as

Emq = E(0)
mq +

∑
n,p

∣∣〈ψ (0)
np

∣∣H̃ (1)
∣∣ψ (0)

mq

〉∣∣2

E
(0)
mq − E

(0)
np

. (B6)

As a result, the time evolution operator is approximated
as

e−iH̃ t/h̄ =
∞∑

k=0

24∑
q=1

e±iEkq t/h̄|ψkq〉〈ψkq |. (B7)

Neglecting the the second-order terms, we obtain the conver-
sion probability as

Pt→s = 1

4Z

∞∑
m=0

4∑
j,k=1

e−βmh̄ω

×
∣∣∣∣∣

16∑
q=1

〈ť |〈χn
k

∣∣ϕq

〉 〈
ϕq

∣∣χn
j

〉|š〉e−iEmq t/h̄

∣∣∣∣∣
2

= 1

4Z

∞∑
m=0

4∑
j,k=1

e−βmh̄ω|Dmjk|2, (B8)

where the coefficients Dmjk are listed in Table III.

[1] G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal,
Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature
(London) 446, 782 (2007).

[2] H. Lee, Y.-C. Cheng, and G. R. Fleming, Science 316, 1462
(2007).

[3] E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer,
and G. D. Scholes, Nature (London) 463, 644 (2010).

[4] S. Yang, D. Z. Xu, and C. P. Sun, J. Chem. Phys. 132, 234501
(2010).

[5] H. Dong, D. Z. Xu, and C. P. Sun, e-print arXiv:1102.0960.
[6] J.-Q. Liao, J. F. Huang, L. M. Kuang, and C. P. Sun, Phys. Rev.

A 82, 052109 (2010).
[7] K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers,

P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, Nature
(London) 453, 387 (2008).

[8] C. T. Rodgers and P. J. Hore, Proc. Nat. Acad. Sci. 106, 353
(2009).

[9] I. K. Kominis, Phys. Rev. E 80, 056115 (2009); J. A. Jones and
P. J. Hore, Chem. Phys. Lett. 488, 90 (2010).

[10] J. F. Derry, Human Nature Rev. 4, 124 (2004).
[11] K. Schulten, C. E. Swenberg, and A. Weller, Z. Phys. Chem.

Neue Folge 111, 1 (1978).
[12] K. Schulten and A. Windermuth, Biophysical Effects of Steady

Magnetic Fields (Springer, Berlin, 1986).
[13] T. Ritz, S. Adem, and K. Schulten, Biophys. J. 78, 707

(2000).
[14] M. Zapka, D. Heyers, C. M. Hein, S. Engels, N.-L. Schneider,

J. Hans, S. Weiler, D. Dreyer, D. Kishkinev, J. M. Wild, and
H. Mouritsen, Nature (London) 461, 1274 (2009).

[15] J. M. Cai, G. G. Guerreschi, and H. J. Briegel, Phys. Rev. Lett.
104, 220502 (2010).

[16] J. M. Cai, Phys. Rev. Lett. 106, 100501 (2011).
[17] E. M. Gauger, E. Rieper, J. J. L. Morton, S. C. Benjamin, and

V. Vedral, Phys. Rev. Lett. 106, 040503 (2011).

032707-8

http://dx.doi.org/10.1038/nature05678
http://dx.doi.org/10.1038/nature05678
http://dx.doi.org/10.1126/science.1142188
http://dx.doi.org/10.1126/science.1142188
http://dx.doi.org/10.1038/nature08811
http://dx.doi.org/10.1063/1.3435213
http://dx.doi.org/10.1063/1.3435213
http://arXiv.org/abs/1102.0960
http://dx.doi.org/10.1103/PhysRevA.82.052109
http://dx.doi.org/10.1103/PhysRevA.82.052109
http://dx.doi.org/10.1038/nature06834
http://dx.doi.org/10.1038/nature06834
http://dx.doi.org/10.1073/pnas.0711968106
http://dx.doi.org/10.1073/pnas.0711968106
http://dx.doi.org/10.1103/PhysRevE.80.056115
http://dx.doi.org/10.1016/j.cplett.2010.01.063
http://dx.doi.org/10.1524/zpch.1978.111.1.001
http://dx.doi.org/10.1524/zpch.1978.111.1.001
http://dx.doi.org/10.1016/S0006-3495(00)76629-X
http://dx.doi.org/10.1016/S0006-3495(00)76629-X
http://dx.doi.org/10.1038/nature08528
http://dx.doi.org/10.1103/PhysRevLett.104.220502
http://dx.doi.org/10.1103/PhysRevLett.104.220502
http://dx.doi.org/10.1103/PhysRevLett.106.100501
http://dx.doi.org/10.1103/PhysRevLett.106.040503


GENERALIZED HOLSTEIN MODEL FOR SPIN-DEPENDENT . . . PHYSICAL REVIEW A 85, 032707 (2012)

[18] C. Y. Cai, Q. Ai, H. T. Quan, and C. P. Sun, Phys. Rev. A 85,
022315 (2012).

[19] G. C. Schatz, Quantum Mechanics in Chemistry (Dover
Publications, New York, 2002).

[20] T. Holstein, Ann. Phys. 8, 325 (1959).

[21] J. H. Van Vleck, Phys. Rev. 41, 208
(1932).

[22] O. M. Jordahl, Phys. Rev. 45, 87 (1934).
[23] J. J. Sakurai, Modern Quantum Mechanics, (Benjamin Cum-

mings, Menlo Park, 1985).

032707-9

http://dx.doi.org/10.1103/PhysRevA.85.022315
http://dx.doi.org/10.1103/PhysRevA.85.022315
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1103/PhysRev.41.208
http://dx.doi.org/10.1103/PhysRev.41.208
http://dx.doi.org/10.1103/PhysRev.45.87

