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Sensitive chemical compass assisted by quantum criticality
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A radical-pair-based chemical reaction might be used by birds for navigation via the geomagnetic direction.
The inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of
the radical pair could respond to a weak magnetic field and be sensitive to the direction of such a field; this then
results in different photopigments to be sensed by the avian eyes. Here, we propose a quantum bionic setup,
inspired by the avian compass, as an ultrasensitive probe of a weak magnetic field based on the quantum phase
transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical
products via recombination from the singlet state is determined by the Loschmidt echo of the environments with
interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of detection of
weak magnetic fields.
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I. INTRODUCTION

Since Schrödinger questioned “What is life?” from the
general point of view of a quantum physicist [1], scientists have
never stopped long-term exploration of the physical sources of
living phenomena, and this even stimulated the enthusiasm
for the great discovery of the DNA genetic molecule [2].
Today it seems trivial to say that life has a quantum nature,
for the molecules composing living organisms obey quantum
laws, but some recent discoveries are very intriguing as some
optimized living processes may be based on a nontrivial quan-
tum effect from quantum coherence. One example on point is
the photosynthesis process. Recent experiments using two-
dimensional optical spectroscopy have been able to exactly
determine the time scales of various transfer processes and then
show quantum coherence effects in energy transfer via collec-
tive excitations of some light-harvesting complexes [3–5].

Another prototype of the quantum coherence effect in a
living process seems to appear in avian magnetoreception
mechanisms [6,7], verified by some recent experiments [8–12].
Recently quantum information approaches have been used to
further analyze the role of the quantum coherence phenomenon
in avian magnetoreception models [13–16]. It is now believed
[17,18] that magnetoreception is based on the radical-pair
mechanism (RPM) [6]: a radical-pair molecule with two
unpaired electrons is activated by light. When the electrons
interact with their individual nuclear environments via hyper-
fine couplings, the spin singlet state will transit to spin triplet
states even though the external field is uniform and rather
weak. In response to this quantum coherent transition, the field-
dependent change in the product yield of the radical-pair-based
chemical reaction is enough to be sensed by the avian retina.

In spite of the rapid progress in the understanding of the
RPM in the last decade, the answers to two key questions re-
main elusive [17]: why does the singlet-triplet interconversion
respond to the extremely weak geomagnetic field (∼10−5 T),
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and why is it very sensitive to the field’s direction? We note that
the existence of nuclear environments surrounding the electron
spins in the radical-pair molecule is crucial to the magnetic
sensitivity of the chemical reaction. This observation motivates
us to consider the role of internal quantum correlation in each
environment. In this paper, following this idea, we propose
a quantum-phase-transition-assisted setup as a probe of a
weak magnetic field. Actually, many real-world detectors are
built based on dramatic changes of systems around phase
transitions, which amplify an ultraweak signal and thus enable
one to probe it. Examples include bubble chamber detectors
[19] and superconducting single-photon detectors [20], where
the liquid-gas phase transition and superconductor-metal phase
transition take place, respectively, enhancing the sensitivity of
detection. We calculate the corresponding chemical product
yield, which is phenomenologically described by a damping
process [21]. It is discovered that the chemical product yield is
determined by the time integral of the Loschmidt echo (LE).
Our result shows that achemical compass assisted by quantum
criticality indeed can respond to a very weak magnetic field
and be sensitive to its direction.

This paper is organized as follows: In the next section,
we introduce our model describing a chemical compass
assisted by a quantum phase transition (QPT) and diagonalize
the total Hamiltonian by means of the Born-Oppenheimer
approximation. Then we obtain the product yield of the singlet
state in terms of the LE. In Sec. IV, we discuss the possibility
of application in present experimental setups. Finally, we
summarize the main points in the Conclusions. In addition, for
the sake of self-consistency, we present the relation between
the product yield and the LE and detailed calculations for
the case at finite temperature and the case without interaction
between nuclear spins in Appendixes A, B, and C, respectively.

II. QUANTUM-PHASE-TRANSITION-ASSISTED
RADICAL-PAIR MECHANISM

Our setup is illustrated in Fig. 1. Each of the two
electrons in the radical pair is uniformly coupled to its own
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FIG. 1. (Color online) Model setup of sensitive magnetodetection
based on a radical-pair chemical reaction assisted by quantum critical
environments consisting of interacting spins. Two spins can be
initially prepared in the singlet state and finally evolve into triplet
states due to the couplings to their environments. The yield of the
corresponding chemical product responds sensitively to the external
magnetic field.

quantum-correlated environment, which can be described by
a transverse-field Ising (TFI) model [22,23]. In an exter-
nal magnetic field B(cos θx̂ + sin θ ẑ), which may be the
geomagnetic field, the environment is described by H ′

n =
Hn + (gNμNB/2)

∑
j sin θI z

n,j with

Hn = J

N∑
j=1

(
I z
n,j I

z
n,j+1 + λIx

n,j

)
, (1)

where λ = gNμNB cos θ/(2J ) is the rescaled strength of the
transverse field in units of J , the Ising coupling constant,
gNμN is the nuclear magnetic moment, and n = 1,2 refers
to the environment of the nth electron. I x

n,j and I z
n,j are

Pauli matrices of the j th nuclear spin operators. In the case
of an antiferromagnetic Ising chain, i.e., J > 0, we can
omit the longitudinal terms and H ′

n ≈ Hn since they lead
to only higher-order correction [24]. Here, in contrast to
previous studies [6,16–18,21,25], we explicitly consider the
internucleus coupling I z

n,j I
z
n,j+1. This coupling competes with

the Zeeman energy, which is proportional to the geomagnetic
field, and leads to a QPT at the critical point λ = 1. A central
spin uniformly coupled with each spin in this TFI system
possesses dynamic sensitivity described by the sharp decay
of the LE near the QPT [26], which has been experimentally
verified [24,27,28].

The two unpaired electrons in the radical pair couple to the
two environments E1 and E2 respectively with the following
Hamiltonians:

Vn = � sin θσ z
n + � cos θσ x

n + Jgσx
n

∑
j

I x
n,j , (2)

where σx
n and σ z

n for n = 1,2 are the Pauli operators for the
nth electron spin, and the dimensionless coupling constant
scales as g = g0/

√
N in the Van Hove limit for the interacting

many-body system. All the information about the geomagnetic
field is also incorporated in θ and �, which is the electronic
Zeeman energy splitting induced by the geomagnetic field.

Due to the spin-flip terms, the time evolution governed by
the total Hamiltonian H = ∑

n(Hn + Vn) can be solved only
with some approximation. Usually the electron spins evolve
faster than the nuclear spins. Thus we can first regard nuclear
spins as c numbers for formally diagonalizing the electronic
Hamiltonian Vn through a generalized Born-Oppenheimer
approximation [29]. The eigenstates of the electron spins are
obtained as

|+〉 = cos(α/2)|↑〉 + sin(α/2)|↓〉, (3)

|−〉 = sin(α/2)|↑〉 − cos(α/2)|↓〉, (4)

where |↑〉 (|↓〉) is the spin-up (spin-down) state in the σx

representation with corresponding eigenvalues E± = ±E for

E =
√

�2 sin2 θ + �2, (5)

� = � cos θ + Jg
∑

j

I x
n,j . (6)

The mixing angle is defined as

α = π

2
− tan−1

(
�

�
sin θ

)
. (7)

For the weak coupling (Jg0 	 �) of an electron to nuclei
we approximately obtain the eigenstates

|+〉 
 cos θ ′|↑〉 + sin θ ′|↓〉, (8)

|−〉 
 sin θ ′|↑〉 − cos θ ′|↓〉 (9)

to the zeroth order of g for

θ ′ = 1

2

(
π

2
− θ

)
(10)

and the eigenenergy

E 
 � + Jg cos θ
∑

j

I x
n,j (11)

to the first order. The Born-Oppenheimer approximation shows
that the slowly varying nuclear spins will not induce a
coherent transition of the quickly varying electronic degrees,
but the electronic motion provides an effective potential for
the nuclear spins. In this sense, the total Hamiltonian is
approximately rewritten as

H 

∑

n

(H+
n |+〉〈+| + H−

n |−〉〈−|), (12)

where the different effective Hamiltonians for the nuclear spins
corresponding to states |±〉 are

H±
n = J

∑
j

[
I z
n,j I

z
n,j+1 + (λ ± g cos θ )I x

n,j

] ± �. (13)

It can be proven that the Born-Oppenheimer approximation is
generally valid even for such a large N that a QPT occurs.

III. PRODUCT YIELD AND LOSCHMIDT ECHO

The radical pair is assumed to be initially in the singlet
state |S〉 which subsequently undergoes the homogeneous
interaction V = ∑

n Vn with the environmental nuclear spins.
Then the radical pair undergoes a singlet-to-triplet transition.
The charge recombination of the radical pair goes through dif-
ferent channels, depending on the electron-spin state (singlet
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or triplet). In particular, the singlet-state product yield formed
by the reaction of radical pairs can be calculated as [21]

	S(t) =
∫ t

0
rc(t)fS(t)dt, (14)

where rc(t) is the radical reencounter probability distribution
and fS(t) = 〈S|ρe(t)|S〉 the singlet-state population at time t .
Usually it is assumed [21] that

rc(t) = kS exp (−kSt) (15)

with kS the recombination rate. The ultimate product yield
	S ≡ 	S(t → ∞) in cryptochrome is believed to affect the
visual function of animals [6]. In order to quantitatively
describe the magnetic-field sensitivity of the radical-pair
reaction, we shall resort to the magnetoreception sensitivity
[25]

�(θ ) = ∂	S/∂θ. (16)

In addition, we remark that the singlet-state product yield of the
form given in Eq. (14) was derived from a phenomenological
master equation, which might mask some underlying quantum
coherence effect as pointed out in Ref. [13]. Therefore, we
proposed a generalized Holstein model to describe the micro-
scopic mechanism underlying the spin-dependent chemical
reactions [30].

For nuclear spins initially in the mixed state ρ1 ⊗ ρ2, the
initial state of the total system is ρ(0) = |S〉〈S| ⊗ ρ1 ⊗ ρ2. Fur-
thermore, we assume that the initial states of the environments
of the two electrons are identical, i.e., ρ1 = ρ2 = ρ. Under
these circumstances, one can find that the reduced density
matrix for the electron spins has the simple form (as shown in
Appendix A)

ρe(t) = 1
2 [|+ −〉〈+ −|+ |−+〉〈−+|
−L(t)|+−〉〈−+|− L(t)|−+〉〈+−|], (17)

where

L(t) = |tr[U+ρ(U−)†]|2 (18)

is just the Loschmidt echo characterizing the dynamic sensi-
tivity of the environment in response to the perturbation [26],
and U± = exp(−iH±t). Thus it is found that the singlet-state
population fS(t) = 1

2 [1 + L(t)], which leads to the central
result of our paper

	S = 1

2
+ 1

2
kS

∫ ∞

0
L(t)e−kS t dt. (19)

Hereafter, we calculate the product yield for identical
environments in an initial pure state, which corresponds to the
case with absolute zero temperature. In this case, the initial
state can be described by a state vector |G〉 and the LE is
simplified as

L(t) = |〈G| exp(iH−t) exp(−iH+t)|G〉|2, (20)

which was explicitly given in Ref. [26]. In the following
we take two specific cases into account. First, we consider
the large-N case since the QPT usually occurs in this limit.

Using the analytical results for L(t) obtained in Ref. [26], we
approximate the product yield around the critical point as

	S 
 1

2
+ exp

(
k2
S

4γ

) √
πk2

S

2γ

[
1 − erf

(
kS

2
√

γ

)]
, (21)

where erf(x) is the error function, and

γ = 8J 2g2NK3
c cos2 θ

3π (1 − λ)2
(22)

with Kc the cutoff momentum. For a sufficiently small kS , i.e.,
kS 	 2

√
γ , the product yield is approximated as

	S ≈ 1

2
+ πkS |1 − λ|

16Jg cos θ

√
6

NK3
c

. (23)

Since ∂	S/∂λ is discontinuous when λ = 1, it may serve as
an indicator of the QPT.

In the opposite case, we consider a small N , where the above
analysis fails. Therefore, we shall deal with it separately. For
N = 2, we obtain explicitly

L(t) = 1 −
16g2 cos2 θ sin2[

√
1 + 4λ2+(θ )t]

[1 + 4λ2−(θ )][1 + 4λ2+(θ )]
, (24)

where

λ±(θ ) = λ ± g cos θ. (25)

This shows that the setup for a small N cannot work as well
as for a large N .

The above results are obtained for an ideal case with pure
states. For practical purposes, we need to consider cases at
finite temperatures. For the system considered in this paper,
the LE at finite temperature can be calculated analytically as
shown in Appendix B. In order to illustrate the result for a
very large N , we numerically plot the product yield 	S vs
the magnitude B and direction θ of the magnetic field at a
finite temperature in Fig. 2. The product yield displays obvious
dependence on both the geomagnetic field’s magnitude and its
direction. In addition, there is a deep valley around the top left
corner. This can be seen from the fact that the LE decays in a
Gaussian way around the critical point λ 
 1. Additionally, in

θ(deg)

B
/
B

0

 

 

0 30 60 90

0.5

1

1.5

2

0.6

0.7

0.8

0.9

FIG. 2. (Color online) The product yield 	S vs the magnitude B

and direction θ of the magnetic field at a finite temperature kBT =
0.2J with N = 1000, g0 = 1, kS = 0.1J , J = 100 Hz, gN = 1.905,
and B0 = 50 μT.
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FIG. 3. (Color online) The product yield 	S and its derivative vs the geomagnetic field’s direction θ (in degrees) for different T ’s with
kS = 0.1J , N = 1000, g0 = 1, gNμNB/2 = 0.9J , and J = 100 Hz: blue dashed line for kBT = 0.01J , green solid line for kBT = 0.3J , and
red dash-dotted line for kBT = 0.9J .

the regions far away from the critical point, e.g., at the top left
and bottom right corners, the product yield stays nearly unity
for the LE scarcely decays.

Furthermore, in order to investigate the influence of other
parameters, we plot the product yield and its derivative vs
direction for different temperatures in Fig. 3. The similarity
among the cases at different temperatures is that there is a peak
in �(θ ) as it increases from zero at θ = 0. It is seen that, as the
temperature increases, the position of the peak moves toward
θ = π/2; meanwhile the line shape on the left-hand side
becomes more and more flat. In the high-temperature limit,
we would expect a sharp peak around θ = π/2, while there
is a plateau elsewhere. In this case, the device can no longer
discriminate the direction. This is a reasonable result since
a QPT takes place at absolute zero, and a high temperature
smears the QPT. When we come to the hyperfine coupling
strength g0 in Fig. 4, we see that the situation becomes more
complicated. As the coupling strength increases, the difference
between the maximum and minimum of the product yield
is enlarged. At the same time, the plateau in the small-θ

region becomes wider and wider. Therefore, in order to attain
a considerable sensitivity for a broad region of direction, a
moderate hyperfine coupling strength is required, e.g., g0 ∼ 1.
In addition, we observe that the more slowly the singlet
state reacts, the more the product yield changes along with
the direction. That is because a reaction with a smaller
recombination rate provides more time for the decay of the
LE. This observation is consistent with the result in Ref. [17].
In addition, as the environment involves more nuclear spins,
the visibility rises as the LE decays faster for a larger N .

IV. COMPARISON AND DISCUSSION

In this paper, we consider a quantum compass model
with the sensitivity enhanced by quantum criticality in the
nuclear environment. In order to show that this enhancement
is induced by the interactions between nuclear spins, we shall
make a comparison between the results with and without the
interactions. Based on the calculation in Appendix C, in the
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FIG. 4. (Color online) The product yield 	S and its derivative vs the geomagnetic-field direction θ (in degrees) for different g0’s with
N = 1001, gNμNB/2 = J , T = 0, and J = 100 Hz: green solid line for g0 = 0.1, blue dashed line for g0 = 0.5, red dot-dashed line for
g0 = 1, and black dotted line for g0 = 5.
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large-N and small-kS regime, we obtain the sensitivity for the
case without interactions between nuclear spins as

�non(θ ) = −2 sin3 θ

N cos5 θ
, (26)

which diminishes as N approaches infinity. In contrast, the
counterpart for the case with the interactions between nuclear
spins reads

�(θ ) = πkS |1 − λ| sin θ

16Jg0 cos2 θ

√
6

K3
c

, (27)

which obviously remains a nonvanishing value in the infinite-
N limit. Therefore, due to the presence of the interaction
between nuclear spins, the sensitivity of magnetoreception is
strengthened.

As far as the validity of our model is concerned, the
question is whether the environments of the electrons are
near the critical point. To show this, we can consider some
basic organic molecules, such as diethyl-fluoromalonate in
Ref. [27] or trichloroethylene in Ref. [24]. The coupling
constants between nuclear spins in these molecules are about
102 Hz. For nuclear spins, gN is of order 1 and μN is of
order 10−27 J T−1. Furthermore, the geomagnetic field B0 is
of order 10−5 T. Thus, we have the strength of the transverse
field gNμNB0/2 of order 102 Hz which indeed keeps the
nuclear spins in these molecules in the regime near the critical
point. On the other hand, the product yield may not respond
to the variation of the geomagnetic-field direction as the
temperature rises. In order to make our scheme work at a
sufficiently high temperature, i.e., kBT ∼ J , we shall require
a sufficiently large coupling constant between nuclear spins in
the environment. Fortunately, recent progress in experiments
provides us with better parameters, e.g., J ∼ meV in Ref. [31],
which corresponds to T ∼ 80 K.

V. CONCLUSION

We propose a RPM-based magnetodetection scheme as-
sisted by a QPT. We have proved that the yield of the chemical
product obtained via recombination from the singlet state
is determined by the LE of the environment. This relation
results in enhanced sensitivity of the RPM-based chemical
compass. Thus, our study not only provides important insights
into the mechanism of magnetoreception through a radical-
pair process in a very weak field, but also sheds light on
construction of a quantum bionic device for ultrasensitive
magnetic-field sensing. In addition, in our bionic setup, the
sensitivity is pronounced when the nuclear spin number is
large and the recombination rate is small.

It may be argued that in realistic molecules, the environ-
ments of radical pairs consist of a few rather than numerous
nuclei, i.e., N → ∞ for a QPT. But experiments [24,27,28]
have demonstrated that even for N = 2, there still exists
dynamic sensitivity induced by quantum criticality. This result
implies that dynamic sensitivity may have a close relation with
a level crossing. In addition, although our scheme requires a
very low temperature for the current experimental parameters,
its importance also lies in the possibility of a bionic setup for
sensitive magnetodetection. Last but not least, our results are

based on the TFI model, but the enhancement of LE decay
due to the QPT is independent of the model [32]. Thus it is
reasonable to infer that all the results obtained from the TFI
model can be generalized to other models as well, such as the
so-called long-range TFI model or the Lipkin-Meshkov-Glick
model [23]. Detailed studies of these generalization will be
given in a forthcoming presentation.
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APPENDIX A: RELATIONSHIP BETWEEN THE PRODUCT
YIELD AND THE LOSCHMIDT ECHO

In this Appendix, we will present the relationship between
the singlet-state product yield and the LE of the environments.
In Sec. II, we found that the total Hamiltonian can be written
as

H =
∑
n=1,2

(H+
n |+〉nn〈+| + H−

n |−〉nn〈−|), (A1)

where H±
n are the Hamiltonians of the nth electron’s envi-

ronment and |±〉n are the states of the nth electron’s spin.
By noting that the identity operator on the nth electron spin’s
Hilbert space can be written as |+〉nn〈+| + |−〉nn〈−|, we find

H = |+〉11〈+| ⊗ (|+〉22〈+| + |−〉22〈−|) ⊗ H+
1

+ |−〉11〈−| ⊗ (|+〉22〈+| + |−〉22〈−|) ⊗ H−
1

+ (|+〉11〈+| + |−〉11〈−|) ⊗ |+〉22〈+| ⊗ H+
2

+ (|+〉11〈+| + |−〉11〈−|) ⊗ |−〉22〈−| ⊗ H−
2 . (A2)

For simplicity, |±〉1 ⊗ |±〉2 is denoted by | ± ±〉 and the above
formula can be rewritten as

H = |++〉〈++| ⊗ (H+
1 + H+

2 )

+|−−〉〈−−| ⊗ (H−
1 + H−

2 )

+|+−〉〈+−| ⊗ (H+
1 + H−

2 )

+|−+〉〈−+| ⊗ (H−
1 + H+

2 ). (A3)

Thus one finds that this Hamiltonian does not lead to a
transition between two different electron spin states, e.g.,
the transition between |−−〉 and |+−〉 is forbidden. For the
system we considered, the initial state of the electron spins is
a singlet state, i.e., |S〉 = (|+−〉 − |−+〉)/√2. Therefore the
electron spin system will evolve in the subspace V = span{|+
−〉,|−+〉}. Confined in this subspace, the Hamiltonian of the
total system can be written in the following matrix form (in
the basis {|+−〉,|−+〉}):

H |V =
[

H+
1 + H−

2 0

0 H−
1 + H+

2

]

=
[

H+
1 0

0 H−
1

]
⊗

[
H−

2 0

0 H+
2

]
, (A4)
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and the corresponding evolution operator is

U (t) = exp(−iH |V t)

=
[

U+
1 (t) 0

0 U−
1 (t)

]
⊗

[
U−

2 (t) 0

0 U+
2 (t)

]
, (A5)

where U±
n (t) = exp(−iH±

n t) for n = 1,2. Thus the state of
the total system at time t is ρ(t) = U (t)ρ(0)U †(t), and since
ρ(0) = |S〉〈S| ⊗ ρ1 ⊗ ρ2 its explicit expression is

ρ(t) = 1
2 [|+−〉〈+−| ⊗ U+

1 ρ1(U+
1 )† ⊗ U−

2 ρ2(U−
2 )†

+ |−+〉〈−+| ⊗ U−
1 ρ1(U−

1 )† ⊗ U+
2 ρ2(U+

2 )†

− |+−〉〈−+| ⊗ U+
1 ρ1(U−

1 )† ⊗ U−
2 ρ2(U+

2 )†

− |−+〉〈+−| ⊗ U−
1 ρ1(U+

1 )† ⊗ U+
2 ρ2(U−

2 )†]. (A6)

For the above state of the total system at time t , the reduced
density matrix for the electron spins ρe(t) = trN [ρ(t)] reads

ρe(t) = 1
2 [|+−〉〈+−| +|−+〉〈−+|
−D(t)|+−〉〈−+| − D∗(t)|−+〉〈+−|], (A7)

where we have used trρn = 1 for n = 1,2, and

D(t) = tr[U+
1 ρ1(U−

1 )†]tr[U−
2 ρ2(U+

2 )†] (A8)

is the decoherence factor. When the initial states of the
environments of the two electrons are identical, i.e., ρ1 = ρ2 =
ρ, D(t) is real and can be simplified to

L(t) = |tr[U+ρ(U−)†]|2, (A9)

which is the LE of the environment. Then the singlet-state
population is

fS(t) ≡ 〈S|ρe(t)|S〉
= 1

2 [1 + L(t)], (A10)

which leads to the product yield as

	S = 1

2
+ 1

2
kS

∫ ∞

0
L(t)e−kS t dt. (A11)

Thus we have established the central result of our paper, which
reveals the direct relationship between the product yield and
the LE.

APPENDIX B: LOSCHMIDT ECHO AT FINITE
TEMPERATURE

In this Appendix, we will give the explicit expression for
the LE at finite temperature via the method in current paper.
In this paper, we are mainly concerned with the TFI model
described by the Hamiltonian

H (λ) = J
∑

j

(
I z
j I z

j+1 + λIx
j

)
. (B1)

After a combination of Jordan-Wigner and Fourier transfor-
mations, for a sufficiently large N ,

H =
∑
k>0

Hk, (B2)

where

Hk = ηk(c†kck + c
†
−kc−k) − i�kc

†
kc

†
−k + H.c., (B3)

ηk(λ) = −2J (λ − cos k), (B4)

�k = −2J sin k, (B5)

and c
†
k (ck) are the creation (annihilation) operations after the

transformations. Here we have discarded the constant terms
because they do not contribute to the LE.

Since there are two invariant subspaces spanned by |00〉k,−k

and |11〉k,−k , |01〉k,−k and |10〉k,−k , respectively, the above
Hamiltonian reads Hk = H odd

k ⊕ H even
k . Here, for the subspace

with an odd number of total excitations,

H odd
k = ηk1k,−k, (B6)

where 1k,−k ≡ |01〉k,−k〈01|k,−k + |10〉k,−k〈10|k,−k . By sub-
tracting the constant ηk , we have

H odd
k = 02. (B7)

For the subspace with an even number of total excitations, on
subtracting the same constant ηk , we have

H even
k = ηkσ

z
k + �kσ

y

k . (B8)

By rotating around the x axis with the angle θk , we diagonalize
the Hamiltonian as

H even
k = εkS

z
k , (B9)

where the eigenenergy is

εk =
√

η2
k + �2

k, (B10)

and the mixing angle θk is determined by

sin θk = �k

εk

, (B11)

cos θk = ηk

εk

. (B12)

In total,

Hk = εkS
z
k ⊕ 02. (B13)

Hereafter, we shall calculate the thermal state of the
environment as

exp(−βH ) =
∏
k>0

[
exp

( − βε−
k Sz

k

) ⊕ 1k,−k

]
(B14)

and

tr exp(−βH ) =
∏
k>0

Zk, (B15)

where

Zk = 2 + 2 cosh(βε−
k ). (B16)

As a result, the normalized density matrix for a thermal state
reads

ρ =
∏
k>0

1

Zk

[
exp

( − βε−
k Sz

k

) ⊕ 1k,−k

]
. (B17)

For the two relevant Hamiltonians

H± = H (λ±(θ )), (B18)
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the corresponding evolution operators are

U± =
∏
k>0

[
exp

( − iε±
k Sz

k t
) ⊕ 1k,−k

]
, (B19)

where

ε±
k =

√
(η±

k )2 + �2
k, (B20)

η±
k = ηk(λ±(θ )). (B21)

Therefore, for two environments in the same initial state,
the LE L(t) ≡ |tr(U+ρU

†
−)|2 reads

L(t) =
∏
k>0

A2
k + B2

k

[1 + cosh(βε−
k )]2

, (B22)

where

Ak = [cos2 αk cos(ε+
k − ε−

k )t + sin2 αk cos(ε+
k + ε−

k )t]

× cosh(βε−
k ) + 1, (B23)

Bk = [cos2 αk sin(ε+
k − ε−

k )t − sin2 αk sin(ε+
k + ε−

k )t]

× sinh(βε−
k ), (B24)

αk = 1
2 (θ−

k − θ+
k ), (B25)

θ±
k = tan−1(�k/η

±
k ). (B26)

Having obtained the above result independently, we found
that it had already been given in Ref. [33]. We remark that the
LE here is defined differently from in Ref. [34].

APPENDIX C: PRODUCT YIELD WITHOUT
INTER-NUCLEAR-SPIN COUPLINGS

In order to investigate the effect of the inter-nuclear-spin
couplings, we calculate the product yield without them. The
relevant Hamiltonian is

H = h(1) + h(2) (C1)

with

h(k) = 1
2geμB

�B · �σk + 1
2gNμN

�B · �Ik + gσx
k I x

k , (C2)

where we have defined the collective operators

Iα
k =

N∑
j=1

Iα
kj (α = x,y,z), (C3)

I±
k = 1

2

(
I x
k ± iI

y

k

)
, (C4)

which in combination with the basis {|j,m〉} satisfy

1
2I z

k |j,m〉 = m|j,m〉, (C5)

I±
k |j,m〉 =

√
(j ∓ m)(j ± m + 1)|j,m ± 1〉. (C6)

Having rotated the system around the y axis with angle
π/2 − θ , we obtain

h
(k)
rot = 1

2geμBBσz
k + 1

2gNμNBIz
k

+ g
(

sin θσ x
k + cos θσ z

k

)(
sin θI x

k + cos θI z
k

)
. (C7)

Furthermore, under the rotating-wave approximation, the
Hamiltonian is approximated as

h
(k)
eff 
 1

2geμBσ z
k + 1

2gNμNIz
k + g cos2 θσ z

k I z
k

+ g sin2 θ (σ+
k I−

k + σ−
k I+

k ). (C8)

Hereafter, we will omit the subscript “eff” for simplicity.
Obviously, there are invariant subspaces of h(k) as follows:

�0 = span{|↓ 0〉},
�i = span{|↓ i〉,| ↑ i − 1〉}, 1 � i � N,

�N+1 = span{|↑ N〉},
where |↓ i〉 is short for |↓〉 ⊗ |j = N/2,m = −N/2 + i〉,
and |↑ i〉 for | ↑〉 ⊗ |j = N/2,m = −N/2 + i − 1〉. In the
invariant subspace �i , the eigenstates of

H |�i
=

(
Hi1 Hi2

Hi2 Hi3

)
(C9)

with matrix elements

Hi1 = geμB

2
B −

(
N

2
− i + 1

)
(gNμNB + 2g cos2 θ ),

(C10)

Hi2 = g sin2 θ
√

i(N − i + 1), (C11)

Hi3 = −geμB

2
B −

(
N

2
− i

)
(gNμNB − 2g cos2 θ ) (C12)

are straightforwardly obtained as

|E+
i 〉 = cos αi |↑ i − 1〉 + sin αi |↓ i〉, (C13)

|E−
i 〉 = − sin αi |↑ i − 1〉 + cos αi |↓ i〉 (C14)

with eigenenergies

E±
i = 1

2

[
(Hi1 + Hi3) ±

√
(Hi1 − Hi3)2 + 4H 2

i2

]
. (C15)

Here, the mixing angle αi satisfies

(Hi1 − E+
i ) cos αi + Hi2 sin αi = 0. (C16)

Suppose the initial state of the electron pair is a singlet
state, and the two nuclear ensembles are in their ground states.
The initial state |ψ(0)〉 = |S〉 ⊗ |0〉 ⊗ |0〉 can be rewritten in
the above eigenbasis as

|ψ(0)〉 = 1√
2

[cos α1(|E+
1 E0〉 − |E0E

+
1 〉)

− sin α1(|E−
1 E0〉 − |E0E

−
1 〉)]. (C17)

At time t , the total system evolves into

|ψ(t)〉 = 1√
2

[cos α1e
−i(E+

1 +E0)t (|E+
1 E0〉 − |E0E

+
1 〉)

− sin α1e
−i(E−

1 +E0)t (|E−
1 E0〉 − |E0E

−
1 〉)]

= [e−i(E+
1 +E0)t cos2 α1 + e−i(E−

1 +E0)t sin2 α1]|S00〉
+ [e−i(E+

1 +E0)t − e−i(E−
1 +E0)t ]

sin(2α1)

2
√

2
|T−〉

⊗ (|10〉 − |01〉), (C18)
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where |T−〉 = |↓↓〉 and

E0 = 1

2
(geμB + NgNμN )B + N

2
g cos2 θ. (C19)

Therefore, the probability of the electron spins being in the
singlet state is

fS(t) = 1 − sin2(2α1) sin2(E+
1 − E−

1 )t. (C20)

The corresponding product yield is

	S = 1 − 2

ζ
Ng2 sin4 θ, (C21)

where

ζ =
[(

geμB

2
− gNμN

)
B + 2(N − 1)g cos2 θ

]2

+ k2
S + 4Ng2 sin4 θ. (C22)
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