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Quantum Fisher information of the Greenberger-Horne-Zeilinger state in decoherence channels
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Quantum Fisher information of a parameter characterizes the sensitivity of the state with respect to changes
of the parameter. In this article, we study the quantum Fisher information of a state with respect to SU(2)
rotations under three decoherence channels: the amplitude-damping, phase-damping, and depolarizing channels.
The initial state is chosen to be a Greenberger-Horne-Zeilinger state of which the phase sensitivity can achieve
the Heisenberg limit. By using the Kraus operator representation, the quantum Fisher information is obtained
analytically. We observe the decay and sudden change of the quantum Fisher information in all three channels.
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I. INTRODUCTION

Fisher information plays a central role in estimation theory
[1,2]. It quantifies the information that we can extract about
a parameter from a probability distribution [e.g., P (x|θ )
characterized by a parameter θ , with x the random variable].
A larger Fisher information means that we can estimate
the parameter with a higher precision. Quantum Fisher
information (QFI) [1–4] is the extension of Fisher information
in a quantum regime, and the extension is natural since the
description of quantum mechanics is essentially probabilistic.
It is related to Ulhmann’s fidelity [5–8] and is proportional
to the Bures metric [4,9,10], which is the metric of the
state space. Moreover, QFI characterizes the sensitivity of
a state with respect to the perturbation of the parameter.
The parameter to be estimated is usually associated with the
frequency of the system, the phase difference gained during
the evolution, and the strength of an external field. How to
improve the precision of parameter estimation has been the
focus of research for many years [11], and is of important
applications in quantum technology like quantum frequency
standards [12], measurement of gravity accelerations [13],
clock synchronization [14], and so on.

So far, we know that entangled states are useful resources
to improve the precision of parameter estimation [11,15–29]
since entangled states are generally more sensitive than
separable states. The best estimation with separable states
is bounded by the shot-noise limit, also called the standard
quantum limit, proportional to 1/

√
N , where N is the particle

number. This precision can be improved to 1/N (i.e., the
Heisenberg limit) when we use a maximally entangled state.
However, as a tradeoff, since entangled states are usually
more sensitive to the change of the external field, they are
also sensitive to noise, thus are fragile in the presence of
decoherence [30–45]. As discussed in Ref. [30], the precision
in phase estimation with maximally entangled states reduces
to that with the separable states in the presence of Markovian
dephasing, while a recent study [44] showed that for non-
Markovian dephasing, the phase sensitivity of the maximal
entangled state can also beat the coherent spin state. In
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general, in the presence of decoherence, the Heisenberg level
estimation cannot be achieved, and the ultimate precision limit
in noisy metrology was obtained recently [45], in terms of the
Kraus operators of the decoherence channels and the initial
state.

In this article, we study the QFI of the Greenberger-Horne-
Zeilinger (GHZ) state, which is a maximally entangled state,
in the presence of decoherence. We use three decoherence
channels instead of specified physical models. The channels
are the amplitude-damping channel (ADC), phase-damping
channel (PDC), and depolarizing channel (DPC). Although
the channels seems to be toys as compared with concrete
physical models, they indeed capture the essential physics of
decoherence [5,6].

In the absence of decoherence, the phase sensitivity of
the GHZ state attains the Heisenberg limit (i.e., the error
of the phase estimation scales as 1/N ). In the presence of
decoherence, its phase sensitivity reduces due to the loss of
entanglement. The phase sensitivity refers to the sensitivity
of the state with respect to SU(2) rotations, and is characterized
by the maximal mean QFI, which is explained in Sec. II.

In this article, we obtain analytical expressions for max-
imal mean QFI in terms of decoherence strength p. Based
on these expressions, two remarkable results are found.
(a) Sudden changes of the maximal QFI are observed in all
three channels, and this sudden-change feature is similar to
that in entanglement [46–48] and spin squeezing [49]. (b) For
the ADC, after the sudden-changing point, the maximal mean
QFI returns back to the shot-noise level with the increase of the
decoherence strength. For the PDC, the maximal QFI decays
to the shot-noise level and remains unchanged in this level
with the increase of p. For the DPC, the QFI decays with the
increase of p, and at p = 1 the states becomes a fully mixed
state, which is invariant with SU(2) rotations, and the maximal
mean QFI becomes zero.

This paper is organized as follows. In Sec. II, we discuss the
QFI and introduce the maximal mean QFI. Then in Sec. III,
we present the decoherence channels and their Kraus operator
representations. Afterward, in Sec. IV, the maximal mean QFI
of the GHZ states in these decoherence channels are studied,
and analytical results are obtained. Finally, a summary is
provided in Sec. V.
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II. QUANTUM FISHER INFORMATION

In this section, we discuss the QFI and the maximal mean
QFI. First, we take the Ramsey spectroscopy as an example.
In the Ramsey spectroscopy, we estimate the phase difference
φ between the ground and excited states gained during the free
evolution. This phase difference φ is related to a physical
observable Ôφ , which measures the population difference
between the ground and excited states. The precision of
the parameter φ we can achieve is determined by the
fluctuation of the observable Ôφ , and the variance of the
parameter φ is obtained by using the error propagation relation
�φ = �Ôφ/|√Nm∂〈Ôφ〉/∂φ|, where Nm is the number of
experiments.

Generally, consider a density matrix ρ(φ), with a parameter
φ, the variance of the estimation of the parameter φ is limited
by the quantum Cramér-Rao bound [1,2]

�φ̂ � �φQCB ≡ 1√
NmF

, (1)

where φ̂ is an unbiased estimator (i.e., 〈φ̂〉 = φ). Indeed, φ̂ is
a map from the experimental data to the parameter space, and

F = tr[ρ(φ)L2
φ], (2)

is the QFI for φ derived in Refs. [1,2], with Lφ the so-called
symmetric logarithmic derivative determined by the following
equation

∂

∂φ
ρ(φ) = 1

2
[ρ(φ)Lφ + Lφρ(φ)]. (3)

The Cramér-Rao bound gives the ultimate limit for the
precision of φ that can be achieved.

Now we consider that the parameter φ is acquired by an
SU(2) rotation

ρφ = UφρU
†
φ, (4)

where Uφ = exp(iφJ�n) with

J�n = �J �n =
∑

α=x,y,z

1

2
nα σα, (5)

the angular momentum operator in the �n direction, and σα are
the Pauli matrices. With Eq. (3), we derive the explicit form
of Lφ , and then we take it into Eq. (2) to obtain

F (ρ,J�n) =
∑
i �=j

2(pi − pj )2

pi + pj

|〈i|J�n|j 〉|2 = �n C �nT , (6)

where pi and |j 〉 are the eigenvalue and eigenvector of ρ,
respectively, and �n is a normalized three-dimensional vector.
The matrix elements of the symmetric matrix C are given as

Ckl =
∑
i �=j

(pi − pj )2

pi + pj

[〈i|Jk|j 〉〈j |Jl|i〉 + 〈i|Jl |j 〉〈j |Jk|i〉].
(7)

The QFI F (ρ,J�n) is the sensitivity of the state ρ with respect
to rotations along the �n direction. If ρ is a pure state, the above
matrix can be simplified as

Ckl = 2〈JkJl + JlJk〉 − 4〈Jk〉〈Jl〉, (8)

and the QFI can be expressed as F (ρ,J�n) = 4(�J�n)2 [4].
The above QFI F (ρ,J�n) is �n dependent. Below we shall

study the maximal mean QFI [29]

F̄max = 1

N
max

�n
F (ρ,J�n) = λmax

N
, (9)

which is proved in the Appendix, where N is the number
of two-level particles, λmax is the largest eigenvalue of the
symmetric matrix C (7). From the Cramér-Rao bound given in
Eq. (1), if F̄max > 1 we have �φQCB < �φSN = 1/

√
N (Nm =

1), where �φSN denotes the shot-noise level. Furthermore,
F̄max > 1 is a sufficient condition for entanglement [28], and
for coherent spin state F̄max = 1.

Below, we study the maximal mean QFI for the GHZ state
under decoherence. Consider an N -qubit GHZ state

|ψ〉 = 1√
2

(|0〉⊗N + |1〉⊗N ), (10)

by using Eq. (7), the maximal mean QFI for GHZ state can be
computed as

F̄max = Czz

N
= 4(�Jz)2

N
= N, (11)

thus the phase sensitivity is �φ = 1/N , which attains the
Heisenberg limit.

III. DECOHERENCE CHANNELS

In this section, we present the definitions of the three
decoherence channels (ADC, PDC, and DPC), as well as their
significance in physics. In general, the decoherence channels
are given in the Kraus representation

E(ρ) =
∑

μ

EμρE†
μ, (12)

where Eμ are the Kraus operators that satisfy∑
μ

E†
μ Eμ = 1, (13)

where 1 is an identity matrix. The decoherence channels have
simple forms to deal with, and lead to theoretical predictions
being often in good agreement with experiments [5,6]. Below,
we discuss the three channels separately.

A. Amplitude-damping channel

The ADC describes the dissipation process. For a single
qubit, the Kraus operators of the ADC are

E0 = √
s|0〉〈0| + |1〉〈1|, E1 = √

p|1〉〈0|, (14)

where the decoherence strength p = 1 − s, represents the
probability of decay from the upper level |0〉 to the lower
level |1〉, with s = exp(−γ1 t/2), and γ1 is the damping rate.

The ADC is a prototype model for discussing dissipation
interactions, and is related to the relaxation time T1 = 1/γ1

in the spin resonance or superconducting qubit [6]. The
dissipation process described by the ADC can be found in the
spontaneous emission of a two-level atoms at zero temperature
in the Born-Markov approximation.
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An illustrative way to understand decoherence channels is
to employ the Bloch sphere. For ADC, the Bloch sphere is
squeezed into an ellipsoid and shifts it toward the north pole.
The radius in the x-y plane is reduced by a factor

√
s, while

in the z direction it is reduced by a factor s.

B. Phase-damping channel

The Kraus operators for the PDC are given by

E0 = √
s1, E1 = √

p|0〉〈0|, E2 = √
p|1〉〈1|. (15)

The PDC is a prototype model of dephasing or pure deco-
herence (i.e., loss of coherence of a two-level state without
any loss of the system’s energy). The decoherence strength is
comparable with a concrete dephasing model by replacing p

with 1 − exp(−γ2t/2), where γ2 is associated with the T2 =
1/γ2 relaxation in spin resonance, and is the major obstacle
in superconducting qubit based quantum computation. In
experiments with trapped ions, the motional PDC can be
implemented just by modulating the trap frequency, which
changes the phase of the harmonic motion of ions [50,51].

As a result of the action of the PDC, the Bloch sphere
is compressed by a factor (1 − 2p) in the x-y plane. In
Ref. [30], the entanglement-assisted metrology was studied
with a dephasing model, which can be described by the PDC.

C. Depolarizing channel

The Kraus operators of the DPC are given by

E0 =
√

1 − p′ 1, E1 =
√

p′

3
σx,

(16)

E2 =
√

p′

3
σy, E3 =

√
p′

3
σz,

where p′ = 3p/4. For the DPC, the spin is depolarized to the
maximally mixed state 1/2 with probability p or is unchanged
with probability s = 1 − p, thus the radius of the Bloch sphere
is reduced by a factor s, but its shape remains unchanged. The
parameter estimation of the DPC was discussed in Ref. [32]

The above three channels covers considerable types of
decoherence in experiments. Below, we shall study the
maximal mean QFI of the GHZ state in these channels.

IV. MAXIMAL MEAN QFI UNDER DECOHERENCE

After a brief overview of the decoherence channels, now
we study the maximal mean QFI of the GHZ state in these
channels. The N -qubit GHZ state can be written in the form
of a density matrix as

ρrmGHZ = |0〉〈0|⊗N + |0〉〈1|⊗N + |1〉〈0|⊗N + |1〉〈1|⊗N,

(17)

thus the density matrix ρGHZ has only four nonzero elements.
Here, we assume that the decoherence channels act on the
N qubits independently, and then the channel in Kraus
representation reads

Etotal(ρGHZ) = E(|0〉〈0|)⊗N + E(|0〉〈1|)⊗N

+ E(|1〉〈0|)⊗N + E(|1〉〈1|)⊗N, (18)

where Etotal represents the channel that acts on the total
N -qubit system, and E represents the channel for a single
qubit.

Below, we study the maximal mean QFI in the three
channels separately. The explicit form of the density matrix
ρ = Etotal(ρGHZ) is given for each channel. Then, the matrix
C in Eq. (7) can be obtained by using the eigenvalues and
eigenvectors of ρ.

Here, we first provide a main result of this article. For each
channel, the matrix C is in a diagonal form as

C =

⎡
⎢⎣

Cxx 0 0

0 Cyy 0

0 0 Czz

⎤
⎥⎦ . (19)

Moreover, we find Cxx = Cyy , therefore, we can denote C⊥ ≡
Cxx = Cyy , and the maximal mean QFI becomes

F̄max = 1

N
max{C⊥, C‖} = max{F̄⊥, F̄‖}. (20)

The above result shows that, when the GHZ state undergoes
the decoherence channels, it is most sensitive with respect
to rotations in either the z direction or the x-y plane. The
competition of the two terms leads to a sudden-change
behavior.

A. Maximal mean QFI in ADC

For the ADC, by using Eq. (14), we find the GHZ state
evolves to EADC(ρGHZ) = �1 ⊕ �2, where

�1 = 1

2

N−1∑
m=1

sN−mpm|0〉〈0|⊗(N−m)|1〉〈1|⊗m,

�2 = 1

2
[sN |0〉〈0|⊗N + sN/2|0〉〈1|⊗N

+ sN/2|1〉〈0|⊗N + (1 + pN )|1〉〈1|⊗N ]. (21)

By diagonalizing the above density matrices, we could obtain
the matrix elements in Eq. (7), and then the QFI. The matrix
�1 is already diagonal, and the eigenvalues of �2 are

λ1 = 1
2 (sN + sN/2 tan θ ),

(22)
λ2 = 1

2 [(1 + pN ) − sN/2 tan θ ],

where θ = 1
2 arctan{2sN/2/[sN − (1 + pN )]}. The corre-

sponding eigenvectors are

|ψ1〉 = cos θ |0〉⊗N + sin θ |1〉⊗N,
(23)

|ψ2〉 = cos θ |1〉⊗N − sin θ |0〉⊗N .

By inserting the above results into Eq. (7), we calculate
the matrix C straightforwardly and find that it is of the
form as Eq. (19), with Cxx = Cyy . Since in the ADC
the mean spin direction is along the z direction, we denote
C⊥ = Cxx = Cyy and C‖ = Czz, where the subscripts ⊥ and
‖ represent directions perpendicular to and parallel to the mean
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FIG. 1. (Color online) Maximal mean QFI F̄max (blue solid line)
as a function of p is plotted for (a) amplitude-damping channel,
(b) depolarizing channel, and (c) phase-damping channel. The initial
state is a five-body GHZ state, and F̄max = N − 5 at p = 0. The (red)
dotted line denotes F̄⊥, and the (green) dash-dotted line denotes F̄‖.
The horizontal dashed line denotes 1.

spin direction, respectively. We obtain

C⊥ = −N

2
(p − s)2[ pN−1 − 1 + sN−1]

+N

2∑
i=1

cos2 γ

(
λi − 1

2 s pN−1
)2

λi + 1
2 s pN−1

+ sin2 γ

(
λi − 1

2 sN−1p
)2

λi + 1
2 sN−1p

,

C‖ = 2N2sN

1 + pN + sN
. (24)

Therefore, we have

F̄max = max{F̄⊥, F̄‖} = 1

N
max{C⊥, C‖}. (25)

The results show that the maximal mean QFI is determined
by two quantities: (i) the mean QFI in the x-y plane denoted
by F̄⊥; (ii) the mean QFI in the z direction denoted by F̄‖.
According to the physical description of the QFI, F̄⊥ and
F̄‖ denote the sensitivities of the state with respect to SU(2)
rotations in the x-y plane and in the z direction, respectively.

The above results of F̄max, F̄⊥, and F̄‖ are plotted in
Fig. 1(a). There are two special points that are easy to analyze.
One of them is at p = 0, when no decoherence occurs and the
sensitivity of the GHZ state with respect to rotations along the
z direction can achieve the Heisenberg limit F̄max = F̄‖ = N ,
however, the sensitivity of the system with respect to rotations
in the x-y planes only achieve the shot-noise level F̄⊥ = 1. The
other point is at p = 1, where the state is fully populated in the
ground state |1〉 due to the relaxation nature of the ADC (i.e.,
the state is a coherent spin state pointed to the −z direction).
Thus the sensitivity of the state with respect to rotations in the
x-y plane achieves the shot-noise level (i.e., F̄⊥ = 1). On the
other hand, the state is invariant with respect to rotations along
the z direction, thus F̄‖ = 0.

When decoherence occurs (p �= 0), we find that F̄‖ decays
from N to 0 with the increase of p, while F̄⊥ decays from
1 at first and then increases to 1 at p = 1. Thus, there exist
a sudden-change point pADC

s at which F̄‖ = F̄⊥. The critical
point is at p = pADC

c , where F̄max = F̄‖ = 1, and when p �

101 102

10−1

100

 N

 p
c   

p s

 

 

 pc
ADC

 ps
ADC

 pc
DPC

 ps
DPC

 pc
PDC

FIG. 2. (Color online) Critical points pc and sudden change point
ps as functions of system size N are plotted in log-log axis. The solid
lines are analytical results of pc. For the large-N case, pc and ps are
approximately equal, and the analytical results (solid line) fit well.

pADC
c the state cannot be used to overcome the shot-noise level

estimation. The position of the critical point can be derived
approximately as

pADC
c 
 1 −

(
1

2N

)1/N

, (26)

and this is shown in Fig. 2, with numerical results. For the
large-N case, the sudden-changing point pADC

s is approxi-
mately equal to the critical point pADC

c , and the numerical
results are shown in Fig. 2.

To compare with a concrete physical model that undergoes
dissipation, we can replace the decoherence strength p with
1 − exp(−γ1t/2), where γ1 is the relaxation rate. Thus the
critical point pADC

c corresponds to a critical time

tADC
c 
 2 ln 2N

Nγ1
. (27)

For times longer than tADC
c , the GHZ state is useless for

entanglement-enhanced metrology.

B. Maximal mean QFI in PDC

The evolution under the PDC is easier to analyze. For the
GHZ state, only the two nondiagonal terms decay, and the state
becomes

EPDC(ρGHZ) = 1
2 [|0〉〈0|⊗N + |1〉〈1|⊗N ]

+ 1
2 sN [|0〉〈1|⊗N + |1〉〈0|⊗N ], (28)

which can be diagonalized readily. The matrix elements of C
is obtained as

C⊥ = N, C‖ = N2(1 − p)2N, (29)

and thus

F̄max = max{F̄⊥,F̄‖} = max{1,N (1 − p)2N }. (30)

At p = 1, the states become a classical superposition of two
coherent spin states that polarize to the z and −z directions,
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respectively, thus F̄⊥ = 1 and F̄‖ = 0, shown in Fig. 1(b).
Therefore, with the increase of p, F̄max decays from N to 1,
and the critical point

pPDC
c = 1 −

(
1

N

)1/2N

, (31)

which is also the sudden-changing point of F̄max, which is
plotted in Fig. 2.

In Ref. [30], a concrete phase-damping model is studied,
where the damping rate γ2 is associated with p as p = 1 −
exp(−γ2t/2), therefore

F̄‖ = N exp(−Nγ2t). (32)

The decay rate of the coherence of the GHZ state is N times
larger than a single qubit. After the critical time

tPDC
c = ln N

Nγ2
, (33)

the GHZ state cannot be used to perform over shot-noise
estimation. Furthermore, we obtain

tADC
c

tPDC
c


 2T1

T2
, (34)

where Ti = 1/γi are the typical damping times of dissipation
and dephasing. This result can give us a criterion to determine
which type of decoherence affects the QFI the most in
experiments.

C. Maximal mean QFI in DPC

In the depolarizing channel, the state evolves to
EDPC(ρGHZ) = �̃1 ⊕ �̃2, where

�̃1 =
N−1∑
m=1

(ηm + ηN−m)|0〉〈0|⊗(N−m)|1〉〈1|⊗m,

�̃2 = sN

2
(|0〉〈1|⊗N + |1〉〈0|⊗N )

+ 1

2
[(1 − p̃)N + p̃N ]|0〉〈0|⊗N

+ 1

2
[(1 − p̃)N + p̃N ]|1〉〈1|⊗N, (35)

where ηm = 1
2 (1 − p̃)mp̃N−m, p̃ = p/2. The matrix �̃1 is

already diagonal and the eigenvalues of �̃2 are

μ1 = 1
2 [(1 − p̃)N + p̃N + sN ],

(36)
μ2 = 1

2 [(1 − p̃)N + p̃N − sN ],

with corresponding eigenvectors

|ϕ1〉 = 1√
2

(|0〉⊗N + |1〉⊗N ),

(37)

|ϕ2〉 = 1√
2

(|0〉⊗N − |1〉⊗N ).

Inserting the above results into Eq. (7) we find

C⊥ =
N−2∑
m=1

(pm + pN−m − pm+1 − pN−m−1)2

pm + pN−m + pm+1 + pN−m−1

× (N − m)

(
N

m

)
+ N

2∑
i=1

(μi − p1 − pN−1)2

μi + p1 + pN−1
,

C‖ = N2(1 − p)2N

(1 − p̃)N + p̃N
. (38)

The maximal mean QFI in this channel is plotted in Fig. 1(c).
At p = 1, the state is completely depolarized, and is a fully
mixed state, thus it is invariant under SU(2) rotations, and
F̄max = 0. The position of the critical point F̄max = 1 can be
derived approximately as

pDPC
c 
 1 − 1

4

(
1

N

)1/N

[1 +
√

1 + 8N1/N ]. (39)

For the large-N case, the sudden-changing point pDPC
s is ap-

proximately equal to the critical point pDPC
c , and the numerical

results are shown in Fig. 2. As discussed previously, if we
replace p = 1 − exp(−γ3t/2), the critical time is obtained as

tDPC
c 
 2 ln N

Nγ3
. (40)

In addition to the above results, note that the slopes of
maximal mean QFI are different in the three channels. It decays
most slowly in the ADC, and fastest in the PDC. This can
be understood by using a Bloch sphere picture to imagine
the decoherence channels. First, for p < ps , we always have
F̄max = F̄‖, and the decay of F̄‖ is mainly caused by the shrink
of the Bloch sphere in the x-y plane. As discussed in Sec. III,
the radius of the Bloch sphere in the x-y plane is reduced
by

√
1 − p, 1 − p, and 1 − 2p for ADC, DPC, and PDC,

respectively. Therefore, for a given p, the radius in the x-y
plane reduces the most in the PDC, and thus in this channel
the maximal mean QFI decays the fastest.

V. CONCLUSION

In this article, we studied the maximal mean QFI in three
decoherence channels, the ADC, PDC, and DPC. Although
sudden death is observed for both entanglement [46–48]
and spin squeezing [49], the maximal mean QFI has a
special feature: After the sudden-change point, in the ADC,
the maximal mean QFI rises up with the increase of the
decoherence strength. The initial state is the GHZ state, which
can be used to improve the parameter estimation precision
to the Heisenberg limit by measuring the parity operator. In
the presence of decoherence, with the loss of entanglement,
the sensitivity of the state with respect to SU(2) rotations
becomes weaker. For sufficiently large decoherence strength
p, the maximal mean QFI will decay to the shot-noise level,
and we call these points the critical points pc (F̄max = 1). With
the increase of p, for the ADC, the F̄max first decay below
1, then after sufficiently large p it increases to to 1; for the
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PDC, the F̄max decays to 1 and remains in the shot-ı̈ 1
4 ;noise

level; for the DPC, the F̄max decays to zero. We also observe
the sudden-change points ps , which are the crossing points
of F̄⊥ and F̄‖. For the ADC and DPC, the critical points are
derived approximately, and in the large-N limit, pc and ps are
approximately equal, while for the PDC, exact results of the
two points are obtained, and they are exactly equal. Moreover,
our results are comparable with concrete physical models in a
qualitative sense by replacing the decoherence strength p with
a Markovian exponential decay function 1 − exp(−γ t/2).
Based on this, we derived the critical time tc (F̄max = 1) in
terms of the decoherence time scale Ti = 1/γi , which could
help us to analyze the effects of different types of decoherence.
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APPENDIX: MAXIMAL QFI

Below we show that the maximal QFI (9) is equal to
the largest eigenvalue of matrix C (7). The maximal QFI is
obtained by maximizing the QFI (6) over direction �n

Fmax = max
�n

(�n C �nT ), (A1)

where �n = (n1,n2,n3) is normalized [i.e., (n1)2 + (n2)2 +
(n3)3 = 1]. Since the matrix C is symmetric, it can be
diagonalized as

Cd = OT C O = diag{λ1, λ2, λ3}, (A2)

where the λi’s are the eigenvalues of C, and O is an orthogonal
matrix (i.e., O OT and OT O are equal to an identity matrix).
Therefore, the maximal QFI (A1) can be written as

Fmax = max
�n

(�n O Cd OT �nT )

= max
�n′

( �n′ Cd �n′T ). (A3)

Note that, in the second line, we introduce a new direction

�n′ = �n O, (A4)

which is also normalized because O is orthogonal. Since C
and O are independent of �n, the maximization in Eq. (A3) is
performed over the new direction �n′. Now taking Eq. (A2) into
Eq. (A3), we obtain

Fmax = max
�n′

[λ1 (n′
1)2 + λ2 (n′

2)2 + λ3 (n′
3)2]. (A5)

As �n′ is normalized (n′
1)2 + (n′

2)2 + (n′
3)2 = 1, we have

Fmax = max(λ1,λ2,λ3), (A6)

thus Eq. (9) is proved. In addition, if the maximal eigenvalue
is λ1, then �n′ = �n O = (1,0,0), and the original direction is

�n = (1, 0, 0) OT . (A7)
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[28] L. Pezzéand A. Smerzi, Phys. Rev. Lett. 102, 100401
(2009).

[29] L. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer,
W. Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, e-print
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