
PHYSICAL REVIEW A 83, 022107 (2011)

Dispersive-coupling-based quantum Zeno effect in a cavity-QED system
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We present a dispersive-coupling-based interpretation for the quantum Zeno effect (QZE) where measurements
are dynamically treated as dispersive couplings of the measured system to the apparatus rather than the von
Neumann’s projections. It is found that the explicit dependence of the survival probability on the decoherence
time quantitatively distinguishes this dynamic QZE from the usual one based on projection measurements. By
revisiting the cavity-QED experiment of the QZE [J. Bernu et al., Phys. Rev. Lett. 101, 180402 (2008)], we
suggest an alternative scheme to verify our theoretical consideration that frequent measurements slow down the
increase of photon number inside a microcavity due to the nondemolition couplings with the atoms in large
detuning.
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I. INTRODUCTION

It usually follows from the von Neumann’s postulate of
wave-packet collapse (WPC) that the frequent measurements
about whether the system stays in its initial unstable state
would inhibit the transitions to other states [1]. This inhibition
phenomenon is now called the quantum Zeno paradox or
the quantum Zeno effect (QZE). Some experiments, which
claimed the verifications of the QZE for various physical
systems [2–4], seemed to provide clear evidence to support
the necessity of the WPC in the logical system of quantum
mechanics. However, many physicists wondered whether
the QZE phenomena were really rooted in the WPC-based
measurement (or called the projection measurement) [5–12].

In the early days of the discovery of the QZE, Asher
Peres demonstrated that the QZE-like phenomenon could
also be explained in terms of the strong interaction between
the observed system and an external agent [7]. When Itano
et al. carried out a QZE experiment based on the theoretical
proposal of Cook [8] and claimed the role of the projection
measurement [2], some authors argued that no WPC really
happened since the existing experimental data could also be
recovered by unitary dynamic calculations without invoking
the WPC [9,10]. Furthermore, a recent experiment in cavity-
QED system for freezing the growth of the photon number in a
cavity was explained in terms of the WPC-based QZE [13]. It
prompted us to seriously revisit the problem whether this QZE
phenomenon depends on the von Neumann’s postulate [14],
which lies in the core of the Copenhagen interpretation of
quantum mechanics (QMI). We expect the similar experiment
and its extension could provide an accessible way to well
clarify the physical distinguishability of different QMIs in
accounting for the QZE.

In this article we describe the QZE by a period of unitary
free evolution which is interrupted by successive dispersive-
coupling-based measurements (DCBM) [15,16]. The disper-
sive coupling enables the apparatus to evolve to different
states with respect to the system’s different eigenstates being
measured. Here the DCBM is a unitary process rather than the
projective nonunitary evolution, thus it is generally formulated
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by a diagonal normal operator valued in the apparatus’ ob-
servable (we call it the measurement operator) [12,17,18]. We
then show the frequent “bang-bang” insertions of such mea-
surement operators in the original time evolution of the system
make the system decoherence. These frequent measurements
cancel the off-diagonal elements of the system’s density matrix
through the destructive interference. Therefore, the transitions
among the eigenstates of the system are inhibited.

This universal proof deals with quantum measurement as
a dynamic dephasing process rather than an instantaneous
collapse. Thus the measurement time is introduced as a crucial
parameter to signature our dispersive-coupling-based model in
contrary to the conventional WPC-based one. By reconsidering
the cavity-QED experiment [13] where the periodically driven
cavity field is measured by the nondemolition dispersive
couplings to the injected off-resonant atoms, we calculate the
two-dimensional “phase diagrams” of an alternative experi-
mental scheme with respect to the measurement time and the
“bang-bang” time interval. Characterizing the dynamic nature
of the QZE, the dependence of the survival probability on
the measurement time explicitly reflects the experimentally
testable difference between two QMIs related to the WPC and
dispersive couplings respectively.

This article is structured as follows: In the next section, we
offer a proof for the QZE in a dynamic version. In order to
observe the QZE and show the effect of a finite measurement
time in a realistic experiment, we propose a cavity-QED setup
in Sec. III. Thereafter, the free evolution of the cavity field
and the DCBM process are described respectively in Sec. IV.
In Sec. V, we discuss the QZE induced by the DCBM on
suppressing the photon number in the cavity. Finally, all the
main results are summarized in the conclusion part.

II. DISPERSIVE-COUPLING-BASED QUANTUM
ZENO EEFFECT

Now we develop an approach for QZE based on dynamic
description of quantum measurement [11,12,17]. The disper-
sive couplings of the measured system S to the apparatus A

lead to a time evolution of the total system S plus A from the
initial state

|ϕ(0)〉 =
∑

j

cj |sj 〉 ⊗ |a〉
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to an entangled state

|ϕ(t)〉 = M(t)|ϕ(0)〉
≡

∑
j

cj |sj 〉 ⊗ |aj (t)〉. (1)

Here |sj 〉 (j = 1,2, . . .) serves as an orthonormal basis of
the Hilbert space HS of S, while |a〉 is the initial state of
A. The unitary measurement operator M(t) is a diagonal
normal matrix with elements Mjj = exp(−iĥj t) for the branch
Hamiltonian ĥj being a Hermitian operator on the Hilbert
space HA of A. The final state |aj 〉 ≡ |aj (t)〉 = exp(−iĥj t)|a〉
of A corresponds to the system’s state |sj 〉. Obviously, M(t)
is capable of defining a quantum nondemolition (QND) mea-
surement [19]. An ideal measurement could well distinguish
the apparatus state |aj 〉 from |aj ′ 〉, i.e., 〈aj ′ |aj 〉 = δjj ′ . In
this ideal case, the reduced density matrix of the system
is depicted by ρs(t) = TrA[|ϕ(t)〉〈ϕ(t)|] with vanishing off-
diagonal elements.

U (t) is defined as the unitary evolution operator of S in
the absence of the above “measurement”. Then we generally
describe the QZE phenomenon (see Fig. 1) by a unitary
evolution matrix

Uc(t) ≡ Uc(τ,τm) = [M(τm)U (τ )]N (2)

with a fixed duration t = Nτ . Here τ indicates a small
time interval for which the system evolves freely, and a
measurement with shorter time τm is performed at the end
of each U (τ ). Actually, the free evolution coexists with the
measurements through the whole QZE process, but it could be
ignored when measurement is turned on since the apparatus
induces a fast decoherence. An ideal measurement requires a
very short τm, but a finite τm will reflect the dynamic feature of
the realistic measurements. Usually, U (τ ) does not commutate
with M(τm) so it can induce the transitions among states |sj 〉.
We rewrite Uc(t) as an N -multiproduct

Uc(τ,τm) =
[

N∏
n=1

Un(τ )

]
M(τm)N, (3)

where the factors Un(τ ) = M(τm)nU (τ )M(τm)−n and n =
1,2, . . . ,N . For a very short τ or a very large N , it could
be approximated as

Un(τ ) � 1 − iτM(τm)nHM(τm)−n ≡ 1 − iτHn.

U U U U

t

τ

τ

M M M M

m

FIG. 1. (Color online) Controlled evolution process containing
N unitary evolution U processes and N dynamic measurement M

processes. The y axis represents the strength of the interaction.

If M(τm) is not degenerate, we have

Uc(τ,τm) �
(

1 − itHd − i
t

N
S

)
M(τm)N , (4)

where Ad and Aoff denote the diagonal and off-diagonal parts
of matrix A, respectively. The summation S = ∑

n(Hn)off is
given with the explicit form of its matrix elements:

S =
∑
j �=j ′

∑
n

[M(τm)nHM(τm)−n]jj ′ |sj 〉〈sj ′ |

=
∑
j �=j ′

∑
n

exp[−inτm(ĥj − ĥj ′)]Hjj ′ |sj 〉〈sj ′ |

=
∑
j �=j ′

�jj ′Hjj ′ |sj 〉〈sj ′ |, (5)

where we define

�jj ′ = sin
(

1
2τmN�jj ′

)
sin

(
1
2τm�jj ′

) e−iτm(N+1)�jj ′ /2 (6)

for �jj ′ = ĥj − ĥj ′ . �jj ′ is finite when �jj ′ �= 0, then in the
large-N limit, the off-diagonal parts of Uc(τ,τm) is negligible.
The QZE is achieved as

lim
N→∞

Uc(τ,τm) → e−iHd t

[
1 − iO

(
t

N

)]
M(τm)N . (7)

Therefore, the time evolution with very frequent M kicks will
keep the system in its initial state because Uc(τ,τm) approaches
a diagonalized unitary matrix exp(−iHdt).

This argument proves the QZE in a dynamic version.
Thus the frequent measurements (for N → ∞) based on the
dispersive couplings indeed result in the QZE even though no
WPC is used. We remark that the similar arguments for the
QZE have been given by making use of the von Neumann’s
quantum ergodic theorem [20].

III. CAVITY-QED SETUP FOR TESTING
DISPERSIVE-COUPLING-BASED QUANTUM

ZENO EFFECT

The experiment based on high-Q superconducting cavity
has explicitly demonstrated the increase of the photon number
inside the cavity is suppressed by the continuous measure-
ments [13]. In this experiment, a series of microwave pulses
resonant with the cavity are injected into the cavity, which
corresponds to the U process; between every two adjacent
pulses an ensemble of off-resonant atoms are sent into the
cavity to probe the average photon number, playing the part
of the M process. A single QND probe is actually a dynamic
process and changes the cavity field by a phase factor instead
of its photon number. Even we do not read out the photon
number after each probe, the QND coupling of the cavity field
to the off-resonant atom can result in the phase random in the
accumulation of these phase factors thus leads to freezing the
photon number in its initial state. We propose an alternative
cavity-QED scheme to verify this illustration.

Let the cavity be initially prepared in the vacuum state |0〉
with an ensemble of off-resonant atoms located in it. Then
classical driving laser pulses are sequentially injected into the
cavity. Each pulse is applied for a duration τ . This unitary
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evolution of the cavity field is described by the Hamiltonian

HU (t) = ωa†a + f e−iωF ta† + H.c., (8)

where ω is the frequency of the cavity, f and ωF are the
strength and the frequency of the driving field respectively,
and a and a† are the annihilation and creation operators of
the cavity field. The driving pulse is peaked at the frequency
resonant with the cavity, i.e., ωF ≈ ω. Compared to the
strength of the driving field, the interaction between the atom
and the cavity field is rather weak and thus can be omitted
when the pulse is switched on. In the interval when we turn off
the driving field, the atom-field interaction becomes important.
Since the energy level spacing ωa of the atom and the frequency
ω of the cavity are largely detuned, adiabatic elimination
results in an effective measurement Hamiltonian

HM = g2

�
a†a(|+〉〈+| − |−〉〈−|). (9)

Here |±〉 are the two atomic energy levels, g is the vacuum
Rabi frequency defining the atom-cavity coupling, and

� = ω − ωa (10)

the atom-cavity detuning. The unitary evolution dominated by
HM is regarded as a QND measurement, for the atom records
the information of the photon number of the cavity field by
its phase of the |±〉 superposition. The whole experimental
procedure consists of a series of dynamic processes described
by HU and HM alternatively, the same as demonstrated in
Fig. 1, but the strengths of U and M processes are reversed.
The probe of the photon number is carried out only after the
last driving pulse.

IV. FREE EVOLUTION AND DISPERSIVE-COUPLING-
BASED MEASUREMENT

The time evolution of the cavity field governed by HU (τ )
is described by phase-modulated displacement operator

U (τ ) = eiωa†aτ eiφ(τ )D[α(τ )], (11)

where

D[α(τ )] = eα(τ )a†−α∗(τ )a (12)

is the displacement operator with the displacement parameter

α(τ ) = f

δ
(e−iδτ − 1). (13)

The phase factor is

φ(τ ) = f 2

δ2
(sin δτ − δτ ), (14)

where δ = ωF − ω. Here the Wei-Norman algebra method
[21] is used in deriving U (τ ).

In a cavity in the vacuum state |0〉, the atom is initially
prepared in the superposition state

|φ(0)〉 = 1√
2

(|+〉 + |−〉). (15)

After the first driving pulse applied for time τ , the total system
evolves into

|ψ(τ )〉 = U (τ )|φ(0)〉 ⊗ |0〉

= eiφ(τ )|φ(0)〉 ⊗ |α(τ )e−iωτ 〉. (16)

We can see that the average photon number n̄ = |α(τ )|2 ≈
f 2τ 2 quadratically depends on τ , for τ is a sufficiently short
interval. Then the pulse is turned off and the atom-cavity field
interaction HM dominates the unitary evolution by M(τm) =
exp(−iτmHM ) for the measurement interval τm. After the first
measurement, the state |ψ(τ )〉 evolves into an atom-cavity field
entangled state,

|ψ(τ + τm)〉 = M(τm)|ψ(τ )〉
= 1√

2
eiφ(τ )

∑
j=±

|j 〉 ⊗ |αj 〉, (17)

with

α± ≡ α(τ )e−iωτ∓ig2τm/�.

The average photon number does not change due to the
QND nature of the measurement, but the cavity field acquires
different phases corresponding to the two atomic states.

V. CONTINUOUS MEASUREMENT PROCESS FOR QZE

During the free evolution, we insert the DCBM for N times
at instants nτ (n = 1,2, . . . ,N). Mathematically, we apply
[M(τm)U (τ )]N to the initial state, and then the quantum state
evolves into

|ψ[N (τ + τm)]〉
=

∑
j=±

[Mj (τm)U (τ )]N |j 〉 ⊗ |0〉

= eiNφ(τ )

√
2

∑
j=±

[e−i
g2j

�
ta†aD[α(τ )]]N |j 〉 ⊗ |0〉. (18)

Here M(τm) acts on the cavity field as two operators

M±(τm) = e∓iξma†a (19)

corresponding to the two atomic states respectively, where

ξm = g2τm/�. (20)

The N power of the displacement operator can be simplfied
by the Baker-Hausdoff formula,[

e∓i
g2 t

�
a†aD[α(τ )]

]N

=
N∏

n=1

[
e∓in

g2 t

�
a†aD[α(τ )]e±in

g2 t

�
a†a

]
e∓iN

g2 t

�
a†a

=
N∏

n=1

D
[
α(τ )e∓in

g2 t

�

]
e∓iN

g2 t

�
a†a

=
[
α(τ )

N∑
n=1

e∓in
g2 t

�

]
eiθ±(N)e∓iN

g2 t

�
a†a

≡ D [α±N (τ )] eiθ±(N)e∓iN
g2 t

�
a†a , (21)

where the displacement parameter and the additional
phase are

α±N = α(τ )e∓i(N+1)ξm
sin(Nξm/2)

sin(ξm/2)
, (22)

022107-3



D. Z. XU, QING AI, AND C. P. SUN PHYSICAL REVIEW A 83, 022107 (2011)

θ±(N ) = ±|α(τ )|2
2

N sin ξm − sin(Nξm)

1 − cos ξm

. (23)

From the calculations of the explicit expression for
[M±(τm)U (τ )]N , we finally obtain the evolution wave
function

|ψN 〉 =
∑
j=±

eiφj

√
2

|j 〉 ⊗ |αjNe−iωt 〉, (24)

where φ± = Nφ(τ ) + θ±(N ) and, accordingly, the average
photon number is calculated as

n̄ = |α(τ )|2 sin2(Nξm/2)

sin2(ξm/2)
. (25)

We can see in the continuous measurement limit, i.e., τ → 0,
|α(τ )|2 ≈ f 2τ 2. Except for the measurement time interval

τ ∗
m = 2kπ�

g2
, (26)

with the k integral, n̄ approaches zero with τ decreasing.
As illustrated in Fig. 2, n̄ shows the similar inhibition

phenomenon (blue dashed line) to Ref. [13], with τ chosen
as 50 µs. The reason the photon number ceases to increase
is that the dynamic measurements interrupt the coherent
accumulation of photons by adding a phase factor to the
cavity field corresponding to ξm. The total phase factor after
measurements of N times destroys the quantum interference
of the cavity field, thus leading to the QZE. This deocoherence
process in the existing experiment [13] reveals that the QZE
can be completely interpreted from the dynamic aspect. To
compare with the situation with only free evolution and no
measurements, we set the atom-cavity coupling g = 0, and n̄

is also depicted in Fig. 2 (red solid line), which indeed grows
quadratically with t = Nτ .

The above argument is coincident with the existing
experimental data, but this theoretical description implies
the difference between the dynamical measurement and the
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FIG. 2. (Color online) Average photon number n̄ as a function
of the pulse number N . We choose g2/� = 10 kHz, δ = 0.5 Hz,
f = 400 Hz, and τ = 50 µs. Without the QND probe, n̄ grows
quadratically with N (red solid line). The QZE emerges as n̄ is
frozen at zero with τm = 5 ms (blue dashed line). If the measurement
time is chosen specifically at τm = (2π�/g2 + 3.5) µs, n̄ increases
obviously (green dash-dotted line) which is not explained in terms of
the WPC interpretation.
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FIG. 3. (Color online) The average photon number as a function
of the free evolution time interval τ and the measurement time interval
τm, where g2/� = 10 kHz, δ = 0.5 Hz, and f = 400 Hz, and the total
free evolution time t is fixed at 1 ms. The result is normalized by the
maximum.

projection one. We notice that, when the measurement time
interval is set at critical values τ ∗

m determined by Eq. (26), n̄ is
no longer bounded and increases linearly with N . In Fig. 2, n̄

increases (clearly shown as the green dash-dotted line), with
τm chosen around τ ∗

m as (2π�/g2 + 3.5)µs. Fixing the total
free evolution time t , we illustrate the variation of the average
photon number in the cavity field corresponding to the time
interval τ and τm in Fig. 3. For a given τm far from the critical
value τ ∗

m, n̄ approaches zero as τ decreases, which recovers
the conventional QZE phenomenon based on the projection
measurement. However, n̄ mounts up evidently when τm

approaches τ ∗
m. This τm-dependent dispersive-coupling-based

QZE could not be predicted by the WPC interpretation but
can be shown by the realizable cavity-QED experiment. If
we observe the rise of the average photon number at certain
τ ∗
m in a continuous measurement limit, then we can conclude

that the dynamic measurement model is more compatible
with the physical reality in comparison with the projection
measurement in respect of the QZE.

VI. CONCLUSION

In this article, we show that QZE can be induced by frequent
DCBM, which are unitary processes without reference to
the WPC postulate (projection measurement). This approach
essentially shows that the general QZE phenomenon can be
explained independently of the quantum-mechanics interpreta-
tion for the measurement. Projection measurement provides us
a neat description of the QZE, beyond which the dispersive-
coupling-based model contains more physical detail. In the
quantum open system, the same model can be extended to
predict the QZE or QAZE (quantum anti-Zeno effect) [22].
Associated with a recent cavity QED experiment [13], we
predict an observable effect of the DCBM to distinguish it
from the one based on projection measurement: the survival
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probability after finite N measurements will explicitly depend
on the measurement time even in the continuous limit. At
certain critical measurement times, the survival probability
will deviate from its initial value predicted in the WPC-based
explanation of the QZE.

On the other hand, the QZE effect can be applied to quantum
information processing since it provides a way to suppress or
even inhibit the unwanted time evolution of a physical state,
e.g., restricting the dynamics of the system onto a decoherence-
free subspace [20,23]. A number of methods can put this

goal into practice, such as bang-bang control, dynamical
decoupling, and Zeno dynamics. The DCBM described in this
article is just of this kind.
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