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Multiatomic mirror for perfect reflection of single photons in a wide band of frequency
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A resonant two-level atom doped in a one-dimensional waveguide behaves as a mirror, but this single-atom
“mirror” can only reflect single photons perfectly at a specific frequency. For a one-dimensional coupled-resonator
waveguide, we propose to extend the perfect-reflection region from a specific frequency point to a wide band by
placing many atoms individually in the resonators in a finite coordinate region of the waveguide. Such a doped
resonator array promises to control the propagation of a practical photon wave packet with a certain momentum
distribution instead of a single photon, which is ideally represented by a plane wave with a specific momentum.
The studies based on the discrete-coordinate scattering theory indicate that such a hybrid structure with finite
atoms indeed provides a near-perfect reflection for a single photon in a wide band. We also calculated the photon
group velocity distribution, which shows that the perfect-reflection wide band exactly corresponds to the stopping
light region.
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I. INTRODUCTION

Quantum manipulation in all-optical fashions [1–4] is very
crucial to the future development of high technology concern-
ing optical communication [1,5–10], the quantum informa-
tion process [1,5,7,11,12], and the next-generation quantum
devices, e.g., single-photon transistors [5,11,13], quantum
switches [1,6–10,13–15], and photon storages [2–4,16,17].

The core physics behind all-optical quantum manipulation
is to explore the single-photon scattering and propagation
in the confined structure of the sizes comparable to the
wavelength of the photon. The investigations about the single-
photon propagation in one dimension involve some new
phenomena, such as the perfect reflection of the single
photon by atomic mirror [1,6,7,14,18], slowing light pro-
cesses [2,3,16,17,19] in hybrid coupled-resonator waveguides,
and other related issues [4–6,9,20]. The hybrid structures
concerned could be implemented physically with linear defect
cavities in photonic crystals [21] with doped quantum dots,
or superconducting transmission line resonators [8,10,15]
coupled to a superconducting qubit [5,22–25]. These physical
systems with artificial band structures coupled to a two-level
system enable us to control the transport of a single photon.
By tuning the structure parameters of the hybrid system,
the two-level system acts as a quantum switch, making the
transporting single photon reflect perfectly, or transmit totally.
In this sense, the two-level system can behave as an ideal
mirror [1,6,7,14,18].

It has been shown that a single-photon transistor using
nanoscale surface plasmons [1], coupled with a three-level
atom in electromagnetically induced transparency (EIT) setup
[2–4,16,17], exhibits controllable behavior in the transmission
spectra. We have re-examined the coherent transport of a single
photon in a coupled-resonator array coupled to a controllable
two-level system [7]. Being different from the linear dispersion
relation in the setups by Chang et al. [1,6], the cosine-type
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dispersion [7] will result in two bound states in the hybrid
system. The total reflection by the two-level system, which
behaves as an ideal mirror, has been found to be associated
with the Fano-Feshbach and Breit-Wigner line shapes [26]
around the resonance in the reflection spectrum. However,
in all of these works [1,6,7], we emphasize that the perfect
reflection exists only at a specific frequency point. It brings
physical difficulties in practical applications, such as the
efficiency to control an optical pulse, which actually is a
superposition of the plane waves with different frequencies
where the off-resonant components could deviate dramatically
from the perfect-reflection point.

In this paper, we propose an experimentally accessible
setup based on the coupled-resonator array with a doped-atoms
hybrid system, which is expected to realize perfect reflection
with a wide spectrum, and thus can perfectly reflect an
optical pulse, namely, a single-photon wave packet. Here,
we use a “thick” atomic mirror that is made of an array of
two-level atoms individually doped in some cavities arranged
in a coordinate region of the one-dimensional coupled-cavity
waveguide. The physical mechanism is intuitive: When a
photon a little far from resonance reaches one cavity coupled
to the doped atom, it is reflected by the atom partly, and then
the left part passing through the next atom experiences the
same process. This process is repeated many times, which may
achieve the perfect reflection with a wide spectrum as long as
the interference enhancement could be suppressed by some
mechanism. The emergence of a wide-band spectrum is also
shown schematically in Fig. 1, where the perfect-reflection
region is from a specific incident-energy point (for a single
atom) to a wide band (for more than one atom).

In detail, we will study the wide-band scattering phenom-
ena for our proposed atomic mirror by using the discrete-
coordinate scattering approach [7,14]. With the second-order
processes for the atom absorbing a photon and then radiating
back inside the cavity, the basic role of the doped atoms is to
provide an effective potential such as a local resonant Dirac
comb [27], which leads to the stopping and slowing light
phenomena [2,3,16,17,19]. By detuning the coupling strength
of the atom coupled to the single-cavity mode, we can feasibly
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FIG. 1. Schematic diagram for the emergence of the wide band
for perfect reflection. Here, � is the detuning for the incident photon’s
energy, and |t |2 is the transmission coefficient. It is shown that for
single atom [for (a)], the perfect reflection region is only a specific
point; while when the atom number Na is 3 [for (b)], the region is
extended to a wide band.

control the width of the perfect-reflection band. It is noticed
that this wide-band spectrum phenomena have been implied
in some works [14,20,28].

The paper is organized as follows. In Sec. II, we propose
our model and solve it with the discrete-coordinate scatter-
ing theory. In Sec. III, we study the microscopic physical
mechanism, and then acquire the slowing light phenomenon in
Sec. IV. In Sec. V, we study the influence of the imperfections
in experiments on the perfect-reflection wide band. We give a
summary in Sec. VI.

II. WIDE-BAND ATOMIC MIRROR FOR A SINGLE
PHOTON IN ONE DIMENSION

Our hybrid system is shown in Fig. 2, where the Na two-
level atoms are individually embedded in a one-dimensional
coupled-resonator waveguide (CRW) [29]. The atoms play an
essential role in controlling the propagation of a single photon.
The Hamiltonian H = Hc + HI of this hybrid system consists
of two parts, the CRW part described by a tight-binding boson
model

Hc = ω

N∑
j=−N

a
†
j aj + V

N∑
j=−N

(a†
j aj+1 + a

†
j+1aj ), (1)

1 aN (a)

(b)g

e

...

FIG. 2. (Color online) Schematic setup of the wide-band atomic-
mirror model. It is constituted by a coupled-resonator waveguide
and an array of two-level atoms from 1 to Na as shown in (a). The
coupling between the cavity field and the two-level atom is shown in
detail in (b), which is described by the Jaynes-Cumming model. The
existence of the Na atoms can extend the perfect-reflection region to
a wide band.

and the part of two-level atoms interacting with the cavity
fields

HI = �

2

Na∑
j=1

(
σ z

j + 1
) + g

Na∑
j=1

(ajσ
+
j + a

†
j σ

−
j ). (2)

Here, aj is the annihilation operator of the j th single-mode
cavity with frequency ω, and V is the hopping constant
between the nearest-neighbor cavities for the photon. We
assume that all the two-level atoms and the cavity fields have
the same energy level spacing � and frequency ω, respectively.
The coupling between each atom and the corresponding cavity
field is described by the Jaynes-Cummings model [30] with
homogeneous coupling constant g. In Eq. (2), the Pauli spin
matrices σ z

j ≡ |e〉jj 〈e| − |g〉jj 〈g| depict the atomic energy of
the j th atom with the ground state |g〉j and exited state |e〉j ,
and σ+

j ≡ (σ−
j )† = |e〉jj 〈g|.

We note that the dispersion relation in the tight-binding
boson model in Eq. (1) is of the cosine type, which results in
bound states in the hybrid system. Actually, this tight-binding
model is quite appropriate for simplifying the physical problem
and has inspired extensive interest and lots of attention,
both theoretically and experimentally [7,8,21,31–34]. In our
previous work [7], we discovered that the electromagnetic
field confined in this coupled-resonator waveguide can be well
controlled by a single two-level system.

To analyze the transport features of a single photon, we
apply the discrete-coordinate scattering approach [7,14] by
assuming that the eigenstate of H with eigenenergy E for the
incident photon in a single excitation subspace as

|�(E)〉 =
N∑

j=−N

u
g

j |j 〉 ⊗ |G〉 + |0〉 ⊗
Na∑
j=1

ue
j |e〉j ⊗ |G′

j 〉,

(3)

where |0〉 represents the vacuum of the cavity fields, |j 〉 =
a
†
j |0〉, and

|G〉 =
Na∏
j=1

|g〉j , |G′
j 〉 =

Na∏
l=1,l �=j

|g〉l . (4)

Here, u
g

j and ue
j are the amplitudes of the single photon and

the atomic population in the j th cavity, respectively. The first
term on the right-hand side of Eq. (3) depicts the single
photon propagating along the waveguide, while the second
term represents that the photon is “captured” by an atom. It
follows from the Schrödinger equation H |�(E)〉 = E|�(E)〉
that the scattering equations for a single photon with discrete-
coordinate representation read as

ωu
g

j + V
(
u

g

j+1 + u
g

j−1

) + W (E)ug

j = Eu
g

j . (5)

Here, the effective potential

W(E) = w(E)
Na∑
l=1

δjl (6)
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is like a local resonant Dirac comb [27] with strength w(E) =
g2/(E − �). The equations related to the atomic population
are

�ue
j + gu

g

j = Eue
j . (7)

We indicate here that u
g

j and ue
j in Eq. (3) depend on the

energy E of the incident photon, and the interaction between
the cavity fields and the atoms provides the potential W (E)
to affect the propagation of the single photon. Equation (5)
shows that, due to the array of atoms, the incident single photon
acquires an additional potential described by the local resonant
Dirac comb, and the strength of this potential, i.e., w(E),
depends on the incident photon’s energy E. On resonance, i.e.,
E = �, the strength w(E) of the effective potential is infinite,
which definitely leads to the perfect reflection of the incident
photon. This result is consistent with that in the previous
work [7]. For the scattering in one dimension, in which the
eigenfunction only possesses the reflection and transmission
waves, the solutions to Eq. (5) for j �= 1, 2, . . . ,Na are

u
g

j =
{

eikj + re−ikj , j < 1

teikj , j > Na

, (8)

where r and t are reflection and transmission amplitudes,
respectively. To consider elastic scattering, we can use the
eigenvalue of the scattered photon

E(k) = ω + 2V cos k (9)

with the cosine-type dispersion for the incident photon with
momentum k.

The solutions in the region where the cavity fields interact
with the atoms are

u
g

j = r ′e−ik′j + t ′eik′j , (10)

for j = 1,2, . . . ,Na , where k′ is the solution of the transcen-
dental equation

2V cos k′ = 2V cos k − w(E), (11)

which exhibits the conservation of energy. In Eqs. (8) and (10),
r and t , together with r ′ and t ′, are determined in the following
by four boundary conditions, i.e., the scattering Eq. (5) in four
points j = 0, 1, Na , and Na + 1. The transmission coefficient
|t |2 is then obtained as

|t |2 =
∣∣∣∣ 4V 2 sin k sin k′

A(E)2eik′(Na−1) − B(E)2e−ik′(Na−1)

∣∣∣∣
2

, (12)

corresponding to the reflection coefficients |r|2 = 1 − |t |2,
where

A(E) = V e−ik′ − V e−ik + w(E) (13)

and

B(E) = V eik′ − V e−ik + w(E) (14)

are independent of Na .
Furthermore, it follows from Eq. (11) that, when∣∣∣∣cos k − w(E)

2V

∣∣∣∣ � 1, (15)

k′ is complex or k′ = nπ (n is an integer), which exhibits
the photon’s probability of decaying in the interaction region.
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FIG. 3. The transmission spectrum |t |2 as a function of the
detuning � for different atom numbers Na , where (a) Na = 1,
(b) Na = 2, (c) Na = 10, and (d) Na = 50. The wide band of
perfect reflection (|t |2 = 0) emerges gradually as the atom number
Na increases. When doping only a few atoms (such as Na = 10), the
near-perfect reflection band can fit the practical application. When
the atom number Na tends to infinity, the region of the wide band
reaches its maximum.

When k′ = nπ , Eq. (12) gives |t |2 = 0. When k′ is complex,
it is shown in Eq. (12) that |t |2 → 0 when Na → +∞. In this
case, the array of atoms behaves as a mirror that reflects the
light perfectly.

The transmission spectra |t |2 in Eq. (12) versus the detuning
� = E(k) − � for different atom numbers Na are shown in
Figs. 3(a)–3(d). The parameters in these figures are chosen
as ω = 5g, � = 6g, and V = −g. These figures show that
as Na increases, the width of the perfect-reflection band near
the resonance � = 0 increases correspondingly and at last
reaches its maximum value with large Na . In contrast to
the single-atom-mirror case with only one specific reflection
frequency, such multiatom mirrors can be used to manipulate
the propagation of a practical wave packet, the distribution
in momentum space of which is restricted in the wide-band
reflection region.

III. FREQUENT REFLECTIONS INDUCED
SPECTRUM BROADENING

We have obtained the wide band for perfect reflection
by solving the discrete-coordinate scattering Eq. (5) in
Sec. II. In this section, we study the physical mechanism
of this wide band and find the rigorous boundaries of the
band.

As shown in Ref. [7], for a single atom at the 0th single-
mode cavity, the reflection and transmission amplitudes for a
single incident photon with momentum k are

r1(k) = g2

−2iV (E − �) sin k − g2
(16)

and

t1(k) = 2iV (E − �) sin k

2iV (E − �) sin k + g2
, (17)

013825-3



YUE CHANG, Z. R. GONG, AND C. P. SUN PHYSICAL REVIEW A 83, 013825 (2011)

respectively. The corresponding normalized eigenstate is

|�(k)〉 = 1√
2π

N∑
j=−N

ξ
g

j a
†
j |0〉|g〉0 + ξ e|0〉|e〉0, (18)

where

ξ
g

j (k) =
{

eikj + r1(k)e−ikj , j < 0

t1(k)eikj , j � 0
for k > 0 (19)

and

ξ
g

j (k) =
{

eikj + r1(−k)e−ikj , j > 0

t1(−k)eikj , j � 0
for k < 0. (20)

These reflection and transmission amplitudes are consistent in
magnitudes with the results that we have acquired in Eq. (12)
when Na = 1.

An element Skp of the S matrix describing the probability
amplitude of an outgoing photon with momentum k when the
incident photon momentum is p in this single-atom system is

Skp = δkp − i2πδE(k)E(p)〈k|Vint |�(p)〉, (21)

where

|k〉 = 1√
2π

N∑
j=−N

eikj a
†
j |0〉|g〉0 (22)

is the outgoing state with momentum k, and

Vint = g(a0σ
+
0 + a

†
0σ

−
0 ) (23)

is the photon-atom coupling. Following these definitions, the
S-matrix element reads as

Skp =
{

t1(p)δkp + r1(p)δ−k,p, p > 0

t1(−p)δkp + r1(−p)δ−k,p, p < 0
. (24)

Neglecting the interference between the reflection and
transmission waves in the interaction region, the scattering
matrix element S ′

k,k corresponding to the transmission ampli-
tude for Na atoms is written approximately as

S ′
k,k ≈ (Sk,k)Na = t

Na

1 . (25)

To investigate this approximation condition, we expand |t |2
shown in Eq. (12) around the point � = 0 as

|t |2 ≈
(

V

g2

)2Na 4V 2 − δ2

V 2
�2Na + o(�2Na ), (26)

where we have made an approximation that |2V cos k| �
|w(E)|. With this expansion (26), we expand |t1|2Na approxi-
mately as

|t1|2Na ≈
(

4V 2 − δ2

g4

)Na

�2Na + o(�2Na ). (27)

It is shown in Eqs. (26) and (27) that, in the region near the
resonance, both |t |2 and |t1|2Na tend to zero with the power-law
function �2Na . Thus, it indicates that the emergence of the wide
band near the resonance is due to the incoherent reflection by
the array of atoms.

This approximate transmission coefficient is plotted in
Fig. 4 in contrast with the rigorous solution shown in Fig. 3(c).

− 3 − 2 − 1 0 1
0

0.5

1

FIG. 4. (Color online) The transmission coefficient |S ′
k,k|2 ≡

|t1|2Na (brown dashed line) with respect to the detuning � in the
approximation shown in Eq. (25) with Na = 10. The other parameters
are the same as those in Fig. 3. For comparison, the exact result
|t |2 (blue solid line) is plotted in this figure. It is shown that
perfect-reflection wide bands appear in both |S ′

k,k|2 and |t |2, which are
due to the reflection of light by multiatoms. The widths of these two
bands are different, as we do not take into account the interference
of the reflection and transmission waves between different atoms
in |S ′

k,k|2. Furthermore, the interference effect leads to the resonant
transmission peaks in the transmission spectrum.

Apparently, the wide-band perfect-reflection phenomenon
also appears in the approximate transmission coefficient. It
demonstrates that the appearance of the wide band is due to
the reflection of light by the array of atoms. In other words,
when the light reaches the first cavity coupled to a doped
atom, the incident photon only has the probability |t1|2 to
pass through the atom. Then, the second atom repeats this
reflection process when the light passes through it and the
transmission coefficient becomes |t1|4. This process is repeated
by Na atoms when the light passes through and eventually leads
to the transmission coefficient as |t1|2Na . In this discussion,
we do not take into account the interference effect at all,
as the construction of the wide band is only dominated by
individual reflection processes. Actually, when considering
the interference of reflection and transmission waves between
atoms, the region forbidding light propagation varies greatly.
The interference effect also leads to the resonate transmission
peaks in the transmission spectrum (see the peaks in Fig. 4).

The width of the perfect-reflection band is determined by
taking the imaginary part of the momentum k′ as nonzero or
k′ = nπ . We notice that, in Eq. (11), when

cos k′ = E − ω − w(E)

2V
� 1, (28)

the wave vector k′ is complex:

k′
+ = 2n+π + iα+. (29)

On the other hand, when

cos k′ = E − ω − w(E)

2V
� −1, (30)

k′ takes the form

k′
− = (2n− + 1)π + iα−. (31)

Here, n± are integers and α± are real. If k′ has the form
shown in Eqs. (29) or (31), the denominator in Eq. (12) tends
to infinity while Nais sufficiently large, which results in the
vanishing transmission coefficient.
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It follows from Eqs. (28) and (30) that the range for the
incident photon energy E is

max{E−,Emin} � E � min{�,Emax} (32)

or

max{�,Emin} � E � min{E+,Emax}, (33)

where

E± = 1

2
(ω + �) ∓ |V | ±

√(
δ

2
∓ |V |

)2

+ g2, (34)

Emax = ω + 2|V |, Emin = ω − 2|V |, (35)

and

δ = ω − �. (36)

When E is in this range determined by Eqs. (32) and (33),
with many atoms, the photon is reflected perfectly.

When g = 0, the wide-band width L = 0, which corre-
sponds to our common sense that the photon propagates
freely along the CRW without coupling to atoms. With the
set of parameters in Fig. 3, the width L is E+ − E−, with
the resonant point � = 0 in the wide band. However, note
that, with some other parameters, the point � = 0 does not
locate inside the wide band. Additionally, when the parameters

−5 −3 0 3 5
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−5 −3 0 3 5
0

2
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1

0 5 10 15
0
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L

1

FIG. 5. The width L for the perfect-reflection band as a function
of the parameters (a) V , (b) g, (c) �, and (d) ω, with the other
parameters the same as those in Fig. 3. In (a), L first increases and
then decreases with the increment of |V |. In (b), the width L increases
as the atom-photon coupling strength |g| increases, and L reaches its
maximum 4|V |. In (c) and (d), in the region where the difference
between the incident photon’s energy and the atom’s energy level
spacing is very large, the width L tends to zero.

satisfy one of the following conditions, the band width is
4|V |: (i) E− � Emin � � � Emax � E+; (ii) Emin � � and
E+ � Emax; and (iii) Emin � � and E− < Emin. Namely, by
tuning the parameters in this region, the light can be reflected
perfectly in the whole region of the energy of the incident
photon. With the other parameters, which are the same as those
in Fig. 3, we plot the wide-band width L with respect to the
parameters V , g, �, and ω, respectively, in Figs. 5(a)–5(d).
It is shown in Fig. 5(a) that when V = 0, which means
that the photon can not hop in the CRW, L = 0. As |V |
increases, L increases until |V | reaches some critical point.
L then decreases when |V | increases, since in this range, the
larger the hopping strength |V |, the weaker the photon-atom
coupling becomes as a perturbation. In Fig. 5(b), L is a
monotonic increasing function of the atom-photon coupling
strength |g|, and L reaches the maximum 4|V |. Namely, the
stronger coupling leads to a wider perfect-reflection band.
Figures 5(c) and 5(d) show that, when � or ω is very large,
i.e., the difference between the incident photon’s energy E(k)
and the two-level atom’s energy level spacing � is very large,
L tends to zero. The reason leading to this behavior is similar
to that in the rotating-wave approximation [30], i.e., the large
energy difference makes the interaction negligible with large
time scale.

The width of the perfect-reflection band is obtained with
large Na . We now discuss how large Na is to ensure that
our results are reliable. With the parameters in Fig. 3, the
boundaries �± of the wide band are acquired using Eqs. (32)
and (33) as

�− ≈ −0.618g and �+ ≈ 0.302g. (37)

We plot the transmission coefficients |t |2 in these two
boundaries with respect to Na in Fig. 6. When Na � 20, the
transmission coefficients in both boundaries vanish approxi-
mately. As a result, the width we obtained of perfect reflection
does not require Na → ∞ in practice. In fact, with this set

0 5 10 15 20 25
0

0.5

1

FIG. 6. (Color online) The transmission coefficients |t |2 in two
boundaries �± with respect to Na , where the blue dotted line
represents |t |2 in the left boundary, while the red dashed line
represents |t |2 in the right boundary. When Na � 20, the transmission
coefficients in both boundaries vanish approximately. With this set
of parameters, 20 is large enough for Na to ensure the reliability
for the width of the perfect-reflection band that we obtained. For
comparison, the transmission coefficients with the energy beyond the
wide band are plotted (the purple dotted line for � = −0.65 and the
brown dot-dashed line for � = 0.35). The transmission coefficients
|t |2 do not tend to zero as the atom number Na increases unless the
energy is in the wide band.
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of parameters in Fig. 6, Na = 20 is large enough to build
the wide band for perfect reflection. For comparison, we also
plot |t |2 versus Na with the energies beyond the wide band,
which show that |t |2 does not tend to zero with the increment
of Na , even though the energy is very close to that at the
boundaries �±.

IV. SLOW LIGHT RESONANT ABSORPTION

We have shown the wide-band reflection by a multiatomic
mirror. We now consider the slowing and stopping light
phenomena in the interaction region with an array of atoms,
which actually has a close relation to the emergence of the
wide band [34].

We revisit the Hamiltonian in the interaction region

Hint =
Na∑
j=1

ωa
†
j aj + V

Na−1∑
j=1

(a†
j aj+1 + a

†
j+1aj )

+
Na∑
j=1

[
�

2

(
σ z

j + 1
) + g(ajσ

+
j + a

†
j σ

−
j )

]
. (38)

The corresponding eigenstates for Eq. (38) are

|�int〉 =
Na∑
j=1

v
g

j |j 〉 ⊗ |G〉 + |0〉
Na∑
j=1

ve
j |e〉j ⊗ |G′

j 〉, (39)

with the eigenvalue E that is determined by the set of equations

ωv
g

j + V
(
v

g

j+1 + v
g

j−1

) + w(E)vg

j = Ev
g

j ,
(40)

j = 2, . . . ,Na − 1,

ωv
g

1 + V v
g

1 + w(E)vg

1 = Ev
g

1 , (41)

ωv
g

Na
+ V v

g

Na−1 + w(E)vg

Na
= Ev

g

Na
, (42)

and

�ve
j + gv

g

j = Eve
j . (43)

We note that the difference between Eqs. (40)–(42) and
Eq. (5) is the different boundary condition. The solutions to
the set of Eqs. (40)–(42) are

v
g

j = A sin pj, (44)

with normalization constant A, and the eigenvalues satisfy

Eint = ω + g2

Eint − �
+ 2V cos p, (45)

where p is determined by the boundary conditions (41) and
(42) as

p = nπ

Na + 1
, n = 1, . . . ,Na. (46)

Consequently,

E±
int(p) = 1

2

(
δp ±

√
δ2
p + 4g2

) + �, (47)

where δp = δ + 2V cosp.

It is shown in Eq. (47) that there are two energy bands for
the interaction region, which are labeled by E+

int and E−
int. The

0 π

...

aN

aN

...

Band gap

FIG. 7. (Color online) Schematic configuration for the two energy
bands E±

int [for (a)]. Here, each band has Na energy levels. When Na

energy levels tends to infinity, E±
int(p) with respect to p is shown in

(b), with the band gap E+ − E−.

two bands are shown schematically in Fig. 7(a). When Na

tends to infinity, the energy at bottom of the upper band E+
int is

E+, and at top of the lower band E−
int the energy is E−, with

the band gap L = E+ − E− as shown in Eqs. (32) and (33).
The band gap for the interaction region contains the wide band
for perfect reflection of a single photon. Namely, when the
incident photon energy is in the band gap, it is impossible for
the photon to go through the interaction region. With large
Na , we plot E±

int(p) with respect to p in Fig. 7(b). Here,
the parameters are the same as those in Fig. 3. We note that the
incident electron energy corresponding to the resonant peaks
in the transmission spectrum is not in agreement with the
eigenenergies that we obtained in Eq. (47) in the interaction
region.

The group velocity vg of light propagating in the interaction
region is defined as

v±
g (p) = ∂pE±

int(p). (48)

Since the momentum k′ in the interaction region depends on
the energy E of the incident photon, the group velocity vg is
also dependent on E. However, when E is in the band gap, k′
is complex and vg(�) is also complex. This complex vg(�)
depicts the decay in the light propagating in the interaction
region. In this sense, when Na is large, this group velocity is
zero. It demonstrates that the stopping light phenomenon is due
to the atomic mirror. The group velocities in the two bands are
plotted in Fig. 8 with the same parameters as those in Fig. 3. For
comparison, we also plot the group velocity vg = −2V sin k

in the CRW without doping atoms. When � < 0, the photon
propagates in the lower band, while when � > 0, the photon
propagates in the upper band. Figure 8 shows the slowing and
stopping light phenomena in the interaction region, and the
width of � in the light stopping region corresponds exactly to
the width of the perfect-reflection band shown in Fig. 3(d).

We note that these results are based on the assumption that
Na is large, or even infinite. However, in practical applications,
Na is finite and maybe not very large, so the reflection in the
whole of the band would not be so perfect. We investigate the
influence of Na on the perfect-reflection wide band and show
that, with some parameters, Na = 20 is large enough to ensure
the the reliability of our results.
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− 3 − 2 − 1 0 1
0

1

2

FIG. 8. (Color online) The light group velocity v−
g (dotted blue

line), v+
g (dashed red line), and vg (solid brown line) for lower

band E−, upper band E+, and free tight-binding model E(k) vs
the detuning �. The region where v±

g = 0 depicting the stopping
light phenomenon exactly corresponds to the wide band for perfect
reflection.

V. INFLUENCE OF IMPERFECTIONS
IN EXPERIMENTAL IMPLEMENTS

In experiments, the atomic decay, the intrinsic loss of
each coupled resonator, and the disorder [21,35,36] in the
CRW are inevitable. In this section, we investigate how
these imperfections influence the frequency wide band for the
perfect reflection that we have studied. First, we consider the
disorder problem without atomic decay and losses of coupled
resonators.

In principle, the whole CRW scale can be infinite, thus we
only consider a segment of disordered resonators. Moreover,
we assume that the disordered region happens to the atom-
cavity interaction region, which means that the hopping
constant Vj for i, j ∈ [1, Na − 1], and the on-site frequency
ωj for j ∈ [1, Na] becomes position dependent. Under these
assumptions, the total Hamiltonian

Himp = HL + HD
int (49)

is divided into two parts: as the lead part,

HL = ω

⎛
⎝ 0∑

j=−N

+
N∑

j=Na+1

⎞
⎠ a

†
j aj (50)

+V

⎛
⎝ 0∑

j=−N

+
N∑

j=Na

⎞
⎠ (a†

j aj+1 + a
†
j+1aj ), (51)

and the disordered part in the atom-cavity interaction region is

HD
int =

Na∑
j=1

ωja
†
j aj +

Na−1∑
j=1

Vj (a†
j aj+1 + a

†
j+1aj )

+
Na∑
j=1

[
�

2

(
σ z

j + 1
) + g(ajσ

+
j + a

†
j σ

−
j )

]
. (52)

The eigenstate of Himp with eigenenergy E = ω + 2V cos k

for the incident photon with momentum k in the single

excitation subspace has a form similar to that in Eq. (3):

|�(E)〉 =
⎛
⎝ 0∑

j=−N

+
N∑

j=Na+1

⎞
⎠ φj |j 〉 ⊗ |G〉 + |�D(E)〉,

(53)

where the amplitudes in the lead part’s wave function can still
be assumed to describe the reflection and transmission as

φj =
{

eikj + rDe−ikj , j < 1

tDeikj , j > Na

, (54)

and

|�D(E)〉 =
Na∑
j=1

φ
g

j |j 〉 ⊗ |G〉 + |0〉 ⊗ φe
j |e〉j ⊗ |G′

j 〉 (55)

is the wave function in the atom-cavity interaction region.
Here, rL and tL are the reflection and transmission amplitudes,
respectively. Resulting from the boundary conditions at points
j = 1 and j = Na , respectively, these amplitudes satisfy

rD = eik
(
φ

g

1 − eik
)
, (56)

tD = e−ikNaφ
g

Na
. (57)

By solving the Schrödinger equation Himp|�(E)〉 = E|�(E)〉,
we straightforwardly obtain the equation for |�D(E)〉 as

|�D(E)〉 = V (e2ik − 1)w|1〉 ⊗ |G〉, (58)

where

w = 1

HD + V eik
(
a
†
1a1 + a

†
Na

aNa

) − E
(59)

is the inverse of the Hamiltonian matrix together with the
contributions of the lead part.

The amplitudes φ
g

1 and φ
g

Na
are completely determined by

the 2Na × 2Na matrix w. Since the disorder exists in the atom-
cavity interaction region, the inhomogeneity of the hopping
constants {Vj } and the on-site frequencies {ωj } are expected
to destroy the coherence of the incident photon and, hence, en-
hance the reflection. For a particular realization of disorder, i.e.,
for given sets {ωj } and {Vj }, which are generated randomly in
the ranges [ω − 0.2ω, ω + 0.2ω] and [V − 0.2V,V + 0.2V ],
respectively, we plot the transmission coefficient |tD|2 versus
the detuning � = E(k) − � in Fig. 9(a). The other parameters
are the same as those in Fig. 3(c). Figure 9(a) shows that
the wide band is almost unaffected, while outside the wide
band the transmission coefficient is changed dramatically.
We assume that the disorder in the atom-cavity interac-
tion region has the Gaussian distribution of both {ωj } and
{Vj } as

P (x) = exp[(x − x0)2/2σ 2]

2πσ
, (60)

where P (x) is the probability for a given value x, x = ωj ,
Vj , x0 is the averaged value, and σ is the variance. We
plot the averaged transmission coefficient |tD|2 versus � in
Figs. 9(b)–9(d). Here, for the sets {ωj } and {Vj }, x0 = ω and
V , and the variances are 0.01ω and 0.01|V | for Fig. 9(b),
0.05ω and 0.05|V | for Fig. 9(c), and 0.1ω and 0.1|V | for
Fig. 9(d). It is shown that Fig. 9(b) is quite similar to Fig. 3(c),
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FIG. 9. The transmission coefficient |tD|2 as a function of the
detuning � when the frequencies {ωj } of the cavities and the coupling
strength {Vij } between the nearest two cavities are different from site
to site due to disorder. (a) For given sets {ωj } and {Vij }, the wide
band for perfect reflection is almost unchanged, while |tD|2 changes
dramatically outside of the wide band. (b)–(d) show the averaged
results of the {ωj } and {Vij } when the distributions of {ωj } and {Vij }
are Gaussian with the same mean values ω and V , but different
variances. When the variances of {ωj } and {Vij } are sufficiently small,
e.g., 0.01ω and 0.01|V | [for (b)], the transmission curve is quite
similar to that in Fig. 3(c). When the variances are increased, e.g., to
0.05ω and 0.05|V | [for (c)], and 0.1ω and 0.1|V | [for (d)], the range
of the wide band is shortened; in the other region, the transmission
curve is smoothed, with the depressed envelope, which demonstrates
the destruction of the coherence of the incident photon due to the
existence of the disorder.

both in the perfect- and nonperfect-reflection regions. When
the variances of {ωj } and {Vj } increase, the range of the wide
band is shortened.

The atomic decay and the loss of resonators also play an
essential role in experiments. Usually, such atomic decay and
resonator losses mean inelastic scattering, which results from
the interaction between the system and a realistic environment
described by phonons. For simplicity, we investigate this effect
on the perfect-reflection wide band by phenomenologically
adding imaginary parts −iγa and −iγc to the two-level
atom frequency � and the coupled-resonator frequency ω,
respectively. We note that these losses will can be directly
added in the final results [see Eq. (12)] phenomenologically.
As a result, without disorders, the transmission coefficient in
Eq. (12) becomes

|tL|2 =
∣∣∣∣ 4V 2 sin k sin k′

L

C(EL)2eik′
L(Na−1) − D(EL)2e−ik′

L(Na−1)

∣∣∣∣
2

, (61)

where

C(EL) = V e−ik′
L − V e−ik + wL(EL), (62)

D(EL) = V eik′
L − V e−ik + wL(EL), (63)

and k′
L satisfies the equation

2V cos k′
L = 2V cos k − wL(E). (64)

−3 −2 −1 0 1
0

0.5

1

−3 −2 −1 0 1
0

0.5

1

FIG. 10. The transmission coefficients (a) |tL|2 and (b) |rL|2 +
|tL|2 with respect to the detuning � in the system environment
interacting case. It is shown that the perfect-reflection band still exists,
and the photon current is no longer conserved.

Here, wL(EL) = g2/[EL − (� − iγa)] and EL = ω − iγc +
2V cos k. The corresponding reflection coefficient is

|rL|2 =
∣∣∣∣i2V sin k

C(EL) − D(EL)e−i2k′
L(Na−1)

C(EL)2 − D(EL)2e−i2k′
L(Na−1)

− 1

∣∣∣∣
2

.

(65)

With the same parameters in Fig. 3(c), we plot the transmission
spectrum |tL|2 and |rL|2 + |tL|2 in Fig. 10, where γa = 0.02g

and γc = 0.01g. It is shown in Fig. 10(a) that the wide
band for perfect reflection also exists in the transmission
spectrum, with almost the same boundaries when γa/�,
γc/ω � 1, and γa > γc are satisfied, but the envelope of the
transmission curve is depressed globally. This phenomenon
also appears in Fig. 10(b), which shows that the photon
current is not conserved any more, especially near the two
boundaries �±. However, when the single photon stops in
the interaction region, the energy is almost conserved. From
this discussion, the wide band for near-perfect reflection is
almost not influenced by the imperfections such as disorder,
atomic decay, and resonator losses existing in the realistic
experiments.

VI. SUMMARY

We have studied the coherent transport of a single photon
in a one-dimensional array of coupled resonators individually
coupled to two-level atoms. The discrete-coordinate scattering
approach shows that a wide-band spectrum appears for a
perfect reflection when the number of atoms Na is large.
The physical mechanism for this wide band is considered by
the incoherent multireflection for light by Na atoms, which
extends the the perfect reflection line to form a wide band.
The slowing and stopping light phenomena also appear due
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to the interaction with atoms. We also diagonalize exactly
the photon-atom interaction Hamiltonian in the interaction
region, and obtain two energy bands. It is found that the
perfect-reflection wide band is embedded in this band gap.
We also consider the effect of imperfections in experimental
implements and find that the wide band for near-perfect
reflection is not influenced when the parameters describing
the imperfections are small.

The model we propose here can be realized by a circuit
QED system [5,22–24], where the CRW can by realized by
either defect resonators in photonic crystals [21] or coupled

superconducting transmission line resonators [8,10,15]. By
engineering the photon-atom coupling strengths and other
parameters such as the hopping constant and the energy space
between the two levels of the atoms, we can control the width
and position of the perfect-reflection wide band.
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[36] J. Grgić, E. Campaioli, S. Raza, P. Bassi, and N. A. Mortensen,

Opt. Quantum Electron. 5, 10009 (2010).

013825-9

http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1103/PhysRevLett.91.147903
http://dx.doi.org/10.1103/PhysRevLett.91.147903
http://dx.doi.org/10.1103/PhysRevA.69.051802
http://dx.doi.org/10.1103/PhysRevA.78.053806
http://dx.doi.org/10.1103/PhysRevA.78.053806
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1103/PhysRevLett.95.213001
http://dx.doi.org/10.1103/PhysRevLett.95.213001
http://dx.doi.org/10.1103/PhysRevLett.101.100501
http://dx.doi.org/10.1103/PhysRevLett.101.100501
http://dx.doi.org/10.1103/PhysRevA.77.013831
http://dx.doi.org/10.1103/PhysRevA.77.013831
http://dx.doi.org/10.1103/PhysRevA.80.062109
http://dx.doi.org/10.1103/PhysRevA.80.062109
http://dx.doi.org/10.1103/PhysRevA.81.042304
http://dx.doi.org/10.1038/nphys569
http://dx.doi.org/10.1038/nphys766
http://dx.doi.org/10.1103/PhysRevA.78.063827
http://dx.doi.org/10.1103/PhysRevA.78.063827
http://dx.doi.org/10.1103/PhysRevA.80.014301
http://dx.doi.org/10.1103/PhysRevA.76.055801
http://dx.doi.org/10.1103/PhysRevA.76.055801
http://dx.doi.org/10.1103/PhysRevA.77.023816
http://dx.doi.org/10.1103/PhysRevA.77.023816
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.102.253903
http://dx.doi.org/10.1103/PhysRevA.78.063832
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1103/PhysRevB.68.064509
http://dx.doi.org/10.1103/PhysRevB.68.024510
http://dx.doi.org/10.1038/nature02831
http://dx.doi.org/10.1063/1.2155757
http://arXiv.org/abs/arXiv:1002.4208v1
http://dx.doi.org/10.1103/RevModPhys.80.1201
http://dx.doi.org/10.1103/PhysRevLett.92.083901
http://dx.doi.org/10.1103/PhysRevA.71.013803
http://dx.doi.org/10.1103/PhysRevA.76.012313
http://dx.doi.org/10.1103/PhysRevA.76.013819
http://dx.doi.org/10.1103/PhysRevA.76.013819
http://dx.doi.org/10.1038/nphoton.2007.278

