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Singlet and triplet Bardeen-Cooper-Schrieffer pairs in a gas of two-species
fermionic polar molecules
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Taking into account the deformation of the Fermi surface, we investigate the spin-singlet and -triplet BCS
pairings in a mixture of fermionic polar molecules with two different hyperfine states. In particular, we explore
the relation between the critical temperatures and the Fock-exchange interaction. We also show that, by tuning
short-range interaction between interspecies molecules, the singlet- and triplet-paired superfluids may coexist.
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I. INTRODUCTION

Following the rapid experimental developments in making
ultracold gases of fermionic polar molecules [1–4], there has
been growing interest in studying the properties of dipolar
Fermi gases. Of particular interest, the partially attractive elec-
tric dipole-dipole interaction (EDDI) provides a mechanism
to form an anisotropic BCS pair. You and Marinescu [5] first
realized that the p-wave paired BCS states could be achieved
for fermionic atoms inside an external dc field. Baranov et al.
further studied the BCS pairing in a homogeneous gas of
the spin-polarized dipolar fermions [6]. Compared to the
s-wave pairs in nondipolar Fermi gases, the anisotropic dipolar
interaction makes the order parameter the superposition of all
odd partial waves. Subsequently, the critical temperature of
the superfluid transition and its relation to the trap geometry
were investigated [6]. In those studies, the Fermi surface
(FS) of system was assumed to be a sphere. However, it
was found via the variational method that the Fock-exchange
interaction deformed the FS [7], which was also confirmed
by both numerical [8,9] and perturbation calculations [8,10].
Very recently, the role played by Fock-exchange interaction in
BCS pairing has been considered [11].

All the mentioned theoretical work has focused on the
spinless dipolar fermions. By adding the spin degree of
freedom, an ultracold gas of polar molecules may offer even
richer physics. When loaded into an optical lattice, spin- 1

2 polar
molecules can be used as a toolbox for lattice spin models [12].
It was also shown that a two-component dipolar Fermi gas may
have a ferro-nematic ground state [13]. More interestingly,
Samokhin and Mar’enko studied the nonuniform mixed-parity
superfluid states in two-component dipolar Fermis gases with
population imbalance [14]. They focused particularly on the
weak dipolar interaction (compared to the contact interaction)
limit; in addition, the effect of the Fock-exchange interaction
on pairing was ignored.

In this work, we study the BCS pairing in a mixture
of fermionic polar molecules with two different hyperfine
states, σ = ↑ and ↓. The electric dipole moments d of
all molecules are orientated along the z axis such that
the spin-independent EDDI becomes Vd (r) = Cdr

−3(1 − 3z2

r2 )
with Cd = d2/(4πε0). We assume that interspecies molecules
also interact via short-range interaction V0(r) = C0δ(r), where
C0 = (4πh̄2as)m with as being the s-wave scattering length
and m the mass of the molecule. The total interaction

potential V = Vd + V0 conserves the number of particles
in the individual spin component. As shown, this system
supports both the spin-singlet even partial wave and the
spin-triplet odd partial wave BCS pairs [14]. In addition,
we find that the Fock-exchange interaction always enhances
the triplet pairing by increasing the corresponding critical
temperature. However, when contact interaction dominates,
the Fock-exchange interaction may weaken the singlet pairing.
We also point out that, by tuning the contact interaction, the
transition between single- and triplet-paired superfluids can be
realized. Very recently, Wu et al. [15] studied the same system.
In particular, they show the existence of the mixed triplet and
singlet pairings, which spontaneously breaks the time-reversal
symmetry.

II. GAP EQUATION

We consider a homogeneous gas of two-species fermionic
polar molecules with total number density 2n. For simplicity,
we assume that n↑ = n↓ = n. In momentum space, the second
quantized Hamiltonian reads

H =
∑
kσ

(
h̄2k2

2m
− µ

)
c
†
kσ ckσ

+ 1

2V
∑

kpq,σσ ′
Ṽ (q)c†k+q σ c

†
p−q σ ′cpσ ′ckσ ,

where µ = µ↑ = µ↓ is the chemical potential, V is the volume
of the system, and Ṽ = Ṽd + Ṽ0 is the Fourier transform of the
interaction potential. One should keep in mind that, in Eq. (1),
contact interaction only exists between ↑ and ↓ molecules.

Under Hartree-Fork approximation, Eq. (1) becomes

H =
∑
kσ

εkσ c
†
kσ ckσ + 1

2

∑
k,σσ ′

�σσ ′(k)c†kσ c
†
−kσ ′ + H.c., (1)

where the dispersion relation is εkσ = {(h̄2k2)/2m} − εF −
�σ (k) with εF ≡ µ − nC0 = (h̄2/2M)(6π2n)2/3 being the
Fermi energy and �σ (k) = V−1 ∑

q Ṽd (k − q)fqσ being the
self-energy. To the lowest order, we choose the Fermi occupa-
tion number fqσ = 〈c†qσ cqσ 〉 to be that at zero temperature. As a
result, dispersion relations become spin independent, denoted
as εk. In addition, the Fock-exchange interaction deforms
the FS such that it is now describes by an ellipsoid of the
form α−1(k2

x + k2
y) + α2k2

z = k2
F [7], where h̄kF = √

2mεF
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is the Fermi momentum and α represents the deformation
parameter. The value of α (�1) can be obtained through either
variational [7] or numerical calculation [8,9]. Moreover, at the
weak interaction limit

D ≡ nCd/εF � 1, (2)

the perturbation calculation yields α = 1 − 2π
3 D [8,10], where

D is the dimensionless dipole interaction strength. For simplic-
ity, the variational result of α is adopted in this work.

The order parameters for the BCS states in the Hamiltonian
(1) are defined as

�σσ ′(k) = V−1
∑

q

Ṽ (k − q)〈c−qσ ′cqσ 〉. (3)

Using either Bogoliubov transformation [16] or the standard
Green’s function method [17], we obtain

〈c−qσ ′cqσ 〉 = −�σσ ′(q)

2Eqσ

tanh

(
1

2
βEqσ

)
, (4)

where Ekσ =
√

ε2
k + ∑

ζ |�σζ (k)|2 is the energy of single-

particle excitation and β = 1/(kBT ) is the inverse temperature.
To obtain Ekσ , we have assumed that �

†
σζ�ζσ ′ is a diagonal

matrix. Substituting Eq. (4) into Eq. (3), one finds a set of
self-consistent equations for order parameters

�σσ ′(k) = −
∫

dq
(2π )3

Ṽ (k − q)
tanh

(
1
2βEqσ

)
2Eqσ

�σσ ′(q); (5)

here the order parameters corresponding to different BCS
paired states are coupled. Similar gap equations also appear
in a superfluid 3He system [16]. The integral in Eq. (5)
formally diverges. To regularize the interaction, we follow
the standard renormalization procedure [6], which, to the first
Born approximation, leads to the gap equations

�σσ ′(k) = −
∫

dq
(2π )3

Ṽ (k − q)�σσ ′(q)

×
[

tanh
(

1
2βEqσ

)
2Eqσ

− m

h̄2q2

]
. (6)

We emphasize that these equations are only valid in weak
interaction regime Eq. (2), as we have ignored the higher order
contributions from the interaction.

III. SYMMETRIES OF THE ORDER PARAMETERS

Up to now, we have expressed the order parameters

� =
(

�↑↑ �↑↓
�↓↑ �↓↓

)
in the uncoupled spin space. While in the basis of coupled spin
{|SM〉}, one will have singlet and triplet pairs corresponding
to total spin S = 0 and 1, respectively. Singlet pairing requires
the gap parameter to be antisymmetric such that

�s = �siσ 2 =
(

0 �s

−�s 0

)
,

where σ 2 is the second Pauli matrix. Obviously, �s(−k) =
�s(k), and as we show, it is a superposition of even partial
waves, that is, �s(k) = ∑

even l �
(s)
l (k)Yl0(k̂).

Following the convention of 3He [16], we may define a
vector d(k) in spin space by combining three spin components
(M = 0,±1) of the triplet pair:

�t =
∑

µ=1,2,3

dµ(σµiσ 2) =
(−d1 + id2 d3

d3 d1 + id2

)
,

where σµ are Pauli matrices. It can be easily seen
that �t,1 = �↑↑ = −d1 + id2, �t,−1 = �↓↓ = d1 + id2, and
�t,0 = �↑↓ = �↓↑ = d3. In momentum space, �t,M (k) are
superpositions of odd partial waves, that is, �t,M (k) =∑

odd l �
(t)
M,l(k)Yl0(k̂).

IV. SPIN-SINGLET PAIRING

For a deformed FS, we introduce the rescaled momentum k̄
such that k̄x/y = α−1/2kx/y and k̄z = αkz. Moreover, we define
ξk̄ ≡ h̄2k̄2/(2M) − εF , which allows us to rewrite the order
parameter as �s(k̄) ≡ �s(ξk̄,nk̄) with nk̄ = k̄/k̄ being an unit
vector. Using the fact that the pairing is mainly contributed by
states near FS, we introduce a characteristic energy ωs (of the
order of εF ) to single out the contribution from −ωs � ξk̄ � ωs

[6]. In a weak coupling regime, we have ωs 	 |�s |, kBT (s)
c .

The value of ωs is determined self-consistently. After some
tedious calculations, we obtain from Eq. (6) that

�s(ξk̄,nk̄) = −
∫

dnq̄

4π
W (T ,nq̄)Rs(ξk̄,nk̄; 0,nq̄)�s(0,nq̄)

+ 1

2

∫
dnq̄

4π

∫ ∞

−εF

dξq̄ ln

( |ξq̄| + ηq̄

2ωs

)
d

d|ξq̄|
×Rs(ξk̄,nk̄; ξq̄,nq̄)�s(ξq̄,nq̄) − 1

2

∫
dnq̄

4π

× ln
|εF |
ωs

R(ξk̄,nk̄; −εF ,nq̄)�s(−εF ,nq̄), (7)

where W (T ,nq̄) = ∫ ωs

0 dξq̄η
−1
q̄ tanh[ηq̄σ /(2kBT )] and ηk̄ =√

ξ 2
k̄ + |�s(0,nk̄)|2. Furthermore, the integration kernel takes

the form

Rs(ξk̄,nk̄; ξq̄,nq̄)

= mq̄
2π2

Ṽ (k − q)

[
ηq̄

Eq

tanh
(

1
2βEq

)
tanh

(
1
2βηq̄

) − 2Mηq̄

q2 tanh
(

1
2βηq̄

)]
.

Close to the critical temperature T (s)
c , the gap goes to

zero and ηq̄ → |ξq̄|. For the first term in the right-hand side
of Eq. (7), we have C ≡ W (T (s)

c ,nk̄) = ln[2eγ ωs/(πkBT (s)
c )],

with γ = 0.5772 being the Euler constant. In contrast, the
last two terms in Eq. (7) do not contain the large logarithm
ln(ωs/kBT (s)

c ), indicating that they are only important for the
pre-exponential factor in the expression of critical temperature
[6]. For the purpose of determining T (s)

c , they are neglected
such that we find on the FS

�s(0,nk̄) = −C
∫

dnq̄

4π
Rs(0,nk̄; 0,nq̄)�s(0,nq̄), (8)

which is essentially an eigenvalue equation of integral operator
with kernel Rs(0,nk̄; 0,nq̄). Finding the highest critical tem-
perature is equivalent to finding the lowest negative eigenvalue
of this eigenvalue equation. Even in the case α �= 1, it can be
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shown that the eigenstate corresponding to lowest eigenvalue is
independent of the azimuthal angle of nk̄ [6]. This observation
allows us to integrate over the azimuthal variable of Eq. (8) to
obtain the eigenvalue equation∫ 1

−1
dyKs(x,y)φ(y) = λφ(x), (9)

where x = cos θnk̄
, y = cos θnq̄ , and Ks(x,y) =

[3lα(x,y) |x − y| − 1] + kF as/(π2D) with lα ≡ {4α3 + (1 −
α3)[(x − y)2 − α3(x + y)2]}−1/2. Clearly, the first term in Ks

originates from EDDI, while the second one corresponds to
contact interaction.

For singlet pairing, we focus on the subspace of the
eigenstates with even parity, that is, φ(x) = φ(−x). Assuming
that λs is the lowest eigenvalue of Eq. (9) corresponding to
an even eigenstate φs(x), the critical temperature can then be
expressed as

kBT (s)
c = 2eγ ωs

π
exp

(
− 1

πD|λs |
)

. (10)

In addition, at T (s)
c , the order parameter on the FS becomes

�s(0,nk̄) = �s0φs(cos θnk̄
), where φs(cos θnk̄

) represents the
angular dependence of the order parameter on FS.

If the Fock-exchange interaction is ignored, we have
exactly φs(x) = N cos(x

√
3/|λs |), whereN is a normalization

constant and |λs | is the largest positive root of the equa-
tion t cos

√
3/t + {1 + [(2kF as)/(π2D)]}√t/3 sin

√
3/t = 0.

It can be shown that λs (< 0) is a decreasing function of
kF as/D. For negative kF as , our result reduces to that for
s-wave pairing when D = 0. In the case α �= 1, λs and φs

can only be determined numerically. As shown in Fig. 1, λs is
an increase of α for kF as = 0, indicating that, in the absence
of contact interaction, the Fock-exchange interaction enhances
singlet BCS pairing.

Next, we compute the characteristic energy ωs . Following
the standard BCS mean-field approach [6], we obtain

ln
ωs

εF

= lim
δ→0+

ln δ + 1

2πDλs

∫
dnk̄

4π

∫
dnq̄

4π
φs(nk̄)

×
∫ ∞

−εF

dξq̄

|ξq̄|Rs(0,nk̄; ξq̄,nq̄)
�s(ξq̄,nq̄)

�0
, (11)

where the order parameter, at T (s)
c , satisfies the equation

�s(ξk̄,nk̄)

�s0
 1

πDλs

∫
dnq̄

4π
Rs(ξk̄,nk̄; 0,nq̄)φs(cos θq̄). (12)

0.7 0.8 0.9 1
−1.4

−1.2

−1

−0.8

−0.6

α

λ
s
,λ

t

FIG. 1. (Color online) The α dependence of λs for kF as = 0 (solid
line) and λt (dashed line).

FIG. 2. (Color online) (a) The D dependence of T (s)
c for kF as = 0

(solid line) and −1 (dashed line). (b) T (s)
c as a function of kF as for

D = 0.1 (solid line) and 0.15 (dashed line). (c) �s(kρ,kz)/�s0

at critical temperature for kF as = 0 and D = 0.1, where kρ =
(k2

x + k2
y)1/2.

The term ωs can be obtained by substituting Eq. (12) into
Eq. (11). We remark that, in the right-hand side of Eq. (11),
the second term also contains a divergent term which cancels
the divergence from the first term. In general, ωs is a function
of both D and kF as , indicating that it also implicitly depends
on α. For simplicity, we use α = 1 to calculate ωs , which yields
ωs  0.36εF for kF as = 0 and ωs  0.54εF for D = 0. The
latter is exactly the value for s-wave pairing.

In Fig. 2(a), we present the D dependence of the critical
temperature for singlet pairing. For kF as = 0, only the dipolar
interaction is responsible for pairing; therefore, T (s)

c is a mono-
tonically increasing function of D. However, for kF as = −1,
T (s)

c (D) becomes a concave curve. This result suggests that
even though both attractive contact interaction and dipolar
interaction contribute to pairing, they also compete with each
other. In fact, the deformed FS makes it difficult for contact
interaction to form s-wave pairs, which is responsible for the
drop of T (s)

c at small D. When dipolar interaction dominates,
T (s)

c becomes an increasing function of D again. We also
verify that if the FS deformation is ignored, T (s)

c would
always be an increasing function of D. Figure 2(b) shows
the kF as dependence of T (s)

c for given D. As α is fixed by
D, T (s)

c always increases as one increases the strength of
contact interaction. In addition, when short-range interaction
dominates, the one with smaller FS deformation (smaller D)
will eventually have a higher critical temperature. Finally, the
angular dependence of the order parameter for a spin-singlet
pair at critical temperature is presented in Fig. 2(c).

V. SPIN-TRIPLET PAIRING

At critical temperature, the order parameters for triplet pairs
�t,M are decoupled. In addition, they satisfy gap equations
with exactly the same form. Therefore, we denote the triplet
order parameter as �t . Since the critical temperature and
order parameters can be obtained by following the same
procedure as that for singlet pairing, here we only present our
results.

The critical temperature T (t)
c for triplet pairing can be

expressed as kBT (t)
c = [(2eγ ωt )/π ] exp(− 1

πD|λt | ), where λt is
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FIG. 3. (Color online) (a) The D dependence of T (t)
c .

(b) �t (kρ,kz)/�t0 at critical temperature for D = 0.1.

the lowest eigenvalue of the equation
∫ 1
−1 dyKt (x,y)φ(y) =

λφ(x) in the subspace of the eigenstates with odd parity. The
integration kernel is Kt (x,y) = 3lα(x,y) |x − y| − 1, which is
essentially Ks with kF as = 0. Assuming that the correspond-
ing eigenstate of λt is φt (x), the triplet order parameter on the
FS is �t (0, cos θnk̄

) = �t0φt (cos θnk̄
). The α dependence of

λt (Fig. 1) indicates that the critical temperature of the triplet
pairing is also enhanced by the Fock-exchange interaction.
This enhancement can be attributed to the increase of the
density of states near the north and south poles of the stretched
(along the z axis) FS, which provides the main contribution to
the triplet pairing [11].

The characteristic energy ωt and the triplet order parameter
�t (ξk̄,nk̄)/�t0 at critical temperature satisfy equations similar
to Eqs. (11) and (12), except that Rs is now replaced by Rt

which does not contain the contact interaction. In Fig. 3(a),
we plot the dipolar interaction strength dependence of the
critical temperature T (t)

c , where we have used ωt  0.42εF ,
the value corresponding to the α = 1 case. We remark that
the analytic result for T (t)

c agrees very well with that obtained
numerically [18]. The typical order parameter for a triplet pair
is plotted in Fig. 3(b). In the case where the FS deformation is
ignored, our results for triplet pairing reduce to those obtained
by Baranov et al. [6].

VI. SINGLET VERSUS TRIPLET PAIRING

For kF as = 0, it can be seen from Fig. 1 that we always
had |λs | < |λt |; by further assuming α = 1, we also find that
ωs < ωt . These results suggest that, without attractive contact
interaction, the critical temperature for singlet pairing is always
lower than that for triplet pairing. However, for kF as < 0, T (s)

c

increases as one increases the strength of the short-range inter-
action such that beyond a threshold kF a∗

s , we have T (s)
c > T (t)

c .
The critical s-wave scattering length is determined by equation

πD ln
ωs(kF a∗

s )

ωt

= 1

λt

− 1

λs(kF a∗
s )

,

where we have explicitly expressed ωs and λs as func-
tions of kF as . In Fig. 4, we present the D dependence
of the critical scattering length. We point out that when
T (s)

c = T (t)
c , the singlet and triplet pairs may coexist in the

system.
One should note that, in our expressions for the critical

temperatures, we have ignored the many-body effect on
the pre-exponential factor. In a weak interaction limit, a
proper treatment of this effect requires the calculations of the

0.01 0.04 0.07 0.1
−0.6

−0.4

−0.2

0

D

k
F
a
∗ s

T
(s)
c > T

(t)
c

T
(s)
c < T

(t)
c

FIG. 4. (Color online) The dipolar interaction strength depen-
dence of the critical scattering length.

second-order corrections of the scattering amplitude between
interacting particles [6], which is out of the scope of the
present work. However, this effect can be roughly estimated
as follows. For triplet pairing, the higher order corrections can
be incorporated into the expression for critical temperature as

kBT (t)
c  2eγ ωt

π
exp

(
− 1

πD|λt | + gD2 + hD3 + · · ·
)

 2eγ ωt

π
eg/(π2λ2

t ) exp

(
− 1

πD|λt | + hD

π2λ2
t

+ · · ·
)

,

where g(>0) comes from the many-body correction when
the Fermi surface is assumed to be spherical and all other
higher order corrections originate from the additional effects
due to the deformation of the Fermi surface. For small D,
the second-order and higher order terms in the exponential
function are negligible. Therefore, for triplet pairing, we
may adopt the result from Ref. [6], which yields kBT (t)

c 
1.44εF e−1/(πD|λt |). For the singlet pairing, the situation be-
comes more complicated due to the interplay of the contact
and dipolar interactions. However, we note that the s-partial
wave of the singlet pair dominated in the order parameter when
λs is comparable to λt for any given D. Therefore, the main
contribution to the many-body correction originates from the
contact interaction, such that the critical temperature for singlet
pairing can be approximated as kBT (s)

c ≈ 0.61εF e−1/(πD|λs |)
[19].

VII. CONCLUSION

We have investigated the singlet and triplet BCS pairings in
an ultracold gas of two-species fermionic polar molecules. We
calculate the critical temperatures and angular dependence of
the order parameters. In the absence of the contact interaction,
the critical temperature of the triplet pairing is always higher
that of the singlet pairing. Moreover, the critical temperature
of the singlet pairing can be increased by tuning the s-wave
scattering length between interspecies molecules, such that
the singlet and triplet pairs may coexist. For singlet pair-
ing, we also show that the inclusion of the Fock-exchange
interaction yields lower (higher) critical temperature if the
contact (dipolar) interaction dominates. On the other hand,
the Fock-exchange interaction always enhances the triplet
pairing. Finally, we comment on the experimental realization
of the spin-singlet and -triplet pairings in a mixture of
polar molecules with two different hyperfine states. It has
been demonstrated experimentally that a spin-mixed KRb
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molecular gas has a shorter lifetime compared to a pure gas
of spin-polarized molecules, as it suffers from the exothermic
chemical reaction KRb + KRb → K2 + Rb2 [3]. Since such
loss channel is forbidden in RbCs molecular gas [20], it
provides a better opportunity to explore the spin-singlet
and -triplet BCS pairs in spin-mixed molecular gas.
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[16] D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3

(Taylor & Francis, London, 1990).
[17] See, e.g., E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics

Part 2: Theory of the Condensed State (Pergamon Press, Oxford,
1980).

[18] J.-N. Zhang et al. (unpublished).
[19] L. P. Gor’kov and T. K. Melik-Barkhudarov, Zh. Eksp. Teor. Fiz.

40, 1452 (1961); Sov. Phys. JETP 13, 1018 (1961).
[20] L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys.

11, 055049 (2009).

033623-5

http://dx.doi.org/10.1038/nphys997
http://dx.doi.org/10.1126/science.1163861
http://dx.doi.org/10.1039/b821298h
http://dx.doi.org/10.1103/PhysRevLett.104.030402
http://dx.doi.org/10.1103/PhysRevLett.104.030402
http://dx.doi.org/10.1126/science.1184121
http://dx.doi.org/10.1126/science.1184121
http://dx.doi.org/10.1103/PhysRevLett.101.133004
http://dx.doi.org/10.1103/PhysRevLett.101.133004
http://dx.doi.org/10.1103/PhysRevA.60.2324
http://dx.doi.org/10.1103/PhysRevA.66.013606
http://dx.doi.org/10.1103/PhysRevLett.92.250403
http://dx.doi.org/10.1103/PhysRevLett.92.250403
http://dx.doi.org/10.1103/PhysRevA.77.061603
http://dx.doi.org/10.1103/PhysRevA.77.061603
http://dx.doi.org/10.1103/PhysRevA.81.033601
http://dx.doi.org/10.1103/PhysRevA.80.053614
http://dx.doi.org/10.1103/PhysRevA.81.033617
http://dx.doi.org/10.1103/PhysRevA.81.033617
http://dx.doi.org/10.1103/PhysRevA.81.023602
http://dx.doi.org/10.1103/PhysRevA.81.023602
http://dx.doi.org/10.1103/PhysRevA.81.063642
http://dx.doi.org/10.1103/PhysRevA.81.063642
http://dx.doi.org/10.1038/nphys287
http://dx.doi.org/10.1103/PhysRevLett.103.205301
http://dx.doi.org/10.1103/PhysRevLett.103.205301
http://dx.doi.org/10.1103/PhysRevLett.97.197003
http://dx.doi.org/10.1103/PhysRevLett.97.197003
http://dx.doi.org/10.1103/PhysRevB.81.020508
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1088/1367-2630/11/5/055049

