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Quantum Fisher information flow and non-Markovian processes of open systems
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We establish an information-theoretic approach for quantitatively characterizing the non-Markovianity
of open quantum processes. Here, the quantum Fisher information (QFI) flow provides a measure to
statistically distinguish Markovian and non-Markovian processes. A basic relation between the QFI flow and
non-Markovianity is unveiled for quantum dynamics of open systems. For a class of time-local master equations,
the exactly analytic solution shows that for each fixed time the QFI flow is decomposed into additive subflows
according to different dissipative channels.
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I. INTRODUCTION

Any system in the realistic world is open since it in-
evitably interacts with its environment. The time evolutions
of open systems are simply classified into Markovian and
non-Markovian ones according to the ways in which they lose
energy or information [1]. In most situations, the Markovian
process uniquely determines its final steady state as a thermal
equilibrium [2], which is independent of its initial one. In
this sense a Markovian process is essentially an information
erasure process, thus, it tends to continuously reduce the
distinguishability between any two initial states [3].

However, the Markovian description for an open quantum
system is only an approximation of most of the realistic
processes, which are non-Markovian. With many recent
investigations about non-Markovian dynamics making use of
various analytical approaches and numerical simulations, a
computable measure of “Markovianity” for quantum channels
was introduced in Ref. [4]. Most recently, it was also
recognized that the difference between them can be measured
through the continuous increment of the state distinguishabil-
ity [3]. This increment, then, is intuitively interpreted as the
revival of information flow between the bath and the system
though no quantitative information measure is utilized. Based
on this measure of non-Markovianity, a method for direct
measurement of the non-Markovian character was proposed
[5]. Another approach based on entanglement is proposed
in Ref. [6]. In this paper, the quantum Fisher information
(QFI) flow is introduced to directly characterize the non-
Markovianity of the quantum dynamics of open systems.

Actually, in the system-plus-bath approach for open quan-
tum systems, the effective dynamics of the reduced density
matrix ρ is induced by tracing over the environment [1]. The
simplest reduced dynamics is the quantum Markovian process
described by dynamical semigroups [7]. There, the reduced
density matrix ρ at time t + dt is determined completely by the
one at time t . Contrarily, the general reduced dynamics may be
non-Markovian when the surrounding environment may retain
a memory of the information about states at earlier times, and
transfer it back to the system to affect its evolution. In this sense
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the Markovian process only happens when the environmental
correlation time is relatively short so that memory effects
can be neglected. These memory-based considerations for the
Markovian approximation also mean that the information-
theoretical characterization of non-Markovianity is a quite
natural fashion. However, it is still an open question about
how to treat the information flow in open quantum systems
based on a solid information-theoretic foundation.

In this paper, we establish such a framework by adopting
the QFI flow as the quantitative measure for the information
flow. The QFI characterizes the statistical distinguishability
of the reduced density matrix [8,9]. An intuitive picture of the
memory effect of a non-Markovian behavior then immediately
follows from the dynamic return of the QFI, which is depicted
by the inward QFI flow. For a class of the non-Markovian
master equations in time-local forms, we exactly calculate
the information flows. The analytic results show that the total
QFI flow can be decomposed into the split contributions from
different dissipative channels for each fixed time. On the other
hand, the QFI plays an essential role in quantum metrology
[10], where the highest precision of estimating an unknown
parameter we may achieve is related to the inverse of the
QFI. We point out that this QFI flow approach is feasible for
understanding the problems of quantum metrology.

II. QUANTUM FISHER INFORMATION IN
NON-MARKOVIAN DYNAMICS

We consider the quantum processes described by the
following time-local master equation [3,11]:

∂

∂t
ρ(t) = K(t)ρ(t), (1)

where K(t) is a superoperator acting on the reduced density
matrix ρ(t) as [11–13]

K(t)ρ = −i[H,ρ] +
∑

i

γi

[
AiρA

†
i − 1

2
{A†

i Ai,ρ}
]

, (2)

with H (t) is the Hermitian Hamiltonian for the open quantum
system without the couplings to the bath. {·,·} denotes the
anticommutator. If all γi and Ai are time independent, and
all γi are positive, Eq. (2) is the conventional master equation
of the Lindblad form [12], which describes the conventional
Markovian process. However, by making use of a variety of
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methods, such as the time-convolutionless projection operator
technique [14], the Feynman-Vervon influence functional
theory [15], and some others [16], the parameters γi =
γi(t) and Ai = Ai(t) in the time-local master equation may
explicitly depend on time, and γi even may become negative
sometimes. Obviously, the non-Markovian character resides
in these time-dependent coefficients.

Taking some real number θ in the reduced density matrix
ρ(θ ; t) as the inference parameter, we write down the QFI [17]:

F(θ ; t) := Tr[L2(θ ; t)ρ(θ ; t)], (3)

where L(θ ; t) is the so-called symmetric logarithmic derivative
(SLD), which are Hermitian operators determined by [17]

∂

∂θ
ρ(θ ; t) = 1

2
[L(θ ; t)ρ(θ ; t) + ρ(θ ; t)L(θ ; t)] . (4)

An important essential feature of the QFI is that we can
obtain the achievable lower bound of the mean-square error of
unbiased estimators for the parameter θ through the quantum
Cramér-Rao (QCR) theorem:

Var(θ ; t) � 1

MF(θ ; t)
, (5)

where M represents the times of the independent measure-
ments [17]. From the QCR theorem, we can see that the QFI is
indeed a measure of a certain kind of information with respect
to the precision of estimating the inference parameter. The
relations between the QFI and the statistical distinguishability
of ρ(θ ; t) and its neighbor has been pointed out in some
previous works [8,9,17].

A. Flow of the QFI and its decomposition

Here we use the QFI to characterize the non-Markovianity
of the open quantum system by introducing the QFI flow,
which is defined as the change rate I := ∂F/∂t of the QFI.
As a central result in this paper, a proposition about the
decomposition of the QFI flow is given as follows.

Proposition. For an open quantum system described by the
time local master equation (1), the QFI flow I = ∑

i Ii is
explicitly written as a sum of subflows Ii = γiJi with

Ji := −Tr{ρ[L,Ai]
†[L,Ai]} � 0. (6)

Proof. From the differential of Eq. (4) with respect to time
t , we have

∂t∂θρ(θ ) = 1
2 [L̇ρ + Lρ̇ + ρ̇L + ρL̇]. (7)

It gives

Tr[ρL̇L + ρLL̇] = Tr[2L∂t∂θρ(θ )] − Tr[2ρ̇L2]. (8)

From the differential of Eq. (3) with respect to time t , we
obtain the QFI flow as

I = Tr

[
L

(
∂ρ

∂t

)]
, (9)

where the operator L := L(2∂/∂θ − L) is defined. By using
the concrete expression of the master equation (2), we
split the QFI flow into those individuals corresponding to
the different dissipative channels as I = Tr [LK(t)ρ(t)] or

I = ∑
i γiTr[L(AiρA

†
i ) − 1

2L{A†
i Ai,ρ}]. After some algebra,

we get the decomposition I = ∑
i γiJi , where Ji is just given

in Eq. (6). It finally proves the proposition.
The previous proposition and its proof contain rich impli-

cations in physics. Firstly, the decomposition of the QFI flow
corresponding to the different dissipative channels is due to the
linearity of the QFI flow equation (9) with respect to ∂ρ/∂t and
the concrete form of the time-local master equation (2). This
is not a simple decomposition since each subflow depends
on the whole SLD L(θ ; t); meanwhile, L(θ ; t) is deduced
from ρ(θ ; t), whose evolution depends on every dissipative
channel and the unitary part of the master equation. So this
kind of decomposition does not mean different dissipative
channels are separable to influence the change of the QFI
for a period of time. However, for each fixed time t > 0, the
QFI flow at the present moment are decomposed into the split
contributions from different dissipative channels. In this sense,
we interpret Ii(t) = γi(t)Ji(t) as a subflow of the QFI at time
t caused by the dissipative channel described by Ai(t) and
γi(t). The magnitude of the QFI subflow is determined by a
state-independent factor γi and a state-dependent factor Ji .

Secondly, one of the advantages of such decomposition
comes from the link between the direction of each QFI
subflow Ii and the sign of the decay rate γi . Because Ji

is nonpositive, we conclude that a negative γi(t) implies an
inward QFI subflow (Ii > 0), except the trivial case ofJi = 0.
The temporary appearance of negative decay rates is already
considered as the essential feature of the non-Markovian
behaviors [18]; here this is justified through the return of the
QFI. For the case that all γi(t) are positive, the master equation
(2) describes a so-called time-dependent Markovian quantum
process [4,13,19,20], in which cases, I always decreases. If
the total QFI flow I(t) is positive at time t , it signifies at least
one of γi(t) is negative. In such cases, the QFI flows back to
the open system and the non-Markovian behavior emerges.

Actually, like the trace distance used in Ref. [3], the
dynamical return of the QFI is linked to the divisibility property
of the dynamical map of quantum processes. If the master
equation is of the form (2), the corresponding dynamical map
is infinitely divisible provided that all γi are positive [21]. In
such cases, for arbitrary time t > 0, the dynamical map from
time t to t + dt is a completely positive and trace-preserving
map. Thus, the QFI decreases during this time interval since
the QFI is monotonic with respect to a completely positive and
trace-preserving map [22].

Thirdly, there should be some restriction on the evolution
of the QFI. It is seen from the previous proof of the proposition
that the coherent part of Eq. (2), that is, −i [H (t),ρ(t)], does
not contribute to the total QFI flow directly. This observation
directly leads to the no-cloning theorem in quantum infor-
mation, which states that we cannot use unitary operations
to evolve the states |ψ(θ )〉 ⊗ |0〉 into |ψ(θ )〉 ⊗ |ψ(θ )〉 as a
quantum copy [23]. This is because the QFI of the target states
is twice that of the source states, due to the additivity of the QFI
for the product states. Moreover, if the total system (system
plus environment) is assumed closed and the QFI is only
distributed in the system initially, then the QFI of the reduced
density matrix during evolution should not be greater than the
one at the initial time because of the invariance of the QFI
under unitary evolution and the nonincrease of the QFI under
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partial trace operation. This restriction should be reflected in
the QFI flow obtained from a proper master equation.

III. TWO-LEVEL SYSTEM

Now we use an example of a two-level system (qubit) to
explicitly illustrate our discovery about the intrinsic relation
between the QFI flow and the non-Markovianity of the open
quantum system and its impact on parameter estimation. In
the quantum metrology context, the QFI gives a theoretical-
achievable limit on the precision when estimating an unknown
parameter, according to the QCR theorem (5). To estimate the
parameter as precisely as possible, we should optimize input
states to maximize the QFI, and then optimize measurements
to achieve the Cramér-Rao bound [10]. However, due to the
interaction with the environment, the QFI will change and
affect the precision of the parameter estimation.

Here, the QFI-based parameter is assumed to be induced by
a single-qubit phase gate Uφ := |g〉〈g| + exp(iφ)|e〉〈e| acting
on the qubit, where φ = θ is an inference parameter (see
Fig. 1). To estimate the unknown parameter φ as precisely
as possible, the optimal input state may be chosen as |ψopt〉 =
(|g〉 + |e〉)/√2, which maximizes the QFI of the output state
Uφ|ψopt〉; see Ref. [10]. In the following model, after the phase
gate operation and before the measurement performed, the
qubit is assumed as an atom coupled to a reservoir consisting
of harmonic oscillators in the vacuum. The total Hamiltonian
of this typical model [1,24,25] reads

H = ω0σ+σ− +
∑

k

ωkb
†
kbk + (σ+B + σ−B†), (10)

with B = ∑
k gkbk , where ω0 denotes the transition frequency

of the atom with ground and excited states |g〉 and |e〉, and
σ± the raising and lowering operators of the atom; b

†
k and

bk are, respectively, the creating and annihilation operators
of the bath mode of frequencies ωk . gk denotes the coupling
constant. We then consider Lorentzian spectral density J (ω) =
λW 2/{π [(ω0 − ω)2 + λ2]}, where W is the transition strength,
and λ defines the spectral width of the coupling, which is
related to the reservoir correlation time scale τB by τB = λ−1

[1,24]. The Lorentzian spectral density describes the reservoir
composed of lossy cavity; see Ref. [1]. The time-local master

FIG. 1. (Color online) Estimation of parameter φ in an unitary
operation. After the phase-gate operation, the system interacts
with a reservoir. The precision of the estimation is impacted by
characteristics of both the reservoir and the interaction.

equation of the form (2) can be obtained exactly as follows [1]:

∂

∂t
ρS(t) = γ (t)

(
σ−ρS(t)σ+ − 1

2
{σ+σ−,ρS(t)}

)
, (11)

where γ (t) = −2ḣ(t)/h(t) with a crucial characteristic func-
tion [1]:

h(t) =
{

e−λt/2
[
cosh

(
dt
2

) + λ
d

sinh
(

dt
2

)]
, W � λ

2 ,

e−λt/2
[
cos

(
dt
2

) + λ
d

sin
(

dt
2

)]
, W > λ

2 ,
(12)

where d =
√

|λ2 − 4W 2|.
Taking the initial state Uφ|ψopt〉, the reduced density

matrix of the atom obeys the master equation (11). Its
solution is ρS(t) = (I + B · σ ) /2, where B = [h(t) cos φ, −
h(t) sin φ,h(t)2 − 1] and σ = (σx,σy,σz). In order to
calculate the QFI flow, we first diagonalize this reduced
density matrix as ρS(t) = ∑

i pi(t)|ψi(t)〉〈ψi(t)|. In this di-
agonal representation, the SLD with matrix elements Lij =
2〈ψi |∂φρS |ψj 〉/(pi + pj ) is obtained explicitly as

L(t) = ih(t) [|ψ1(t)〉〈ψ2(t)| − |ψ2(t)〉〈ψ1(t)|] . (13)

Furthermore, we have J = −Tr(ρ [L,σ−]† [L,σ−]) =
−h(t)2; then the exact solution for the QFI flow,

Iφ(t) = γ (t)J (t) = 2h(t)ḣ(t), (14)

is obtained, which leads to Fφ = h(t)2.
Therefore, the characteristic of the QFI flow is determined

by the function h(t), which has two very different kinds of
behaviors. The corresponding properties of the QFI flow are
shown in Fig. 2. In the weak coupling regime (W < λ/2),
the function γ (t) is always positive, thus the QFI is always
lost during the time evolution of the open system. In the
strong coupling regime (W > λ/2), the function γ (t) takes on
negative values within certain intervals of time; see Fig. 2(d),
which displays the non-Markovianity. Obviously, in these time
intervals, the QFI flow is inward. It is remarkable that although
γ (t) diverges at certain times, the QFI flow does not; see
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FIG. 2. (Color online) Two-level atom coupled to reservoir with
Lorentzian spectral density. (a) QFI flow as a function of rescaled
time, plotted in the weak coupling regime (W = 0.3λ); (b) γ as a
function of rescaled time, W = 0.3λ; (c) QFI flow as a function of
rescaled time, plotted in the strong coupling regime (W = 3λ); (d) γ

as a function of rescaled time, W = 3λ.
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Figs. 2(c) and 2(d). This is because the QFI flow is determined
by two factors, γ (t) and J (t).

IV. CONCLUSION

In summary, based on the QFI flow, we have proposed
an information-theoretical approach for characterizing the
time-dependent memory effect of the environment on its
surrounding open quantum systems. In this approach the
Markovian process is considered as a QFI erasure process,
and the return of the QFI (i.e., an inward QFI flow) clearly
signatures the non-Markovian process. Using the time-local
master equations, we have shown that for each fixed time t > 0
the QFI flow is decomposable according to different dissipative
channels, and the direction of each subflow is determined by
the sign of decay rates. With this decomposition form, the
relationship between the temporary appearance of a negative
decay rate and the non-Markovian characteristic is justified.
Although, in the present work, the analysis of the QFI flow is
based on a time-local master equation, the concept of the QFI
flow may still be available in more general cases.

The present approach is associated with the current de-
velopment of quantum metrology, which is concerned with
finding an optimal fashion to make high-resolution and highly
sensitive measurements of physical parameters [10]. Due to
the interaction with the environment in experiments, like the
photon losses in the optical interferometry or the presence
of quantum noise [26], the QFI will change and affect
the precision of the parameter estimation. Therefore, it is
worthy to study the dynamical evolution of the QFI in the
context of quantum metrology, especially for non-Markovian
processes.

ACKNOWLEDGMENTS

This work is supported by National Natural Science
Foundation of China (NSFC) with Grants No. 10874151,
No. 10874091, and No. 10935010; National Fundamen-
tal Research Program of China (NFRPC) with Grant
No. 2006CB921205; Program for New Century Excellent
Talents in University (NCET), and Science Foundation of
Chinese University.

[1] H. P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2007).

[2] J. Q. Liao, H. Dong, X. G. Wang, X. F. Liu, and C. P. Sun, e-print
arXiv:0909.1230 (2009), and Refs. there in.

[3] H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103,
210401 (2009).

[4] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Phys. Rev.
Lett. 101, 150402 (2008).

[5] Z. Y. Xu, W. L. Yang, and M. Feng, Phys. Rev. A 81, 044105
(2010).
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