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Supersymmetric response of a Bose-Fermi mixture to photoassociation
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We study supersymmetric (SUSY) responses to a photoassociation (PA) process in a mixture of Bose molecules
b and Fermi atoms f which turn to mutual superpartners for a set of proper parameters. We consider the molecule
b to be a bound state of the atom f and another Fermi atom F with different species. The b-f mixture and a
free F atom gas are loaded in an optical lattice. The SUSY nature of the mixture can be signaled in the response
to a photon-induced atom-molecule transition: While two new types of fermionic excitations, an individual b

particle–f hole pair continuum and the Nambu-Goldstone-fermion-like (or “goldstino-like”) collective mode,
are concomitant for a generic b-f mixture, the former is completely suppressed in the SUSY b-f mixture and
the zero-momentum mode of the latter approaches an exact eigenstate. This SUSY response can be detected by
means of the spectroscopy method, for example, the PA spectrum which displays the molecular formation rate
of Ff → b.
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Introduction. Recently, studies in the supersymmetry
(SUSY) for a mixture of cold Bose and Fermi atoms have
made spectacular progress [1–3]. In such a cold atomic system,
however, a Bose atom never transits to a Fermi atom, its
superpartner, or vice verse. In addition to the nonrelativity,
this is another essential difference of this low-energy SUSY
from the SUSY in high-energy physics. For the latter, such
SUSY decay processes are always anticipated, for example, a
quark (lepton) may emit or absorb a gaugino and decays to a
squark (slepton), the superpartner of the quark (lepton) [4].

To expose the interesting SUSY nature of the mixture,
the effective “decay” process must be introduced. For a
cold atomic SUSY mixture with Bose-Einstein condensation,
there is an effective decay of SUSY generators since they
behave as the fermion annihilation and creation operators
[3]. Therefore, the SUSY excitations can be simulated by a
boson-enhanced fermionic excitation. As a result, a Nambu-
Goldstone-fermion-like (or “goldstino-like”) collective mode
in the condensation phase of bosons could be observed by
means of the single-particle spectroscopy [5,6].

To achieve an exact SUSY mixture, the system parameters
must be fine-tuned, which requires elaborate experimental
setups and then loses the generality. In this article, we explore
how to observe the SUSY response by means of a spectroscopy
measurement, even if the mixture deviates slightly from the
SUSY and the bosons do not condense to form a whole ordered
phase. This can resolve the fine-tuning restraints in measuring
the SUSY response. On the other hand, the explicit breaking
of the SUSY may create new excitations, the bosonic particle–
fermionic hole individual continuous excitations, other than
the collective goldstino-like mode. Although our theory is
nonrelativistic, the creation of these new excitations due to
SUSY explicit breaking should be quite general. This may be
a helpful point in the study of SUSY in relativistic theory.

We consider a mixture of Bose molecules b and Fermi atoms
f with on-site interaction in a d-dimensional optical lattice
(d = 2, 3) [see Fig.1(a)]. With properly tuned interactions and
hopping amplitudes, this b-f mixture may become SUSY [3].
We are interested in a special kind of molecule b, a bound state
of f , and another species of Fermi atom F with binding energy
Eb, and we restrict our analysis to the normal phase of the b-f

mixture [7]. To probe the SUSY behaviors, we load a free
Fermi atom F gas, which does not interact with both b and f

directly. In a photoassociation (PA) process [8], the transitions
between two atoms and one molecule, that is, Ff ↔ b, are
induced by two laser beams with frequencies ω1 and ω2. For
the SUSY b-f mixture, this resembles a high-energy physics
process: a quark or a lepton (f ) absorbs a fermionic gaugino
(“absorbs” an F and emits a photon) and decays to a squark
or a slepton (b) or vice verse. (One can also consider f to be
a Fermi molecule formed by the bound state of a Bose atom b

and a Fermi atom F , i.e., processes Fb ↔ f . We study these
processes separately.)

For a negative detuning, δ0 = ω2 − ω1 − Eb, we show that
the molecule dissociation process b → Ff is forbidden. In
the formation process Ff → b, two types of new fermionic
excitations, an individual (bosonic) particle–(fermionic) hole
pair continuum and a collective mode, emerge when the SUSY
in the b-f mixture is slightly broken. For a SUSY b-f mixture,
the former is completely suppressed while the latter in zero-
momentum becomes an exact eigenstate, the goldstino-like
mode [3]. In this sense, we regard these excitations as the
SUSY responses. The PA spectrum is directly related to the
the molecular formation rate varying as the detuning and
faithfully describes these two types of excitations. The position
of peak in the PA spectrum determines the frequency of the
collective zero-momentum mode. This molecular formation
rate is measured by the number variation of the F atoms in
time. Experimentally, the number counting of atoms is much
simpler than detecting the single atom spectrum.

Model setup. The system illustrated in Fig. 1(a) is described
by a Hamiltonian H = H0 + Hex, where H0 = Hbf + HF

with Hbf = Hb + Hf + V . By means of the Feshbach res-
onance [9], the scattering lengths between F and the b-f
mixture can be adjusted to negligibly small. In the tight-
binding approximation, one has
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∑
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FIG. 1. (Color online) (a) Upper: The optical lattice with cold
particles. The gray (green), black (red), and white dots denote Fermi
atoms f , F , and the molecule b, respectively. Lower: The PA
processes of two atoms to one molecule with the binding energy Eb.
(b) The Feynman diagram for the linear response theory. The Green
function of Q is calculated by random-phase approximation. Upper:
The wavy (red) lines and dotted (red) line denote the free Green
functions of photon and F , respectively. Lower: The solid (green)
curves and dotted (black) curves denote the free Green functions of
f and b, respectively.

where aα
i = bi , fi , and Fi (α = b, f , and F ) are the

annihilation operators of b, f , and F at site i; and µα and
nα

i = a
α†
i aα

i are chemical potentials and the number operators
at site i. The definitions of the hopping amplitudes tα and
the interaction strengths Uαβ by the Wannier function wα(r)
can be found in the literature [10]. The spatial inhomogeneity
of optical lattices trapping the atoms and molecules has been
omitted. For the subsystem b-f mixture, the Hamiltonian Hbf

is SUSY invariant if tb = tf , Ubb = Ubf , and µb = µf [1,3].
In order to prevent the phase separation, the parameters obey,
e.g., 4πtf ρf Ubb > U 2

bf in two dimensions, where ρf is the
density of f atoms [11]. We choose the parameters of the
system obeying this condition.

The PA processes are realized by simultaneously shining
two laser beams with frequencies ω1 and ω2 into the lattice
[shown in Fig. 1(a)]. The ω1 beam may turn two free atoms
f and F into a higher energy bound state |1〉 which then may
transit to the molecule b by emitting a photon with frequency
ω2. Meanwhile, the molecule b may also be excited to |1〉
by the ω2 beam and then is unbound with some probability
by emitting a photon with frequency ω1. For large detuning
�0, the state |1〉 can be eliminated adiabatically, so that the PA
is modeled by the tight-binding Hamiltonian

Hex =
∑

i

(gib
†
i fiFie

iδ0t + H.c.), (2)

where the detuning δ0 = ωc − Eb, with the effective driven
frequency ωc = ω2 − ω1, and gj = g0 exp(−ik0 · rj ), with
g0 ∝ ∫

ddr exp(−ik0 · r)w∗
b(r)wf (r)wF (r) being the coupling

intensity independent of the site.
In the k space, the Hamiltonian Hex is rewritten as

Hex = g0
√

ρ

(∑
k

Q
†
k−k0

Fke
iδ0t + H.c.

)
, (3)

where Q
†
k = ∑

p b
†
p+kfp/

√
N and aα

k = ∑
j aα

j exp(−ik ·
rj )/

√
V (where V stands for the volume and aα

k stand for
bk, fk, and Fk). ρ = N/V is the total density of b and f with
the particle number N = ∑

i(n
b
i + n

f

i ).
Molecular formation rate. The formation rate of the

molecules b can be counted by the PA variation of F -fermion
number R = ∂t 〈ψ(t)|NF |ψ(t)〉 for |ψ(t)〉 being the time
evolution from the ground state |G〉 = |g〉|F 〉 of H0. It follows
from the linear response theory that

R = 2g2
0ρ

∑
k

ImDR(k,−δ0), (4)

where the retarded Green function is given by

DR(k, ω) =
∫ ∞

−∞
dxA(k − k0, x)

nf (x) − nf

(
εF

k

)
x − εF

k − ω − i0+ , (5)

in terms of one loop calculations [Fig. 1(b)]. The single-
particle dispersions are εα

k = −2tα
∑d

s=1 cos ks − µα , where
the lattice spacings are set to be the unit. nf (x) is the
Fermi distribution at temperature T and the spectral function
A(k, ω) = −Im�R(k, ω)/π is defined by the retarded Green
function �R(k, ω) = −i

∫ ∞
0 dt〈g|{Qk(t),Q†

k(0)}|g〉eiωt .

At sufficiently low temperature, the pole and branch cut
in Eq. (5) are not qualitatively affected by T and nor is
the molecular formation rate. For simplicity, we take a zero-
temperature approximation in our calculation. It follows from
Eq. (5) that the rate R = Rb→Ff − RFf →b contains two parts:

Rb→Ff =
∑

k

2πg2
0ρA

(
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F
k − δ0

)
θ
(
δ0 − εF

k

)
,

(6)
RFf →b =

∑
k

2πg2
0ρA

(
k − k0, ε

F
k − δ0

)
θ
(−εF

k

)
,

which, respectively, are the dissociation rate for b → Ff and
the formation rate for Ff → b.

Collective and individual fermionic modes. In order to
obtain R for the weak interactions, we perturbatively calculate
�R(k, ω) = ρ−1[�−1

0 (k, ω) + Ubf ]−1, which formally results
from the equation of motion of Qk. It then follows from the
random phase approximation (RPA) illustrated by the “bubble”
in Fig. 1(b) that

�0(k, ω) =
∫

ddp
(2π )d

nf

(
ε

f
p
) + nb

(
εb

k+p

)
ω − Ekp + i0+ , (7)

where Ekp = εb
k+p − ε

f
p + 2ρbδU + Ubf ρ, with δU = Ubb −

Ubf and ρb = Nb/V; nb(x) is the Bose distribution. The iso-
lated pole and branch cut of �R(k, ω) describe the collective
and individual SUSY excitations of Q

†
k|g〉.

Next we consider the elementary excitations in the two-
dimensional lattice with f atoms at half filling, that is,
ρf = 0.5. For the SUSY b-f mixture, that is, δU = 0 and
δt = tb − tf = 0, the dispersion of the collective modes,
Ec(k) 	 �µ − α|k|2 for the small |k| [3], is read out from the
poles of the retarded Green function �R(k, ω) [see Fig. 2(a)],
where �µ = µf − µb. For large |k|, the energy Ec(k) =
Ec(|k|, θ ) depends not only on |k| but also on the angle
θ = arctan(ky/kx). The energy Ec(|k|, θ ) of Q

†
k|g〉 decreases

as |k| increases for a fixed θ . The retarded Green’s function
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FIG. 2. (Color online) The dispersion, spectrum, and spectral
function of the excitations for �µ = 3.93 and Ubb = Ubf = 0.1; tb is
taken as the unit. (a) The dispersion of collective mode for the SUSY
mixture. (b) The spectrum for the SUSY system: the dashed (red)
and dotted (blue) curves denote the dispersions of collective modes
for θ = 0 and π/5, respectively. The solid (blue) curve denotes the
dispersion of atoms F for a small Fermi momentum kF . (c) The
frequencies of Q

†
0|g〉 for different δt . (d) The spectral function of

the zero momentum for δt = −0.1: The sharp peak is the shifted
goldstino-like mode.

�R(0, ω) = (ω − �µ + i0+)−1 possesses a pole ω = �µ,
which corresponds to the goldstino-like excitation Q

†
0|g〉. This

recovers the result in Ref. [3]. The excitation spectrum is
schematically shown in Fig. 2(b).

For the b-f mixture deviating slightly from SUSY, the
retarded Green function �R(0, ω) has an isolated pole and
a branch cut, which correspond to a collective fermionic
mode and individual (bosonic) particle–(fermionic) hole pair
continuum modes, respectively. The pole in ω0 < E0 − 4δt

for δt > 0 (or ω0 < E0 for δt < 0) describes the shifted
goldstino-like mode. The frequencies ω0 of the collective zero-
momentum mode for different δt are shown in Fig. 2(c). For
k 
= 0, the pole of �R(k, ω) has the form E′

c(k) 	 ω0 − α′|k|2
for small |k|. Remarkably, the branch cut l0 of �R(0, ω)
emerges, which describes individual zero-momentum modes.
Here, l0 = [E0 − 4δt, E0] for δt > 0 (or [E0, E0 − 4δt] for
δt < 0), and E0 = �µ + 2ρbδU + Ubf ρ. Notice that for the
weak interactions Ubb and Ubf the SUSY breaking from δU

does not develop a branch cut but only shifts the positions
of the pole and the branch cut. The pole and the branch
cut can be seen in the spectral function A(k, ω), that is,
the peak and the hump in Fig. 2(d) for k = 0. Note that
for the SUSY b-f , the branch cut length l0 of �R(0, ω)
shrinks to zero so that the individual continuum modes of zero
momentum are completely suppressed. On the other hand, as
the b-f mixture deviates from the SUSY, the goldstino-like
mode is gradually suppressed. We examine the dependence
of the spectral function on the interacting strength and find
that the hump height may be depressed as the interaction
becomes stronger; for example, the height is lower than 0.5
for Ubf = Ubb = 0.5 compared with ∼10 in Fig. 2(d) for
Ubf = Ubb = 0.1.

In order to study the PA spectrum of the molecular
formation rate, we discuss the excitation spectrum shown in

Fig. 2(b). For some momenta k, there is a collective mode
(dashed red curve) below the individual continuum. For other
momenta kc, the dispersion of the collective mode merges into
the continuum. However, for small momentum k, there always
exists a collective mode below the individual continuum. For
convenience, we define a critical momentum kQ(θ ), so that for
a fixed θ , when |k| > kQ(θ ), the negative frequencies of the
mode Qk emerge; that is, A(k, ω < 0) 
= 0 when |k| > kQ(θ ),
and A(k, ω < 0) = 0 when |k| < kQ(θ ).

PA spectrum. The rate R varies as detuning δ0 or the light
frequency ωc. Measurement of the b boson formation rate
varying as δ0 is called the PA spectrum S(δ0). For a long wave
photon, the coupling gj varies slowly in space and the rates in
Eq. (6) are approximately independent of k0.

According to Eq. (6), the dissociation rate Rb→Ff does not
vanish only if δ0 > εF

k and A(k, εF
k − δ0) 
= 0. Because the

spectral function A(k, x < 0) 
= 0 is defined by the retarded
Green function, it does not vanish only when the energies
for collective modes or individual modes of Qk are negative
for the large |k| > kQ(θ ). We consider a dilute Fermi gas F

with the chemical potential µF ∼ −4tF ; the dispersion relation
turns out εF

k = tF |k|2 − µeff , where µeff = µF + 4tF . In this
case, the fermion F possesses a small Fermi momentum kF =√

µeff/tF which is much smaller than kQ(θ ) for small deviating
δt . Therefore, εF

k is always positive when |k| > kQ [see
Fig. 2(b)]. For the negative detuning δ0, the condition δ0 > εF

k

is not satisfied in the regime |k| > kQ(θ ). That is, A(k, εF
k −

δ0) and θ (δ0 − εF
k ) can not be nonzero simultaneously for

the negative detuning and small Fermi momentum kF . This
finishes our proof of Rb→Ff = 0.

The vanishing of Rb→Ff for the negative δ0 and small Fermi
momentum kF can be understood in a more straightforward
way. The transition b → Ff is described by the Hermite
conjugate term (H.c.) in the Hamiltonian Hex, which is a high-
frequency oscillation term when δ0 < 0. Hence, the Fermi
golden rule results in Rb→Ff vanishing under the first-order
perturbation (linear response).

For the negative δ0 and small Fermi momentum kF

(µeff  tF ), the molecule formation rate now is reduced to
R = −RFf →b and

RFf →b 	
⎧⎨
⎩

Z0g
2
0N/[2(tF + α′)] for δ0 = −ω0,

2πg2
0ρNF A(0,−δ0) for |δ0| ∈ l0,

0, otherwise,

which leads to our main result: The PA spectrum S(δ0) =
−RFf →b [see Fig. 3(a)] displays the spectral function of

excitations Q
†
0|g〉.

For the SUSY b-f mixture, the length of branch cut l0
tends to zero and the individual modes are suppressed. Mean-
while, the residue Z0 = 1 and the formation rate RFf →b =
g2

0N/[2(tF + α)] ≡ R0 ∝ N at δ0 = −�µ and vanishes for
the other detunings. There is a sharp peak at δ0 = −�µ in
the PA spectrum. For a generic b-f mixture deviating from
SUSY, the residue Z0 < 1 decreases as |δt | increases. As a
result, the peak height is lowered while its position is shifted
to δ0 = −ω0. The ratio RFf →b(ω0)/R0 is shown in Fig. 3(b)
for different δt and a small µeff , where RFf →b(ω0) is the value
of RFf →b at δ0 = −ω0. Remarkably, a minor hump develops in
the region δ0 ∈ l0 due to the emergence of individual modes
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FIG. 3. (Color online) The PA spectra with the same parameters
as those in Fig. 2. (a) The detuning dependence for δt = 0.05 and
−0.05, the solid (red) and dashed (blue) lines, respectively. The unit
of S is 2πg2

0ρNF and NF /N is taken to be 0.01. (b) The major peak
values for different δt . This shows that the peak value is suppressed
when the system deviates from SUSY.

[see Fig. 3(a)]. As the system deviates further from SUSY,
the individual modes are enhanced due to the sum rules∫

dωA(0, ω) = 1. The temperature may suppress and broaden
the peak and the hump. These characters of the PA spectrum
in the b-f mixture are experimentally measurable SUSY
responses to the light field.

Conclusions. We studied how to observe the SUSY nature
of the b-f mixture in optical lattices through PA spectra.
For the Bose molecules formed with two species of Fermi
atoms, we showed that the photon-induced atom-molecule
transition displays the signal of SUSY. As the response
to the PA processes, a fermionic individual continuum and
the goldstino-like mode were found. The PA spectrum can
explicitly witness the molecular formation rate of Ff → b.
Because the goldstino-like mode in zero momentum turns
to be the exact eigenstate for the SUSY mixture, the major
peak in the PA spectrum reflects the SUSY response to the
light field, even if the mixture is not fine-tuned to a SUSY
one.
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