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We study how the nonadiabatic effect causes the observable fluctuation in the “geometric phase” for a
two-level system, which is defined as the experimentally measurable quantity in the adiabatic limit. From the
Rabi exact solution to this model, we give a reasonable explanation to the experimental discovery of phase
fluctuation in the superconducting circuit system �P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Göppl, J.
M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraf, Science 318, 1889 �2007��, which
seemed to be regarded as the conventional experimental error.
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I. INTRODUCTION

It was discovered by Rabi �1� that the nonadiabatic tran-
sition of a quantum system in a time-dependent magnetic
field was subject to the sign of its magnetic momentum. The
exact solution was first given in 1937, but its physical sig-
nificance for the relative phase acquired under adiabatic evo-
lution was not clarified until five decades later �2�. It was
Berry who found that this phase might contain a geometric
part, now called Berry’s phase. Then the quantum adiabatic
approximation theorem �QAAT� �3� was reproved to natu-
rally include Berry’s phase �4� and generalized to deal with
the nonadiabatic effects for many cases �5–9�. On the other
hand, because of its geometric dependence, conditional geo-
metric phase was proposed as an intrinsically fault-tolerant
way of performing quantum computation �10�.

In this Brief Report, associated with a recent experiment
about Berry’s phase in the superconducting circuit system
�11�, the above Rabi solution is used to study in details the
nonadiabatic effects for a two-level system �TLS� in a har-
monically rotated field �see Fig. 1�. This field can be realized
with a microwave field perpendicular to the static magnetic
field both applied to the system. With the phase of the mi-
crowave linearly varying with time, the Hamiltonian har-
monically rotates in the parametric space. Our theoretical
analysis offers an explanation to part of the error in the ex-
perimental result �11�.

Generally speaking, Berry’s phase is always accompanied
with the dynamical phase, and thus its pure effect cannot be
observed directly. However, we apply a � pulse to the TLS,
so that the evolution is divided into two parts with both of
them in the same path but in the opposite directions. In this
case, the effect of the dynamical phase can be completely
eliminated �10�. This is the technique referred to as spin-echo
technique �12�. Thus, the pure geometric effect can be ob-
served and that may result in an observable fluctuation of the
measured geometric phase due to the Rabi nonadiabatic tran-
sitions �13�.

II. NONADIABATIC EFFECT WITH BERRY’S PHASE

The evolution of the system can be well described with
the Hamiltonian

H�t� = 1
2 ���z + �R�x cos �Rt + �R�y sin �Rt� , �1�

where � is the energy splitting without the microwave field,
�R is the Rabi frequency of the microwave, �R is the oscil-
lating frequency of the microwave phase, and �x,y,z are the
Pauli matrices. Note that the Hamiltonian �1� is exactly the
effective Hamiltonian realized in Ref. �11�, where the rotat-
ing wave approximation �14� was applied. Straightforwardly,
its instantaneous eigenstates are obtained as

�e�t�� = cos
�

2
�0� + sin

�

2
ei�Rt�1� , �2�

�g�t�� = sin
�

2
e−i�Rt�0� − cos

�

2
�1� , �3�

with corresponding eigenenergies �� /2. Here, the energy
splitting is �=��2+�R

2 and the mixing angle is �
=tan−1��R /��. We also emphasize that, due to the require-
ment of the single-value-ness of the eigenfunctions for a
given Hamiltonian without singularity, the phase factor
exp��i�Rt� in �e�t�� or �g�t�� is fixed once the factor in the
other state is chosen �15�.

At time t, the evolution state is assumed to be a superpo-
sition ���t��=	�t��e�t��+
�t��g�t�� of two instantaneous
eigenstates. The time-dependent Schrödinger equation
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FIG. 1. �Color online� �a� Schematic of a TLS in a static mag-
netic field along with a microwave field. �b� Realized effective
Hamiltonian rotating in the parametric space.
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H���t��= i�t���t�� leads to the following equations of coef-
ficients:

	̇ = − i��

2
+ �R sin2�

2
		 + i
�

�R

2
sin � , �4�


�˙ = i��

2
− �R cos2�

2
	
� + i	

�R

2
sin � , �5�

where 
��t�=
�t�exp�−i�Rt�.
Under the adiabatic conditions
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2
+ �R sin2��
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 � 
�R

2
sin �
 , �6�


�

2
− �R cos2��

2
	
 � 
�R

2
sin �
 , �7�

the adiabatic approximate solutions to Eqs. �4� and �5� is
obtained by ignoring the terms with �R sin � /2. They show
that both norms of the amplitudes remain the same as their
initial values, while they acquire Berry’s geometric phases
��Rt�1−cos �� /2 in addition to the dynamical phases
��t /2, respectively.

On the other hand, the above equations �4� and �5� can be
solved exactly and it should be done so when the adiabatic
condition is broken under certain circumstances. Thus, we
have

	 = A1ei�+t + A2ei�−t, �8�


� = B1ei�+t + B2ei�−t, �9�

where ��= �−�R���2−2��R cos �+�R
2� /2, and the coeffi-

cients are determined by the initial values 	�0� and 
�0� as
follows:

A1 =

�0��R sin � + 	�0��− � + +�

2�
,

A2 =
− 
�0��R sin � + 	�0��� + −�

2�
,

B1 =

�0��� + −� + 	�0��R sin �

2�
,

B2 =

�0��− � + +� − 	�0��R sin �

2�
,

with �=�R�1�cos ��+2�+.
Generally speaking, Berry’s phase cannot be observed di-

rectly from the experiment since the dynamical phase always
occurs along with Berry’s phase. Here, we consider a con-
crete case where the total evolution is divided into two
rounds, both of which are in the same path but with opposite
directions. Provided that both the excited and the ground
states acquire the same dynamical phase but with opposite
signs in each round, the dynamical phase can be canceled
when the amplitudes are exchanged after the first round of

evolution. Thereafter, by experiencing the inverse rotation in
the parametric space, the dynamical phase is canceled while
Berry’s phase is doubled since the latter depends on the sign
of the angle velocity �R while the former does not. An ex-
cellent agreement may be expected with Berry’s prediction

�B = 2�RT�1 − cos �� �10�

provided that the adiabatic condition, i.e., Eq. �6�, is satis-
fied. Here, T is the evolution time for each round.

However, when the nonadiabatic effect is considered, a
small deviation is expected. In Fig. 2, we plot the exact
phase calculated from Eqs. �8� and �9�, which is defined as
the phase of 	�2T�
��2T�, denoted as

�na = � �	�2T�
��2T�� . �11�

This is an observable quantity in experiment, which can be
determined by measuring the complex amplitudes 	�2T� and

�2T�. Although it is not an Aharanov-Anandan phase �16�,
it just recovers Berry’s phase in the adiabatic limit. In a
sense, it can be considered as an additional phase associated
with noncyclic time evolution �17�.

It is predicted that Berry’s phase is proportional to the
solid angle �=2��1−cos �� subtended by the path. Re-
cently, a measurement of Berry’s phase in the superconduct-
ing qubit was carried out �11�. In order to compare the the-
oretical analysis with the experimental result, we adopt the
same parameters as those given in Ref. �11�, i.e., � /2�
=50 MHz, �R /2�= �4n+1� MHz with n being the number
of loops. The tiny difference between those two can almost
not be distinguished in Fig. 2�a�. Moreover, as shown in Fig.
2�b�, there are small oscillations in the deviation between
them, ��=�na−�B, with the root-mean-square deviation of
0.015 rad from the expected lines while the counterpart for
n=1.5 is 0.043 rad. They are in reasonable agreement with
the experimental result, i.e., 0.14 rad �11�, considering that
the rotating wave approximation �14� was applied to obtain
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FIG. 2. �Color online� �a� Comparison between the Berry’s
phase �blue solid line� �B and nonadiabatic phase �red cross� �na

with n=1 circular rotation in each round. �b� The discrepancy be-
tween them with red solid line for the numerical result and black
dashed line for the second-order approximation.
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the Hamiltonian �1� and the nonadiabatic effect in the pro-
cess of applying the microwave field also accounted for part
of the deviation.

In Ref. �11�, the dephasing effect was analyzed with a
very special model where the noise was treated as a fluctua-
tion of a classical field �18�. Now, the deviation due to the
low-frequency noise is calculated in contrast with the one of
the nonadiabatic effect. By abstracting the data from Fig.
4�B� of Ref. �11�, we obtain that �� /2�=19 MHz, with ��

2

being the variance of the fluctuation in �. According to Ref.
�18�, the variance of the measured geometrical phase is
Gaussian distributed around Berry’s prediction with the vari-
ance

��
2 = 2

��
2

�2�� sin2 �

2T
	22�T − 1 + e−2�T

�2 . �12�

Here, the noise is modeled as a Gaussian stationary Markov-
ian Ornstein-Uhlenbeck process with a Lorentzian band-
width �=1 /T2

echo=0.5 MHz �11�. The deviations due to
these two effects are plotted in Fig. 3. Besides the low-
frequency deviation larger than the nonadiabatic one, two
distinctions are observed obviously. For the former case, the
deviations for different rotation loops almost stay the same
as each other. That is because ������ sin2 � /� is indepen-
dent of T and thus n for small T. The little discrepancy be-
tween different n’s is attributed to the third-order term
O��T�3. On the contrary, the fluctuation due to the nonadia-
batic effect rises dramatically as n is enlarged. Moreover, the
former increases monotonously with the solid angle as ��

�−�2−� /2��2+4 whereas there are sinusoidal oscillations
in the latter. A detailed analysis will be given in the next
section.

III. SECOND-ORDER FLUCTUATION

It was Yang who first pointed out that Berry’s phase could
be recovered from the original QAAT by retaining the first-
order term O��R /�� in the phase. And this point of view was

shortly confirmed by one of the authors �9� using the Rabi
exact solution. Here, with a careful calculation to the second-
order term O��R /��2, the fluctuation in the phase is ob-
tained. For an initial state with 	�0�=
�0�=1 /�2, the mea-
sured deviation from the expected Berry’s phase is given as

�� = �2�sin �1 + 4 sin �2 + 2 sin �3 + 2 sin �4 + 2 sin �5

+ sin �6 + 2 sin �7 + sin �8 + 2 sin �9 + 2 sin �10

+ 4 sin �11 + 4 sin �12� , �13�

where �=�R sin � /2�, � j =� j�−�B �j=1,2 , . . .� with

�1� = � − 2T�R cos � ,

�2� = − T�R,

�3� = T�R�− 1 + 2 cos �� ,

�4� = −
T��R

2 + 8�R� + 4�2 − 4�R� cos � − �R
2 cos 2��

4�
,

�5� = � +
T�− ��R + 2��2 + 4�R� cos � + �R

2 cos 2��
4�

,

�6� = � +
T���R − 2��2 − �R

2 cos 2��
2�

,

�7� =
T��R

2 − 2�R� + 4�2 − �R
2 cos 2��

2�
,

�8� = � +
T��R

2 + 4�2 − �R
2 cos 2��

2�
,

�9� = � +
T���R − 2��2 − 4�R� cos � − �R

2 cos 2��
4�

,

�10� =
T��R

2 + 4�2 − 4�R� cos � − �R
2 cos 2��

4�
,

�11� =
T��R

2 − 8�R� + 4�2 + 4�R� cos � − �R
2 cos 2��

4�
,

�12� = � +
T���R − 2��2 + 4�R� cos � − �R

2 cos 2��
4�

.

It can be seen from Eq. �13� that the sinusoidal deviation
from the expectation will be present in the measured phase.
As shown in Fig. 2�b�, the behavior is well described by the
second-order approximation. Although there is a small dif-
ference between it and the exact result, it is believed that it is
due to the higher-order terms. Based on the above theoretical
analysis, we may safely arrive at the conclusion that, due to
the nonadiabatic evolution of the TLS, not only do the rela-
tive phases of the amplitudes of the two states change with
time, but also do their norms. In other words, the nonadia-
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FIG. 3. �Color online� Comparison between deviations induced
by a low-frequency noise ���, red lines� and the nonadiabatic effect
�����, green lines�, with solid lines for n=1 and cross lines for n
=1.5.
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batic transition results in the small fluctuation of the mea-
sured phase.

To further explore the nonadiabatic effect, we investigate
the phase fluctuation for different rotation velocities �R. In
Fig. 4, the discrepancy between the measured phase �11� and
the Berry’s phase is plotted. Here, we extend the parameter n
from the experimental case n=1,1.5 to n=2,3 ,4 since the
nonadiabatic effect would be more remarkable as the rotation
velocity is increased. In the future experiment, the nonadia-
batic effect at large n can be demonstrated to test our theo-
retical prediction. We stress that the experimental parameters
n=1,1.5 fulfill the adiabatic condition, Eqs. �6� and �7�,
while the ones for n=3,4 do not. As expected from Eq. �13�,
the sinusoidal oscillation is again witnessed. Additionally,
the oscillating amplitudes rise as the rotating velocity is in-
creased. Here, the total time for evolution is fixed �19�. This
result is consistent with Eq. �13� as �� scales as �R

2 . Notice
that all of them nonexceptionally approach zero at the both

ends. It is a reasonable result since �� vanishes as �=0.
Actually, the Hamiltonian remains the same as its initial state
in the parametric space. The only effect for time evolution is
to acquire a dynamical phase. On the other hand, as � ap-
proaches � /2,

� = ��R
2 + �2 � �R � � � �R

since � is fixed. Due to vanishing of �, we have a zero
deviation from the predicted phase, i.e., ��=0. In the limit
�→� /2, the initial state ���0��= ��0�+ �1�� /�2 is the eigen-
state of the initial Hamiltonian H�0���R�x /2. Intuitionally,
the evolution of the system is similar to the situation that a
classical magnetic moment initially parallel to the applied
field closely follows the rotation of the field.

IV. CONCLUSION

In this Brief Report, we have investigated the fluctuation
in the phase due to the nonadiabatic evolution for a general
spin precession in an external field. In contrast to the adia-
batic evolution, the sinusoidal deviation from the expected
line drawn for Berry’s phase is observed. Compared with the
deviation induced by low-frequency noise, our theoretical
analysis can explain part of the phase fluctuations discovered
in the recent experiment. For a given time of evolution, it is
predicted that the fluctuation from Berry’s phase rises larger
and larger as n, the number of the cycles of the field change,
is increased whereas the deviation due to low-frequency
noise is almost not dependent of n.
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