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We propose a special cavity design that is constructed by terminating a one-dimensional waveguide with a
perfect mirror at one end and doping a two-level atom at the other. We show that this atom plays the intrinsic
role of a semitransparent mirror for single-photon transports such that quasinormal modes emerge spontane-
ously in the cavity system. This atomic mirror has its reflection coefficient tunable through its level spacing and
its coupling to the cavity field, for which the cavity system can be regarded as a two-end resonator with a
continuously tunable leakage. The overall investigation predicts the existence of quasibound states in the
waveguide continuum. Solid-state implementations based on a dc-superconducting quantum interference de-
vice circuit and a defected line resonator embedded in a photonic crystal are illustrated to show the experi-
mental accessibility of the generic model.
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Cavity quantum electrodynamics �QED� �1� essentially
reveals the quantum nature of photon confined in an ex-
tremely small spatial volume, such that there exists a strong
coupling between atom and electromagnetic �EM� field. The
atomic spontaneous emission within a microcavity can be
enhanced or suppressed. The very property reflects the co-
herent manipulation of atom-EM field interactions through
the boundary condition of cavity. When the cavity boundary
is leaky, the set of quasinormal modes �QNMs�, which is
introduced in the study of the scattering of gravitational
waves by a Schwarzschild black hole �2�, appears as a dis-
crete spectrum with complex value. Its imaginary part repre-
sents the width of the resonant spectrum line �3,4�.

In usual experimental setup, the cavity is bounded by two
reflective mirrors, which are obviously the external objects
independent of the atom inside. In this paper, we consider an
alternative cavity setup by localizing an atom at a position
inside a one-dimensional �1D� half-resonator waveguide.
The cavity is bounded by the termination of the waveguide at
one end and the localized atom at the other. Unlike other
one- or three-dimensional half-cavity setups �5–8�, the char-
acteristic intrinsity of this two-end cavity design arises natu-
rally, in which the atom provides a tunable boundary condi-
tion for the cavity EM field, controllable through the
parameters of the atom. When the atom resonates with the
cavity field, the interference effect between its emission and
absorption of photons tunes the boundary to totally reflect
the incident EM wave. Hence the atom serves as a perfect
mirror and the normal mode emerges. Near resonance, the
atom behaves like a semitransparent mirror, resulting in a
leaky cavity and the emergence of QNMs. In either case,
there exists a strong back action from the emerging cavity
field on the atom whose spontaneous emission is thus evi-
dently influenced.

The theoretical considerations above inspire us to design a
quantum coherent device, which has the atom responsible for

a quantum switch �9� and stores a single photon as the
QNMs or the normal modes of the tunable cavity. The re-
cently proposed single-photon transistor �10� was designed
upon a similar footing by utilizing the surface-plasmon exci-
tation confined in an infinite waveguide but without any
mirror �11�.

We further explore two alternative implementations of
more laboratory accessibility of the original design, one of
which uses a superconductive transmission line resonator
and the other is based on a defected line resonator within a
photonic crystal. These implementations are useful for show-
ing the detailed phenomena related to the QNM’s theory
�3,4�.

We exhibit our idea about the intrinsic cavity by way of
example shown in Fig. 1. The system consists of a 1D semi-
infinite waveguide �a half cavity� with a two-level atom lo-
calized at a distance a from the termination. The atom has a
level spacing � between its ground state �g� and its excited
state �e�, and is coupled to an EM field with strength J.
Similar to the case of a finite or two-end cavity in Ref. �12�,
the model Hamiltonian of our setup reads
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FIG. 1. �Color online� Schematic of the intrinsic cavity. �a� Half-
waveguide with a two-level atom as �b� a tunable mirror; to imple-
ment the steady two-level atom, we use the stimulated Raman pro-
cess based on �c� a �-type atom behaving as a two-level atom in
large detuning to overcome the high-level decay.
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H = − ivg�
0

�

dx��R
†�x�R − �L

†�x�L� + ��e��e�

+ J��R
†�a� + �L

†�a���g��e� + H.c., �1�

where �R=�R�x� ��L=�L�x�� is the bosonic field operator for
a right-going �left-going� photon; vg stands for the group
velocity of the photon in the waveguide. We remark here that
this Hamiltonian can be obtained from Hamiltonian H
=	k��kak

†ak+���z+1� /2+	kJk�ak
†+ak���++�−�, by notic-

ing �k�=k→−i�x for k	0 and �k�=−k→ i�x for k
0 with
assumptions: �k=vg�k� and Jk=V. We define �R

†�x� as right-
going photon for k	0 and �L

†�x� as left-going photon for k

0.

The state of the system with either a single photon or an
excited atom spans an invariant subspace of H. Thus, corre-
sponding to the eigenvalue E=vgk�k	0�, the stationary
eigenstate,

�E� = �
0

�

dx�uk,R�R
† + uk,L�L

†��0,g� + wk�0,e� , �2�

depicts a single-photon state in the half-cavity, where �0,g�
indicates the state without photon while the atom stays on its
ground state, and �0,e� indicates the state without photon
while the atom is excited. For a photon of momentum k, the
probability amplitudes uk,R=uk,R�x�, uk,L=uk,L�x�, and wk,
corresponding, respectively, to the right-going photon, the
left-going photon, and the excited atom, satisfy the following
equations:

− ivg�xuk,R + J��x − a�wk = Euk,R, �3�

ivg�xuk,L + J��x − a�wk = Euk,L, �4�

J�uk,R�a� + uk,L�a�� = �E − ��wk. �5�

We remark here that uk,R and uk,L are not continuous at the
position of atom according to Eqs. �3� and �4�. However, it
will be showed that uk,R+uk,L is actually continuous in the
following part. Applying the spatial differentiation to Eqs.
�3� and �4�, we obtain the second-order differential equation
for the photon amplitude on the waveguide as

vg
2 �2

�x2uk,L�x� = 
 J2E

E − �
��x − a� − E2�uk,L�x�

− ivgwkJ
�

�x
��x − a� +

J2E

E − �
uk,R�a���x − a� ,

�6�

vg
2 �2

�x2uk,R�x� = 
 J2E

E − �
��x − a� − E2�uk,R�x�

+ ivgwkJ
�

�x
��x − a� +

J2E

E − �
uk,L�a���x − a� .

�7�

In Eqs. �6� and �7�, the amplitudes of right-going and left-
going modes are coupled due to the adding atom.

To understand the meaning of these amplitudes, we define
the sum of the amplitudes �k�x�=uk,R�x�+uk,L�x� of the EM
field and obtain the equivalent Maxwell equation �4� by add-
ing Eqs. �6� and �7� together:

�x
2�k�x� = − � E

vg

2

��x��k�x� , �8�

where

��x,E� � 1 +
2J2��x − a�
E�� − E�

�9�

is the singular square of refractive index over the waveguide,
which depends on the energy of the system. This energy
dependence is illustrated in Fig. 2. Equation �8� can be re-
garded as a Schrödinger equation where

V�x,E� � ��x,E� − 1 �10�

plays the role of an energy-dependent local potential. The
resonance effect occurs at E=� where a �-type infinite ef-
fective potential will emerge. Thus, the atom and the fixed
mirror at the termination sandwich a confined 1D space to
form a perfect cavity when the cavity photon mode of energy
E resonates with the level jumps � of the atom. In other
words, the resonant atom and cavity gives rise to a spectrum
of normal modes. In the case of near resonance, the atom
plays the role of a leaky mirror whose rate of leakage is
determined by square of refractive index ��x ,E� which in
turn is controlled by the parameters of the atom �such as the
level spacing and the coupling constant to the EM field�.
Actually, the emergence of QNMs in a leaky cavity has been
widely investigated for a given refractive index �4� but the
alternative we offer here in a 1D continuum bears the spon-
taneous emergence of QNMs where the effective �-type po-
tential is given by the localized atom.

Following the routine treatment of QNMs, we assume the
field amplitude outside the cavity �x	a� as an outgoing
plane wave �k�x�=B exp�ikx� and perform an analytical con-
tinuation by taking the photonic momentum k=E /vg as a
complex number �4�. The outgoing plane wave here de-
scribes the spontaneous radiation of the atom. The corre-
sponding field amplitude �k�x�=A sin�kx� inside the emer-
gent cavity �0
x
a� is identical to that of a perfect cavity
except that k is complex. Thus, the wave function here reads

Ω<< E0 Ω=E

(a) (b)

FIG. 2. �Color online� The emergence of the QNMs. The wavy
line represents the reflective properties of the atom; the dashed line
shows the typical form of the photon wave function at resonance.
�a� When 0
E
�, the model is equivalent to a leaky cavity. �b�
When E=� and Ea /vg=n
, the area is well confined and the cav-
ity completely reflects the photon.
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�k�x� = �Beikx, x 	 a ,

A sin kx , 0 
 x 
 a .
� �11�

Accordingly, the energy of the QNMs is a complex quantity
with its real part being the resonant frequency and its imagi-
nary part the linewidth. These wave functions inside the cav-
ity form a complete set with a definition of general norm
�13�.

This linewidth determines the leakage rate of the EM field
from the cavity �14�. The boundary conditions for the field
amplitude at the position of atom x=a implies

A sin�Ea

vg

 = BeiEa/vg. �12�

Integrating Eq. �8� around x=a, the connection boundary
condition for the first derivative gives equation

iBE

vg
eiEa/vg −

AE

vg
cos�Ea

vg

 =

2BJ2E

vg
2�E − ��

eiEa/vg. �13�

By eliminating the coefficients A and B, we obtain the di-
mensionless equation

tan��� = � �

W − �
+ i
−1

, �14�

which determines the complex energy of the QNMs. Here,
�=Ea /vg, W=�a /vg, and �=2J2a /vg

2 denote a set of dimen-
sionless parameters. To confine the EM field so that an
equivalent cavity emerges, the interaction between the EM
field and the atom should be sufficiently large, i.e., 1 /��1.
When ��W, we can expect the solution to around
j
�j=0, �1, �2, . . .�, which just corresponds to the position
of the normal modes of the perfect cavity. Therefore, the
solution can be expanded around j
 with the series of 1 /� as

� = j
 + �1�−1 + �2�−2 + O��−3� . �15�

With this expansion, the left-hand side of Eq. �14� is rewrit-
ten as

l.h.s. = �1�−1 + �2�−2 + O��−3� , �16�

and the right-hand side is rewritten as

r.h.s. = �W − j
��−1 − ��1 + i�W − j
�2��−2 + O��−3� .

�17�

By substituting the expansion into Eq. �14�, we obtain the
coefficients �1 and �2 as

�1 = W − j
 , �18�

�2 = − �W − j
� − i�W − j
�2. �19�

Then the QNMs have their energies approximated by the
dimensionless complex eigenvalues

Ej � � j − i� j , �20�

where for j=0, �1, �2, . . .,

� j =
vg

a

 j
 +

1

�2 �W − j
��� − 1�� �21�

defines the resonant frequencies while

� j = −
vg

a�2 �W − j
�2 �22�

are the linewidths of the modes.
The discreteness of the real part � j is similar to the case

of a perfect cavity with normal modes � j
0= jvg
 /a. In both

cases, the cavity length a determines the discrete values of
the modes. This property results exactly from the so-called
shape resonance: when the length a matches the frequency of
the EM wave inside the cavity, the reflective wave from the
“atom boundary” contains a phase retardation of 
 relative to
the incident wave, destructively interfering the incident
wave.

The negativity of the imaginary part � j characterizes the
decaying of the EM field from inside cavity to the outside.
We define the lifetime of the EM field as the inverse �
= �Im Ej�−1, i.e.,

� = � �

W − j


2 a

vg
. �23�

The lifetime is proportional to J4 and the inverse square of
the detuning, which reaches its maximum at j= �W /
�. This
long-living state is selected by the atomic level spacing �.
The effective refraction index ��x� is strongly modified when
the system is close to resonance and the confinement of the
EM field seems much tighter. In this sense, the near-resonant
photonic mode is reflected more fiercely back to the cavity
and the leakage is suppressed. Therefore, it is expected that,
when the atomic level spacing � matches the cavity length a
with the value �=k
vg /a�k�Z�, the atom will act like a
perfect mirror.

Furthermore, to verify the approximated solution of Eq.
�14� above, we solve it numerically and demonstrate the real
and the imaginary parts of the solution in the �-complex
plane in Fig. 3�a�. The circle points is solved as the cross
points of two lines, red dashed line and black dotted line, for
the parameters �=200 and W=5. The analytic solution ap-
proximately obtained above is plotted as the dotted dashed
blue line, which fits the numerical solution very well in Fig.
3�a�. To show this matching effect in details, we plot the
curve of the decay rate as a function of the atomic level
spacing in Fig. 3�b�.

To further describe the QNMs obtained above, we plot the
wave function with parameters: �=200 and W=5 in Fig. 4,
which describes the slowest decay process for definite �.
Here, the resonant frequency �0=3.150 84vg /a with the de-
cay rate �0=−8.5�10−5vg /a. There appears a bound state
localized in the intrinsic cavity, however, which diverges ex-
ponentially far away outside the cavity. We remark here that
the wave function out of the cavity has no meaning. Those
characters demonstrate that QNMs are actually resonant
states �15�. Due to the long lifetime, it behaves like a bound
state even in a large time scales. With these considerations,
we conclude that there actually exists a quasibound state
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�14,15�. Interestingly, if a single photon is loaded into this
cavity, it would take a long time to escape from the cavity.
Thus we can propose this artificial fabrication as a storage
device for single photon.

To display the quantum nature of the emergent cavity, we
study the prominent cavity QED effect—the modification of
spontaneous emission rates within the cavity. The radiation
of the bounding atom can be controlled by the boundary
conditions of the EM field. To this end, we introduce a phe-
nomenological emission rate � to the atom, which character-
izes the system decay into all other channels of the environ-
ment. Then by replacing � with �− i�, we formally obtain
the decay rate of the atom in the leaky cavity

�t � �W − j


�
�2

+
�

�
−

�

�2 . �24�

In the so-called “strong-coupling regime” where ��1, the
spontaneous decay is explicitly suppressed. A similar result
has been obtained in Ref. �6�, when the atom is placed on a
node of the EM field.

The emergence of QNMs in the half cavity predicted
above can be materialized through some practical laboratory
systems. Two such examples, shown in Fig. 5, are the super-
conducting transmission line resonator with a dc-
superconducting quantum interference device �SQUID�-
based charge qubit and a photonic crystal with a doped
�-type three-level atom, in which charge qubit and the three-
level atom, respectively, take the roles of the functional
mirror.

In the former, the half cavity can be realized through the
semi-infinite superconducting transmission line while the
two-level system can be realized through the charge qubit
with energy eigenstates �e� and �g�. The energy-level spacing
�=�Bz

2+Bx
2 is defined by the field intensities Bz=4Ec�2ng

−1� and Bx=2EJ cos�
�x /�0�, where Ec=e2 / �2�Cg+2CJ��
is the charge energy and ng=CgVg /2e is the number of
charges at the gate. Note that Bz can be controlled by the
voltage Vg applied to the gate capacitance Cg whereas Bx can
be controlled by the external magnetic flux �x through the
SQUID loop. If the effective length of the transmission line
resonator is L, the coupling strength between the qubit and
the resonator reads J=e sin �Cg /C�

�� / �Lc�. Here, c is the
capacitance per unit length of the transmission line and � is
the frequency of the quantized EM field. The coupling
strength ranges from 5 to 200 MHz and the qubit level spac-
ing is in the range of 5–15 GHz �16�. So long as the cou-
pling between the charge qubit and the line resonator be-
comes strong, the quasibound state will appear in the
transmission line due to the enhancement of reflection by the
functional mirror �17�. The coupling strength should reach
about several GHz for the observation of the long-life qua-
sibound state.

As for the implementation on a photonic crystal, the
doped �-type atom in its excited state can decay so fast that

FIG. 3. �Color online� �a� The solution of Eq. �14�. The roots of
Eq. �14� are marked by the circle. The analytical solution under
approximation is shown by a dot-dashed line �blue�. The approxi-
mation fits numerical point. �b� Im � vs atom frequency. The decay
rate reaches its minimum, when �=n
.

FIG. 4. �Color online� Plot of the wave function of the slowest
decay state in real space. The amplitude of the wave function di-
verges in the infinite far away. The QNM state here is actually a
resonant state. �a� Wave function in the intrinsic cavity area. �b�
Wave function at the whole area.

FIG. 5. �Color online� The implementations using, respectively,
a superconducting transmission line resonator and a photonic
crystal.
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we need resort to the stimulated Raman-scattering technol-
ogy, illustrated in Fig. 1�c�. The Hamiltonian here reads

H = �1�e��e� + ��1 − �2��a��a� + �b†b + g�b†�g��e� + H.c.�

+ G�ei�ct�a��e� + H.c.� . �25�

With a coupling constant G and a detuning �=�1−�c, a
strong drive field is applied to couple the metastable state �a�
�with less decay rate� and the excited state �e� with much
larger decay rate. The ground state �a� and the excited state
�e� are coupled by the EM field b† inside cavity with cou-
pling constant g and the same detuning �=�2−�. In the
case with large detuning, an effective tunable coupling
J=−gG /2� is induced between EM field, and the ground
state �g� and the metastable state �a�. It is observed from Eq.
�23� that the decay time for single photon in the cavity is
proportional to J4. This high sensitivity to the coupling
strength makes it possible to control the leakage by solely
adjusting the intensity of the drive field. Experimentally, we
study two experimental realizations of the intrinsic cavity
based on superconductivity circuit QED system and defected
photonic crystal. State �2� is actually the eigenstate of the
system. The initial state with a light pulse and a separated
ground-state atom is the superposition of these eigenstates.
The dynamical evolution of the initial state goes beyond the
study in this paper. However, we can expect that the effect of

destructive interference can be revealed by detecting the out-
put signals on the right side of the atom. Most recently, an
experimental dynamic manipulation of the cavity quality fac-
tor was investigated in Ref. �18� based on photonic crystal,
where a pump is explored to control the refractive index of
waveguide and a probe light is used to check the Q factor of
the defected cavity.

In conclusion, we conceive the architecture of a quantum
device for coherent manipulation at the single-photon level.
An intriguing phenomenon is predicted in which an atom
inside a 1D half cavity can act as an end mirror to close the
half cavity. This atomic mirror has its reflection coefficient
tunable through its level spacing and its coupling to the cav-
ity field, for which the cavity system can be regarded as a
two-end resonator with a continuously tunable leakage. As a
result, there forms naturally a set of quasinormal modes in
the 1D continuum for the single-photon emission process.
We also investigate the influence of the quantum dynamics
of the atom due to the back action of emerging two-end
cavity. Physically, we propose the implementations based on
a dc-SQUID circuit and a defected line resonator embedded
in a photonic crystal.
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