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Two-qubit entanglement can be induced by a quantum data bus interacting with them. In this paper, with the
quantum spin chain in the transverse field as an illustration of the quantum data bus, we show that such induced
entanglement can be enhanced by the quantum phase transition �QPT� of the quantum data bus. We consider
two external spins simultaneously coupled to a transverse field Ising chain. By adiabatically eliminating the
degrees of the chain, the effective coupling between these two spins is obtained. The matrix elements of the
effective Hamiltonian are expressed in terms of the dynamical structure factor �DSF� of the chain. The DSF is
the Fourier transformation of the Green function of an Ising chain and can be calculated numerically by a
method introduced by Derzhko and Krokhmalskii �Phys. Rev. B 56, 11659 �1997��. Since all characteristics of
QPT are embodied in the DSF, the dynamical evolution of the two external spins displays singularity in the
vicinity of the critical point.
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I. INTRODUCTION

Entanglement lies at the heart of quantum mechanics and
thus can be regarded as a resource for quantum information
processing. In recent years, many people have demonstrated
that quantum entanglement can offer an intrinsic clarification
of quantum criticality of a many-body system. For example,
in Refs. �1,2� it was proven that the derivative of the nearest-
neighbor entanglement diverged at the critical point. Further-
more, one of the authors �C.P.S.� and his collaborators stud-
ied the dynamical ultrasensitivity of the induced quantum
critical system, which concerned the excited states as well as
the ground state �3,4�. Usually, the former has not been dis-
cussed in the investigation for the above-mentioned intrinsic
entanglement in many-body systems.

In this paper, we consider the quantum entanglement of
the many-body problem in the viewpoint of quantum infor-
mation processing, whether or not quantum criticality of the
many-body system �as a quantum data bus� can enhance the
entanglement of the external qubits interacting with the
quantum data bus. Actually, the phase transition indeed cre-
ates some entanglement. A case in point is the superconduct-
ing phenomenon �5,6�. As shown in the BCS theory �7,8�, a
Cooper pair is created when a conductor transits from a nor-
mal state to a superconducting state. In such a pair, two
electrons form a correlated entirely over hundreds of nanom-
eters, which is a long distance in the microscopic world. We
remark that the phase transition of superconducting happens
at finite temperature, but this paper will focus on the occur-
rence of quantum phase transition �QPT� at zero temperature.

QPT is of critical importance to the quantum statistical
physics. Generally speaking, QPT takes place at zero tem-
perature. It is the situation where only the uncertainty prin-
ciple plays the major role while the fluctuation due to the
finite temperature does not. As some parameter is varied, a
qualitative change occurs in the ground state of a quantum
many-body system due to QPT �9,10�. At the critical point,
long-range correlation also develops in the ground state. This

long-range correlation intuitively exhibits greater quantum
entanglement between two points. References �1,2� indeed
showed the entanglement became singularly longer at the
critical point. These considerations directly motivate us to
study the problem.

On the other hand, the interesting point of this paper is its
meaning for the detection of QPT by coupling the quantum
critical system to the external detector-two qubits. And vari-
ous efforts have been devoted to this field. Entanglement
transfer was investigated between two external spins which
were coupled to a spin chain at different sites �11�. In Ref.
�3�, when an external spin underwent a transition from a pure
state to a mixed state, the decay of the Loschmidt echo of its
coupling environment described by a transverse field Ising
model �TFIM� was greatly enhanced. Others suggested two
external spins to detect QPT by simultaneously coupling to
an XY model environment �12,13�. The former research
showed the critical phenomena of QPT with exact solvable
models. However, they mainly focused on �z�z interaction
between the external spins and the Ising chain. Thus, by
extending z–z coupling to a more general coupling form, we
explore the possibility of detecting QPT by two central spins.

The rest of the paper is organized as follows. In the next
section, we describe the model as two external spins coupled
to a transverse field Ising chain. The calculation of the effec-
tive Hamiltonian between the two spins is outlined using
Fröhlich transformation in Sec. III. The matrix elements of
the effective Hamiltonian are given in terms of the dynami-
cal structure factor �DSF�. In Sec. IV, the DSF is numerically
calculated and the relation between the coupling constants of
two spins and the variable parameter is given. Finally, the
significant results are concluded in Sec. V.

II. MODEL DESCRIPTION

Two external spins are simultaneously coupled to an en-
vironment described by a one-dimensional transverse field
Ising chain. By exchanging spin angular momentum with the
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chain, the two noninteracting spins attain effective interac-
tion between them. To study the dynamic detail, we consider
the system depicted in Fig. 1. The Hamiltonian of this model
reads

H = H0 + HI = HC + HE + HI, �1�

where

HC =
�

2
��A

z + �B
z � �2�

is the unperturbed Hamiltonian for the external spins,

HE = − �
j=1

N

��� j
z + J� j

x� j+1
x � �3�

is the Hamiltonian of the transverse field Ising model, and

HI = �
�=A,B

�
j=1

N
J�

�N
�� j

x��
x + � j

y��
y �

= �
�=A,B

�
j=1

N
2J�

�N
�� j

+��
− + � j

−��
+� �4�

is the interaction between the external spins and the environ-
ment. Here ��

� and � j
� ��=A ,B ,�=x ,y ,z� are Pauli opera-

tors for the two external spins and the Ising chain, respec-
tively, ��,j

� = ���,j
x � i��,j

y � /2 are the corresponding raising
and lowering operators, J� /�N is the homogeneous coupling
constants between the �th external spin and the jth site of the
Ising chain with N being the number of sites in the chain.

First of all, HE is diagonalized with the combination of
the Jordan-Wigner transformation �14�

cj = exp��i�
k=1

j−1

�k
+�k

−�� j
−, �5�

and the Bogoliubov transformation �15�

	k =
1

2�
j=1

N

��
kj + �kj�cj + ��
kj − �kj�cj
+�� , �6�

where for �=J /��1,


kj =� 2

N
sin�kj� for k 
 0, �7�


kj =� 2

N
cos�kj� for k � 0, �8�

�kj = −
1

�k
��1 + � cos k�
kj + � sin k
−kj� . �9�

Here,

2��k = 2��1 + �2 + 2� cos k �10�

is the energy spectrum of the quasiparticle with
k=2�m /N, m=−N /2, . . . ,N /2−1 for even N, and
m=−�N−1� /2, . . . , �N−1� /2 for odd N. For �=1 and
m=−N /2,

�k = 0, 
kj =� 1

N
, �kj = �� 1

N
. �11�

Thus, in the quasiparticle representation the Hamiltonian of
the TFIM is rewritten as

HE = 2��
k

�k�	k
+	k −

1

2
� , �12�

with the corresponding eigenstate and energy being

	m
 = �
k

�	k
+�nk	0
 , �13�

Em = 2��
k

�knk − ��
k

�k, �14�

respectively. Here, 	0
 is the ground state and nk=	k
+	k is the

particle number operator.

III. EFFECTIVE HAMILTONIAN

Generally speaking, Fröhlich transformation �16,17� is
widely used in condensed matter physics. It can solve a class
of problems such as the induced effective interaction be-
tween two electrons by exchanging phonons with the crystal
lattice. In this paper, the one-dimensional Ising chain plays
the role as a medium to induce the effective interaction be-
tween the two external spins. Therefore, by virtue of
Fröhlich transformation, we obtain the effective Hamiltonian
between the two external spins by tracing over the degrees of
the environment.

With an appropriate anti-Hermitian transformation S
defined by the matrix elements

�m	S	n
 =
�m	HI	n

En − Em

, �15�

which meets the condition HI+ �H0 ,S�=0, the effective
Hamiltonian is approximated to the second order as Heff
=HC+Hel, where

FIG. 1. �Color online� Schematic diagram of two external spins
�C� simultaneously coupling to a 1D Ising chain �E�.

AI et al. PHYSICAL REVIEW A 78, 022327 �2008�

022327-2



Hel =
1

2
�0	�HI,S�	0


=
1

2�
m

��0	HI	m
�m	S	0
 − �0	S	m
�m	HI	0
� �16�

with 
	m
� and 
Em� being the eigenstates and eigenenergies
of HE, respectively, and 	0
 its ground state.

The DSF �18�

S���k,�� = �
n=1

N

eikn�
0

�

�0	� j
��t�� j+n

� 	0
e�i�−0+�tdt �17�

�� ,�=x ,y� is the Fourier transformation of the Green func-
tion for the TFIM. It is calculated as

S���k,�� = i�
n=1

N

eikn�
m

�0	� j
�	m
�m	� j+n

� 	0

E0 − Em + � + i0+

= i�
n=1

N

eikn�
m

�0	� j
�	m
�m	� j+n

� 	0


� ��� 1

E0 − Em + �
� − i���E0 − Em + ���

�18�

with ��1 /x� being the principal value of 1 /x.
The right-hand side of Eq. �16� contains the following

terms, which are expressed in terms of DSFs as

�
m,j,j�

�0	� j
+	m
�m	� j�

+ 	0
�� 1

E0 − Em + �
�

= �
m,j,j�

�0	� j
−	m
�m	� j�

− 	0
�� 1

E0 − Em + �
�

=
N

4
Im�Sxx�0,�� − Syy�0,��� , �19�

�
m,j,j�

�0	� j
+	m
�m	� j�

− 	0
�� 1

E0 − Em + �
�

=
N

4

Im�Sxx�0,�� + Syy�0,��� − 2 Re Sxy�0,��� , �20�

�
m,j,j�

�0	� j
−	m
�m	� j�

+ 	0
�� 1

E0 − Em + �
�

=
N

4

Im�Sxx�0,�� + Syy�0,��� + 2 Re Sxy�0,��� . �21�

Then, we rewrite the effective Hamiltonian as

Heff =
�A

2
�A

z +
�B

2
�B

z + g1��A
+�B

− + �A
−�B

+� + g2��A
+�B

+ + �A
−�B

−�

�22�

in terms of DSFs, where �19�

�A = � + JA
2
Im�Sxx�0,�� + Syy�0,��

− Sxx�0,− �� − Syy�0,− ��� + 2 Re�Sxy�0,��

+ Sxy�0,− ���� ,

�B = � + JB
2
Im�Sxx�0,�� + Syy�0,�� − Sxx�0,− ��

− Syy�0,− ��� + 2 Re�Sxy�0,�� + Sxy�0,− ���� ,

g1 = JAJB
Im�Sxx�0,�� + Syy�0,�� + Sxx�0,− �� + Syy�0,− ���

+ 2 Re�Sxy�0,�� − Sxy�0,− ���� ,

g2 = JAJB Im�Sxx�0,�� − Syy�0,�� + Sxx�0,− �� − Syy�0,− ��� .

�23�

In the forthcoming section, by using the numerical method in
Ref. �18�, the DSF S���k ,�� and thus the matrix elements of
the effective Hamiltonian �23� are calculated explicitly. For
further details about the diagonalization method of the Ising-
like model and the fast scheme for the calculation of Pfaff-
ian, please refer to Refs. �15,20–24�.

IV. CRITICAL COUPLING

In order to calculate the DSF numerically, we shall sum-
marize the numerical method introduced in Ref. �18�. For a
spin chain in a transverse field with open ends, the Hamil-
tonian is described as �25�

HE� = ��
j=1

N

� j
z + J�

j=1

N−1

� j
x� j+1

x . �24�

After the Jordan-Wigner transformation, the Hamiltonian is
transformed into fermion representation. Then, it is equiva-
lent to solving the following eigenproblem �21,23�:

�k�A − B��A + B� = �k
2�k, �25�

�k�A + B��A − B� = �k
2�k, �26�

where A and B are two N�N matrixes with their matrix
elements being Aij =2��ij +J�i+1,j +J�i−1,j and Bij =J�i+1,j
−J�i−1,j. According to the Wick–Bloch–de Dominicis theo-
rem, the x–x correlation function can be expressed in the
form of the Pfaffian of the 2�2j+n−1��2�2j+n−1� anti-
symmetric matrix constructed from elementary contractions
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where

� j
� = cj

+ � cj �28�

is the linear combination of the fermion operators, and

�� j
+�t��m

+ 
 = �
p=1

N

�pj�pme−i�pt, �29�

�� j
+�t��m

− 
 = �
p=1

N

�pj�pme−i�pt, �30�

�� j
−�t��m

+ 
 = − �
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N

�pj�pme−i�pt, �31�

�� j
−�t��m

− 
 = − �
p=1

N

�pj�pme−i�pt �32�

are the elementary contractions of zero temperature obtained
from the finite-temperature counterparts in Refs. �18,20�.

The Pfaffian is the square root of the determinant of the
corresponding antisymmetric matrix. A fast computation
scheme is given in Refs. �20,24�. For an N�N antisymmet-
ric matrix

X = � A B

− BT C
� �33�

with the dimensions of A, B, C being 2�2, 2� �N−2�, �N
−2�� �N−2�, respectively, the Pfaffian of X can be com-
puted in the following way. Because of

� I2 0

BTA−1 IN−2
�X�I2 − A−1B

0 IN−2
� = �A 0

0 C + BTA−1B
�

with In being an n-dimensional unit matrix, we have

Det�X� = Det�A�Det�C + BTA−1B� . �34�

Since antisymmetric A is of the simple form

A = � 0 x12

− x12 0
� , �35�

the �N−2� dimensional matrix C+BTA−1B is also antisym-
metric. The above procedure can be repeated time and time
again. And the original matrix X is decomposed into N /2 2D
antisymmetric matrices. Finally, due to Pf�A�=x12, the Pfaff-
ian of matrix X will be simply a product of N /2 numbers

obtained from those 2�2 matrices in the above procedure.
As it is not necessary for A to be a 2D matrix at the upper left
corner of X, A can be chosen to be a diagonal block such that
Det�A� is the largest, for the stability of the algorithm.

Furthermore, other DSFs can be calculated according to
the relation between correlation functions, that is,

�� j
x�t�� j+n

y 
 = − �� j
y�t�� j+n

x 
 =
1

2�

d

dt
�� j

x�t�� j+n
x 
 , �36�

�� j
y�t�� j+n

y 
 = −
1

�2��2

d2

dt2 �� j
x�t�� j+n

x 
 . �37�

In the last section, we have obtained a typical spin-spin
coupling in the effective Hamiltonian induced by the Ising
chain. Driven by this Hamiltonian, two external spins can be
entangled dynamically. To characterize the extent of en-
tanglement, we use concurrence to measure the induced en-
tanglement. For an arbitrary state of a two-qubit system de-
scribed by the density operator �, a measure of entanglement
can be defined as the concurrence �26,27�

C��� = max
0,�1 − �2 − �3 − �4� , �38�

where the �i’s are the square roots of the eigenvalues of the
non-Hermitian matrix ��̃ in decreasing order. And

�̃ = ��y
� �y��*��y

� �y� , �39�

where �* is the complex conjugate of �.
In the following numerical simulations, we set J=1 as the

unit of energy. As shown in Fig. 2, we investigate the evo-
lution of concurrence under Heff. The two external spins start
with an initial product state 	eg
. As time passes by, the two
spins will eventually evolve into a maximum entangled state.
It can be seen from the figure that the time needed for reach-
ing maximum entanglement can be greatly shortened in the
vicinity of �=� /J=1. In other words, the induced entangle-
ment between two external spins can be enhanced by quan-
tum criticality.

Furthermore, the relation between g1 and � is plotted for
different N’s in Fig. 3. Although the curves oscillate sharply,
they share a characteristic. There is a peak near the critical
point �=1 for different curves. It is a reasonable result since
it has been discovered that the entanglement between two
nearest neighbors of the Ising chain achieves maximum near
the critical point �1,2�. A similar result is also obtained for
the relation between g2 and � in Fig. 4. However, besides the
one near �=1, there is another peak around �=1.5 except
that for N=40.
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We notice that in the above calculations, the thermody-
namic limit condition is not used. As � varies from 0 to 2, the
single-particle energy spectrum goes to continuum as N in-
creases. Since the Fröhlich transformation is equivalent to
the second-order perturbation theory, it may not be valid to
apply it to obtain effective interaction between the two spins.
Therefore, we resort to mixed-state fidelity to demonstrate
our approximation used in this paper. The mixed-state fidel-
ity is given as �28,29�

F��0,�1� = tr��1
1/2�0�1

1/2, �40�

which measures the degree of distinguishability between the
two quantum states �0 and �1. It has already been applied to
the research on QPT �30�. Starting from the original Hamil-
tonian �1�, we obtain the reduced density matrix �0 for the
ground state of the two spins by first diagonalizing H and
then tracing over all the degrees of the Ising chain. On the
other hand, we can also obtain the density matrix �1 of the

ground state from the effective Hamiltonian �22� of the two
spins. In Fig. 5, the relation between fidelity and � is plotted
for different N’s. Despite oscillations in some parameter in-
tervals, the numerical method shows high fidelity over the
whole interval. Moreover, curves of different N’s converge as
� goes larger.

Here, we state that the oscillations in Figs. 3–5 are due to
the removal of resonance points in obtaining the effective
Hamiltonian �22�. And this approximation leads to oscilla-
tions in the figure of fidelity vs � �see Fig. 5�, which shows
the validity of our approximation and numerical simulations.

V. CONCLUSION

In summary, we have studied the dynamical process of
two external spins simultaneously coupling to a transverse
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field Ising chain. With Fröhlich transformation, we have de-
duced the effective Hamiltonian between these two spins.
The matrix elements of the Hamiltonian are expressed in
terms of the DSF, which can be numerically calculated.
Through the numerical simulation, it is shown that the in-
duced entanglement is enhanced by QPT. And the effective
coupling constants reach maximum near the critical point.
By virtue of mixed-state fidelity, we demonstrate the validity
of the Fröhlich transformation and numerical simulation.
Thus, the measure of the two spin entanglement can be an
illustration of QPT.

Besides the enhancement of the coupling intensity around
the critical point, there are oscillations elsewhere. We remark
that QPT takes place in the thermodynamic limit, i.e., N
→�. In this limit, the energy spectrum of TFIM goes to
continuum from zero to infinity at some parameter, i.e., �
=1. Therefore, the eigenenergy of the external spins will
definitely be resonant with one of the eigenenergies of the
Ising chain. In this circumstance, our method may not work
well. We notice that a numerical method, the time-dependent

density matrix renormalization group �t-DMRG� �31�, was
applied to central spin models, which were quite similar to
ours. Therefore, in the near future, we will apply this method
to our model to obtain a better result. We expect smooth
curves similar to Fig. 1 in Ref. �1�.

Although our analytical derivation and numerical simula-
tion are based on the TFIM, these results are applicable to
other spin chain models of QPT, i.e., the XY model, since the
TFIM is a special case in which �=1, which describes the
anisotropy of the interaction between the environmental
spins.
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