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This paper theoretically studies the coherent control of photon transmission along the coupled resonator
optical waveguide �CROW� by doping artificial atoms in hybrid structures. We provide several approaches
correspondingly based on the mean field method and spin wave theory. In the present paper, we adopt the
two-time Green function approach to study the coherent transmission photon in a CROW with homogeneous
couplings, each cavity of which is doped by a two-level artificial atom. We calculate the two-time correlation
function for photon in the weak-coupling case. Its poles predict the exact dispersion relation, which results in
the group velocity coherently controlled by the collective excitation of the doping atoms. We emphasize the
role of the population inversion of doping atoms induced by some polarization mechanism.
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I. INTRODUCTION

Recently, all-optical and on-chip setups with the coupled
resonator optical waveguide �CROW� have been imple-
mented experimentally to show the coherent transmission of
“slow photons” �1,2�, which is similar to the electromagneti-
cal induced transparency �EIT� effect �3,4� occurring in the
atomic ensemble medium. This successful experiment im-
plies the coherent couplings of the single mode cavities �5�,
which result in the photonic-crystal-like system with photo-
nic band structure. For practical applications such as CROW
setup they can be utilized to stop or store the light pulses
propagation and then lead to a quantum device based on
these many-body effects, which can also be regarded as a
tunable quantum simulator for the tight binding fermion sys-
tem in condensed matter physics.

On the other hand, recently it was discovered �6,7� that,
when such an array of coupled cavities is doped with two-
level atoms, the photon-blockaded phenomenon can emerge
and achieve a Mott insulator state of polaritons that are
many-body dressed states of doped atoms coupled to quan-
tized modes of optical field in the CROW. Most interestingly,
such a hybrid system with a two-dimensional array of
coupled optical cavities in the photon-blockaded regime will
undergo a quantum phase transition from characteristic Mott
insulator �excitations localized on each site� to superfluid
�excitations delocalized across the lattice� �8�. A similar co-
planar hybrid structure based on superconducting circuit has
been proposed for the coherent control of microwave-
photons propagating in a coupled transmission line resonator
�CTLR� waveguide. Here, each cavity is coupled to a tunable
charge qubit �9�. While the CTLR forms an artificial photo-
nic crystal with an engineered band structure, the charge qu-
bits collectively behave as spin waves in the low-excitation

limit, and these charge qubits modify the photonic band with
energy gaps to slow or even stop the microwave propagation
in this CTLR waveguide. The conceptual exploration here
suggests an electromagnetically controlled quantum device
based on the on-chip circuit for the coherent manipulation of
photons, such as the dynamic appearances of the laserlike
output from CTLR waveguide where the atoms are pumped
for some population inversion.

These progressing investigations motivate us to further
develop the general theoretical approach for cavity quantum
electrodynamics �QED� with coupled resonators for coherent
manipulations of photon transmission in an artificial photo-
nic band structure, which can be controlled through some
new mechanisms. In Ref. �16� we provide an approach based
on the mean field method and spin wave theory for different
hybrid structures, which consist of the coupled cavity arrays
with homogeneous �or inhomogeneous� couplings and vari-
ous multilevel-atom doping.

The present paper adopts the two-time Green function ap-
proach to study the coherent transmission of photons in a
CROW with homogeneous couplings, each cavity is doped
to a two-level artificial atom. Mathematically the hybrid sys-
tem has the same model as that for CTLR waveguide con-
nected to charge qubits �9�, but the Green function can work
well for the system which does not satisfy the low-excitation
limit, in which we can even obtain exact solution �10�. We
calculate the two-time retarded Green function for photons in
the weak-coupling case. Its poles predict the exact dispersion
relation, according to which the group velocity can be coher-
ently controlled by the collective excitation of the doping
atoms. We emphasize the role of the population inversion of
the total doping atoms, which is induced by some polariza-
tion or pump mechanism. The dispersion relation exhibits
some exotic features such as the compressed photonic band-
width.

The paper is organized as followed. In Sec. II we describe
our setup of the photonic band device CROW interacting
with doping atoms. Applying the retarded two-time Green
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function theory, in Sec. III, we calculate the eigenfrequencies
of the hybrid photon-atom system to characterize the coher-
ent features of photon transmission. In Sec. IV we study how
the bandwidth and group velocity of photon transmission can
be adjusted by controlling the doped atoms. Then we con-
sider the effects of damping in both the local mode of cavity
and doped atoms. The stable atomic collective excitations
can result in the coherent output of slow photons with some
laserlike properties. In Sec. V, for the phenomenon of slow
photons we study the effective susceptibility of light propa-
gation in the CROW interacting with doping atoms. In the
Appendixes we give some necessary details for the Green
function calculations and analyze the quasi-spin-wave struc-
ture represented by the Green functions for photons and at-
oms that we have obtained.

II. MODEL FOR HYBRID STRUCTURE WITH PHOTONIC
BANDS

We consider a hybrid structure �illustrated in Fig. 1�a��—
the coupled cavity array with doping artificial atoms. Here, N
optical cavities with homogeneous and nearest-neighbor cou-
plings form a one-dimensional periodic structure, which is
similar to the fermion system on tight binding lattice. In
practice, there are two ways to implement such CROW. �1�
With photonic crystals, the coupled cavities are built through
regularly breaking the periodicity of photonic crystal. In the
photonic band gap materials, the cavities are defined by an
array �superlattice� of periodic defects in the periodic modu-
lation. The intercavity hopping of photons is due to overlap
between two cavity mode functions. �2� In an electromag-
netically controlled quantum device based on superconduct-
ing circuit �9�, the CROW is realized by the superconducting
waveguide with coupled transmission line resonators, while
the doping systems are implemented by the biased Cooper
pair boxes.

In Figs. 1�b� and 1�c�, to implement a Rabi transition with
controllable coupling between the excited state �e�� and
ground state �g�� of the doping two-level system with level
spacing �A, the stimulated Raman mechanism is usually used

for a three-level system where the classical controlling light
is resonant between the auxiliary level �f�� and the excited
level �e��.

Actually, for the sake of conceptual simplicity, here we
assume that atom in each cavity only has three energy levels,
two metastable lower states �g��, �e�� and an auxiliary state
�f��. The transition �f��→ �g�� is coupled to a quantized ra-
diation mode with Rabi frequency �, the frequency �C and
the creation �annihilation� operator â�

† �â�� is in �th cavity,
while the transitions �f��→ �e�� are driven by a classical con-
trolling field with Rabi frequency �c. Moreover, we also
assume that the detuning � between �g�� and �f�� with re-
spect to the quantized light is the same as that between �g��
and �e�� with respect to the classical light. Due to the stimu-
lated Raman effect for large detuning �, the effective cou-
pling can be obtained as g=��c

* /�. In this sense, the effec-
tive coupling strength g can be well controlled by classical
Rabi frequency �c and the detuning �.

To describe the collective excitations of the doping atoms,
we use the quasi-spin operators

��
z = �e���e�� − �g���g�� ,

��
+ = �e���g��, ��

− = �g���e�� , �1�

to express the Hamiltonian H=HA+HAC+HC of the hybrid
system. Here,

HA = �
�=0

N−1
�A

2
��

z �2�

is the free Hamiltonian of the doping atoms and the interac-
tion between the local atoms and the corresponding cavity
model is of Jaynes-Cummings type

HAC = g�
�=0

N−1

â���
+ + H.c. �3�

It shows a dynamic process that photons are absorbed when
atoms transit from ground state to excited state while the
photons are emitted when the atoms transit from exited state
to ground state. The CROW is described by the Hamiltonian

HC = �
�=0

N−1

�Câ�
† â� + J�

�=0

N−1

â�
† â�+1 + H.c., �4�

where J denotes the intercavity coupling. The second term of
HC presents the tunneling of photons from the �th cavity to
the ��+1�th one. We notice that the model we adopt above
has been used to demonstrate the photon-blockaded effect
most recently �6,7�, and the lasing behavior of the output in
line resonators �CTLRs� by connecting each cavity to a tun-
able charge qubit in circuit QED �9�.

To consider the physical significance implied by H=HA
+HAC+HC, we perform Fourier transformations

�k
+ = �

�=0

N−1
eik��

	N
��

+ ,

g

e

g

e

∆

(b) (c)

(a)

〉f|

FIG. 1. �Color online� Configuration of controlled light propa-
gation in a coupled resonator optical waveguide �CROW� by dop-
ing �a� a two-level system. To implement a controllable Rabi tran-
sition between the excited and ground states of �b� the effective
two-level system, the stimulated Raman mechanism is used for �c�
a three-level system, where the classical controlling light is resonant
between the auxiliary level and the excited level.
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�z = �
�=0

N−1
��

z

N
, �5�

for k=2�n / ��N� , n=0,1 , . . . ,N−1, with the periodic
boundary condition for the quasispin operators �k

+, �k
−

= ��k
+�† and �z. The above Fourier transformation describes

the collective excitations of the spatially distributed doping
atoms as the quasispin wave via the collective operators �k

+

and �z �10�. This is because

�k
+�G� = �

�=0

N−1
1

	N
eik���E�� �6�

represents a spin wave where �G�= �g0g1g2 . . .gN−1� means all
atoms are prepared in a ground state, while

�E�� = �g0g1 ¯ g�−1e�g�+1 ¯ gN−1�

means a single particle excitation in the site �.
In order to study the collective excitation described by

�k
�±� and �z, we consider the corresponding commutation re-

lations

��k
+,�k�

− � = �kk�
z , ��k

+,�k
−� = �z,

��z,�k
+� =

2

N
�k

+,

��z,�k
−� = −

2

N
�k

−, �7�

where

�kk�
z =

1

N
�
�=0

N−1

e−i�k�−k�����
z �8�

means that �00
z =�z, �k

+ and �k
−= ��k

+�† cannot generate a
SU�2� subalgebra except for the case of k=0. Thus �k

+ and
�k�

− cannot be regarded as a collective angular momentum for
finite N.

Applying a discrete Fourier transformation in the k-space
representation âk=��eik��â� /	N to the Hamiltonian HC, we
have

H = �
k=0

N−1

�kâk
†âk + N�A

�z

2
+ g�

k=0

N−1

�âk�k
+ + H.c.� . �9�

The photonic band structure is characterized by the disper-
sion relation

�k = �C + 2J cos�k � � . �10�

In principle, the above hybrid model cannot be solved
exactly, but we have analytically studied its realization based
on superconducting circuit �9� when few atoms are populated
in their excited state—the low-excitation limit. In this case
this model will be reduced to an exactly solvable coupling
boson model as well as that of all-optical setup for stopping
the light propagating in a CROW in Ref. �5�. The crucial
issue of this observation is to use the collective operators

�10� �k
− and �k

+ as bosonic spin wave operators in the large N
limit with low excitations, since the usual bosonic commu-
tation relation ��k

− ,�k�
+ �=�kk� can be approached as N→	.

However, the low excitation requires ��k�k
+�k

−��N, which
limits the exploitation for the general cases. So we need to
develop a new technique to deal with the general cases.

III. TWO-TIME RETARDED GREEN FUNCTION
APPROACH FOR PHOTON TRANSPORT IN COUPLED

CAVITY ARRAY

For quantum many-body problem, the quantum or thermal
fluctuations near thermal equilibrium may be characterized
by time correlation functions of the type �A�t�B�t���, or by
the Fourier transformations of these correlation functions,
which give the correlation fluctuation spectrum. In Heisen-
berg picture, the time correlation function �A�t�B�t��� of two
observable A and B depends only on the time interval t− t�
by the invariant of time translation. The propagation of pho-
tons in our hybrid system can be obtained by solving the
Green function equation for photons.

We consider the linear response of the Green function
with respect to an effective applied driving force, the cou-
pling with doping atoms. We define the two-time retarded
Green function GAB

R �t , t��= ��A�t� ;B�t���� �12� as

��A�t�;B�t���� = − i
�t − t����A�t�,B�t���� , �11�

where 
�t�=1 for t�0 and 
�t�=0 for t�0.
To obtain the equation of motion for Green function, we

first list the equations of motion for the creation and annihi-
lation operators of photons and atoms by using the Hamil-
tonian defined in Eq. �9�. Then we have the equations of
motion for GAB

R �t , t��

d

dt
��A�t�;B�t���� = − i��t − t����A,B�� − i���A,H�;B�t���� ,

�12a�

d

dt�
��A�t�;B�t���� = i��t − t����A,B�� − i��A�t�;�B,H��� .

�12b�

After applying the Fourier transformation from the time do-
main to the frequency domain, the retarded Green function is
represented as

��A�B���+i =
 dtei��+i��t−t����A�t�;B�t���� , �13�

where = +0 is a positive infinitesimal. The equations of
motion for the Green functions can be evaluated in frequency
representation

���A�B��� = ��A,B�� + ���A,H��B���, �14a�

���A�B��� = ��A,B�� − ��A��B,H����. �14b�

We notice that in the linear response theory ��A �B��� deter-
mines the basic spectrum structure of the hybrid system

COUPLED CAVITY QED FOR COHERENT CONTROL OF… PHYSICAL REVIEW A 76, 013819 �2007�

013819-3



through the poles of ��A �B���—the physical eigenfrequen-
cies.

With the notations above, we write down the equation of
the Green functions ��âk � âk

†���, ���k�
− ��k

+���, ���k
− ��k

+���,
��âk ��k�

+ ���, and ���k
− � âk�

† ���. The photon correlation
��âk � âk

†��� can be obtained by using the commutation relation
between âk and H as

�� − �k���âk�âk
†��� = 1 + g���k

−�âk
†���. �15�

We can also calculate the Green function of the many-atom
correlation ���k�

− ��k
+���, which satisfies

����k�
− ��k

+��� = −
g

N
�
k��

e−i�k�−k��������
z âk���k

+���

−
1

N
�
�=0

N−1

e−i�k�−k������
z � + �A���k�

− ��k
+���.

�16�

To cut off the Green function hierarchy, we make a mean
field approximation �13,14�

����
z âk���k�

+ ��� � ���
z ���âk���k�

+ ���, �17�

where the factor ���
z � represents the large atomic population

inversion in the initial state and the light-atom interaction
hardly changes this population. The system of equations of
Green functions has an approximately closed form with three
simplified equations �for details, please see Appendix A�:

��âk�âk
†��� =

1

� − �k
+

F�k,k�
� − �k

,

���k�
− ��k

+��� = −
��kk�

z ��1 + F�k,k��

fk����
− �

k��k,�k�

��k�k�
z �F�k�,k�

fk����
,

���k
−��k

+��� = −
��z�
fk���

− �
k��k

��k�k
z �F�k�,k�

fk���
, �18�

where we have defined

F�k,k�� =
g2���k

−��k�
+ ���

� − �k
,

fk��� = � − �A +
g2��z�
� − �k

,

��kk�
z � =

1

N
�
�=0

N−1

e−i�k�−k������
z � . �19�

To consider the basic processes of the photon distribution
in k space, we draw the Feynman diagram �Fig. 2� to inter-
pret the above equation of ��âk � âk

†��� in terms of the basic
processes. Here, the photon propagator 1 / ��−�k� �denoted
by a wiggly line� appears twice. In the second term of the
right-hand side of first equation in Eq. �18�, it is modified by

an interaction with atomic flips characterized by bare atom
propagator ���k

− ��k�
+ ���, which is denoted by a double line.

This Feynman diagram describes a second order process of
the interaction between the localized modes of the optical
field and the doping atoms.

We consider the weak-coupling case. On the right side of
the equation of ���k

− ��k
+��� in Eq. �18� there are two terms,

one is about the zero order of coupling constant g and the
other is about the second or higher order of g. Here we solve
the equation of ���k

− ��k
+��� with the lowest order term of g:

���k
−��k

+��� = −
��z�
fk���

. �20�

So we obtain the lowest order solution for

��âk�âk
†��� =

� − �A

�� − �A��� − �k� + g2��z�
�21�

and

���k
−��k

+��� =
− ��z��� − �k�

�� − �k��� − �A� + g2��z�
. �22�

There exist two poles �=�k
�+� and �=�k

�−�:

�k
�±� = �D ± �k, �23�

which are the dispersion relations. Here

�D =
1

2
��A + �k� ,

�k =
1

2
	��k − �A�2 − 4g2��z� . �24�

We analyze the properties of the retarded Green functions
of ��âk � âk

†���+i and ���k
− ��k

+���+i by decomposing them into
two branches of wave, respectively. The propagating photons
have the form as

��âk�âk
†���+i = AkG

+�k,�� + BkG
−�k,�� , �25�

where the free Green functions are denoted by

( , )F k k

FIG. 2. �Color online� The Feynman diagram for the effective
photon transmission through the CROW in a propagating mode.
The photon propagator contains the free part �the bare photon
propagator is denoted by a single wiggly line� and the second per-
turbation part �one wiggly line plus a box�. The box includes the
shade circle for the self-energy of photon and the bare atom propa-
gator �the double arrow line�.
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G±�k,�� =
1

� − �k
�±� + i

, �26�

and the atomic part has the form as

���k
−��k

+���+i� = − ��z��BkG
+�k,�� + AkG

−�k,��� ,

where

Ak =
�k

�+� − �A

�k
�+� − �k

�−� , Bk =
�A − �k

�−�

�k
�+� − �k

�−� , �27�

are the amplitudes of the two wave branches.
Transforming the Green functions above back to the real

time representation, one can observe that the photons propa-
gate with two frequencies �k

�±�. If we regard the transmission
of the localized photons as propagating wave, the two wave
branches or two partial waves with �k

�±� have the amplitudes
Ak and Bk, respectively. For ���k

− ��k
+��� it has been observed

that �9� the total collection of the identical two-level atoms
can be regarded as an ensemble of N spins and thus its col-
lective excitation can be described as spin waves, which are
characterized by ���k

− ��k
+���. It is shown that the spin wave

has two eigenfrequencies �k
�±�, but with the twist amplitudes

Bk and Ak, respectively. �The detailed analysis is given in
Appendix B.�

For the photons in the CROW from localized modes to
propagating modes, we can now visualize the two wave
branches as quasiparticle excitations by considering the ex-
istence of isolated poles of ��âk � âk

†���. Suppose that there are
such poles �k

�±�→�k
�±�− i�± on the complex plane. They cor-

respond to the life 1 /�± of the quasiparticle excitations char-
acterizing the two branches of propagating wave in the
coupled cavity array. By phenomenologically adding imagi-
nary parts −i�c and −i�A to the cavity eigenfrequency �C and
the atomic level spacing �A respectively, �± can be explicitly
expressed obviously in terms of −i�c= −i� and −i�A=−i�
�the details in the next section�. This means that the decay of
transporting photons is just induced by the cavity decay and
the atom natural linewidth.

IV. COHERENT TRANSMISSION OF PHOTONS WITH
SLOWED GROUP VELOCITY

From the dispersion relation �24�, it can be observed that
the population inversion ��z� can directly affect the basic
features of coherent transmission of photons in the CROW.
To enhance this influence, we put more doping atoms in a
cavity. Suppose that every cavity is doped by n identical
atoms without interaction among themselves. Then the parts
of the Hamiltonian in Sec. II concerning atoms become

HA = �
�=0

N−1
�A

2
S�

z , HAC = g�
�=0

N−1

â�S�
+ + H.c.,

where we have introduced the collective spin S�=�l=1
n ��l. In

this sense the above frequencies �k
�±� can be modified by

replacing ��z� with

�Sz� =
1

N
�
�=0

N−1

�
l

n

���l
z � . �28�

Obviously, the average of the total spin is bounded as −n
� �Sz��n.

Before discussing the group velocity of photons, we in-
vestigate the change of bandwidth of this photonic-crystal-
like system. Because the group velocity vg

k can be calculated
according to vg

k =d� /dk, which concerns the range of �, the
change of bandwidth plays an important role. Without the
doped atoms the spectrum of photons should have only one
band, and the central line should be at �C. However, when
atoms are doped, the spectrum splits into two bands with
eigenfrequencies �k

�±�. Then the central lines shift to
�D±�k=�/2�. Without population inversion, i.e., �Sz��0, the
two bands have the same width W= ��k

�±��k=0−�k
�±��k=�/2� �

�2J, which is calculated as

W = �F±��S0
z�,0� − F±�S0

z�,
�

2�
�� , �29�

where

F±�x,k� =	1

4
�� + J cos�k � ��2 − g2x , �30�

for �=�C−�A. This means that the bandwidth becomes nar-
rower when cavities are coupled to more atoms.

Next we consider the group velocity of photon propaga-
tion

vg
�±�k = J � sin�k � ��1 ±

� + 2J cos�k � �
2F±��Sz�,k� � , �31�

for various cases. At k=� /2�, the group velocities of ��/2�
�±�

read

vg
�±��/2� = J � �1 ±

�

�
� , �32�

and the amplitudes of the photon propagator can be calcu-
lated as

A�/2� =
� + �

2�
, B�/2� =

− � + �

2�
, �33�

respectively, where �=	�2−4g2�Sz�. �See Fig. 3�
We now consider the case with most atoms in the ground

state, i.e., �Sz��0. When ��2g	��Sz��, the amplitude at the
band center A�/2�→1, B�/2�→0, and then

��â�/2��â�/2�
† ���+i �

1

� − ��/2�
�+� + i

. �34�

In other words, in this limit the photon modified by the at-
oms tends to have an eigenfrequency ��/2�

�+� . Correspondingly
the group velocity reaches its maximum vg

�+��/�2���2J�, and
the quasispin wave for the atomic excitations is characterized
by the Green function
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����/2�
− ���/2�

+ ���+i �
��Sz��

� − ��/2�
�−� + i

, �35�

which has a distinct eigenfrequency ��/2�
�−� . With g→0, ��/2�

�+�

and ��/2�
�−� approach �C and �A, respectively. On the contrary,

when ��−2g	��Sz��, we make a similar argument: as
A�/2�→0, B�/2�→1, the photons and atomic spin wave
propagate with eigenfrequencies ��/2�

�−� and ��/2�
�+� , respec-

tively. By letting g→0, ��/2�
�+� and ��/2�

�−� can be revived as �A
and �C, respectively. The group velocity of photons can also
reach its maximum vg

�−��/2��2J� �The detailed analysis is
given in Appendix B�. These observations are different from
the results obtained in the simple cavity–cavity coupling sys-
tem without atom doping in Ref. �5�.

Analyzing the features of eigenfrequencies �k
�±� for pho-

ton and atom parts in the case of weak coupling, we have
observed that �k

�±� have different preferences to approach fre-
quencies of pure photons or bare atoms. It is concluded from
this observation that, if ��0, photons prefer �k

�+� while the
atomic spin wave prefers �k

�−�; if ��0, the conclusion is just
on the contrary. We illustrate these analysis in Fig. 4.

Next we consider how a coherent pump induces popula-
tion inversion to result in a laserlike output for the CROW. In
the discussions above, we have considered an ideal case in
which the quantum dissipation and dephasing due to the in-

fluence of the environment are neglected. Meanwhile, we
have not considered the role of �Sz�, the average value of
total atoms population. Here, we also assumed that �Sz� is not
tunable. But for an open system, �Sz� becomes a time-
dependent parameter. We can tune the population of atoms to
change the properties of photon transmission. When the
population inversion takes place, we expect that laserlike
output emerges.

To see more details, let us consider a realistic case that the
cavity damp has the same rate � and the atoms have the
decay rate � due to spontaneous radiation. Then �C→�C
− i� and �A→�A− i�, so the eigenfrequencies of the photo-
nic band become

�k
�±� = �D −

i�� + ��
2

± �±, �36�

where we define �=�−� and

�± =
1

2
	���k − �A� − i��2 − 4g2�Sz� . �37�

For the sake of simplicity, we consider a special case that
is �k��A, and ���. Then the eigenfrequencies read

�k
�±� = �D ±

i

2
�f��Sz��� � � � �� , �38�

where f�x�=	1+4xg2 /�2. If the imaginary part � of an
eigenfrequency �e.g., �k

�+�� is positive, the laserlike output
will appear since a component Ak / ��−�k

�+�� of ��âk � âk
†��� has

a real time correspondence

A�t� =
 Akd�

� − �k
�+� � − i
�t�e−i�Dt+�t, �39�

where Ak is a slowly varying amplitude in k space. Actually,
when most of the atoms stay at the ground state, i.e., �Sz�
�0, it is impossible for �k

�+� and �k
�−� to have a positive

imaginary part; when the population of most atoms inverts,
i.e., �Sz��0, the imaginary part of �k

�+� may be positive.
Furthermore, there is a threshold value of �Sz� to satisfy

the condition �f��Sz��−1����. When �Sz���2 / �4g2�, we
explicitly obtain the threshold value of �Sz�T as

�Sz�T =
��

2g2 . �40�

Above this threshold value, the eigenfrequency

�k
�+� � �D + ig2

�
�Sz� −

�

2
� �41�

has a positive imaginary part, which results in a laserlike
output in the CROW. It is very interesting that the �Sz�T is
very similar to the threshold value of population inversion in
the generic laser theory. We also notice that, in weak-
coupling limit, �k

�−� cannot be a robust frequency of laserlike
output since it damps fast with rate �f��Sz��+1��+�.
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FIG. 3. There are ten curves with J���0.1J in �a�–�d�, respec-
tively. The group velocities of vg

�+�, vg
�−� and the amplitudes Ak, Bk

are functions of coupling strength g at k=� / �2� �. In �a�–�d� the
lattice constant �=1, ��Sz� � =10. In �a� and �b� the upper curves are
for �=J, while in �c� and �d� the upper curves are for �=0.1J.
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�−� �dashed� are

functions of coupling strength g and ��Sz� � =10. In �a� �C=2J, �A
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V. SUSCEPTIBILITY ANALYSIS FOR LIGHT
PROPAGATION IN THE DOPED CROW

The above analysis displays a possibility to implement a
slow light propagation in the doped CROW, but the calcula-
tion of the group velocity from the dispersion relation shows
that, only for certain wave vector k, can the group velocity
be reduced down. Thus for the propagation of a wave packet
or a light pulse, we still need some details for the absorption
and dispersion of light in the doped CROW. We use the
dynamic algebraic method developed for the atomic en-
semble based on quantum memory with EIT �10�. The origi-
nal method was proposed for the conventional EIT system,
which consists of a vapor cell with three-level � atoms near
resonantly coupled to the controlling and quantized probe
light. Our dynamic symmetry analysis is based on the hidden
dynamic symmetry described by the semidirect product of
quasispin SU�2� and the boson algebra of the excitations.
This method allows us to build a dynamic equation describ-
ing the propagation of the probe light in this atomic en-
semble with atomic collective excitations �11�.

Now we apply this algebraic method to calculate the sus-
ceptibility of light for the group velocity of photonic wave
packet propagating along the doped CROW. Then we inves-
tigate how the susceptibility depends on the various control
parameters.

We simplify our model by using the collective operators
b�=S�

− /	n and b�
† =S�

+ /	n, which represent the quasispin
wave in the low-excitation limit that only few atoms popu-
lated in their excited state. In this case we can check that the
spin wave is bosonic excitation since the boson commutation
relation �b� ,b��

† �=��,�� is satisfied in the low-excitation
limit. Then the total Hamiltonian for the hybrid system with
many-atom doping becomes

H = �C�
�

a�
†a� + J�

�

�a�
†a�+1 + a�+1

† a��

+ �A�
�

b�
†b� + �

�

g	n�a�
†b� + b�

†a�� . �42�

Its k-space representation H=�k Hk is a simple sum of the
k-component

Hk = �kak
†ak + �Abk

†bk + g	n�ak
†bk + H.c.� . �43�

Here, we have used the Fourier transformation bk

=�� exp�ik���b� /	N.
For each mode k, we can write down the Heisenberg

equations of operators ak and bk:

i�tak = − i�ak + �kak + g	nbk,

i�tbk = − i�bk + �Abk + g	nak.

Here, we have phenomenologically introduced the decay
rates � and �, and ���. In the interaction picture, we adopt
the time-dependent transformation,

ak = ãke
−i�kt, bk = b̃ke

−i�kt, �44�

for ak and bk to remove the fast varying parts of the light
field and the atomic collective excitations. Then the above
equations of motion are reduced into

�tãk = − �ãk − ig	nb̃k,

�tb̃k = − �b̃k − i��A − �k�bk − ig	nãk.

In general, the steady state solution of the equations above
determines the susceptibility of photon transmission. It is
noticed that the quantized light described by ak is the super-
position of some localized modes aj. On the contrary, the
spatially distributed photon field is characterized by a�

=�k exp�−ik���ak /	N, which means the inhomogeneous
polarization �P�� depends on the spatial position. Corre-
spondingly, we have the k-space representation of the light
field

Ek�t� =	 �C

2V�0
ake

−i�kt + H.c. �45�

In comparison with the classical expression Ek�t�=�k

�exp�−i�kt�+H.c., it is recognized that

�k �	 �C

2V�0
ak.

On the other hand, the linear response of medium is de-
scribed by the local polarization �Pk�= �pk�exp�−i�kt�+H.c.,
where the average polarization

�pk� =
�

V
	n�b̃k� �46�

slowly varies and determined by an average value of excita-

tion operator b̃k; � denotes the dipole moment of single
atom, and V is the effective mode volume �15�. It is related
to the susceptibility �k of the k space by

�k =
�pk�

��k��0
=

	n�

��k��0V
�b̃k� �47�

since �Pk�=�kEk�t�.
To calculate the susceptibility in our case, we need the

steady state solution satisfying �tb̃k=0, or

�b̃k + i�− � − 2J cos k � �b̃k + ig	nãk = 0,

for ���. Here, �=�C−�A is the detuning between photons
and atoms. In the steady state approach, we can take the
expectation value for the above equation

ig	n�ãk� = − �� − i� − 2J cos k � ��b̃k� .

Since the dipole approximation g=−�	�C / �2V�0�, the linear
susceptibility

�k � �1k + i�2k =
2ig2n

�C�� − i�� + 2J cos k � ��
.

The real part
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�1k =
− �� + 2J cos k � �2g2n

�C��2 + �� + 2J cos k � �2�
�48�

and the imaginary part

�2k =
2g2n�

�C��2 + �� + 2J cos k � �2�
�49�

are related to the dispersion and absorption of the light field
in the CROW, respectively.

Because the photons have the band structure, the proper-
ties of dispersion and absorption of photons vary with the
wave vector with momentum index k. While the real part �1k
reaches its maximum at �=−��+2J cos k� �, the imaginary
part �2k reaches its maximum at �=−2J cos k� and thus the
absorption is a considerable property of the system. Here, the
photons with different wave vectors k will have different
character of absorption. Figures 5�a�–5�c� show the depen-
dence of �1k and �2k on k. The maximums of the absorption
for k=� /2�, � /�, 0, appear at three different values of �.
The reason for this phenomena is that the intercavity inter-
action with the coupling constant J will shift the resonance
point in general, but if k=� /2�, the coupling has no effect
on for spectral structure. In view of our analysis, the absorp-
tion directly depends on the wave vector k. At the same time
we can imagine that the character of absorption can influence
the group velocity of photons. It is obvious to see that an
unavoidable loss effect appears for the group velocity when
the atom media absorbs light strongly. The dispersion rela-
tion of photons is described by �k=�C+2J cos k�, from
which we calculate the group velocity as

vg
k = �d�k

dk
� � 2J � . �50�

But from Eq. �49� it can be seen that the media absorption
characterized by �2k, will be stronger when 2J� becomes
smaller. In other words, the considerable absorption corre-
sponds to a slow group velocity. Actually, since the effect of
the group velocity is due to a spectrum structure of the wave

vector k, only a small range of k around the point corre-
sponding to the minimum group velocity, avoided is the
higher order dispersion. The point of minimum group veloc-
ity and the point of maximum absorption are related and
somewhat close. This fact means that there is some unavoid-
able loss.

VI. CONCLUSION

We have studied the coherent transmission of photons
with local modes along the CROW coupled to artificial two-
level atoms. Under the weak-coupling limit, we use the
stimulated Raman excitation to tune the level spacing of the
effective two-level system so that the properties of photons
in the CROW can be manipulated coherently. As the above
results display, if we prepare the hybrid system as that
�C��A or �C��A, the group velocity of photons in the
doped CROW will reach maximum under the two cases.
Meanwhile the two eigenfrequencies of the hybrid system
have preference that, while one tends to the frequency of
photons, another tends to that of quasi-spin wave of the total
atoms. By controlling the average population of the doping
atoms in the CROW with decay, we predict that the laser-like
output may occur. With such an exotic photonic band struc-
ture, the light with different k has different properties of
absorption.

In �16� about control of photon transmission in CROW by
doping artificial atoms for various hybrid structures, we
study the case of the resonate three-level doping atoms by
making use of the quasispin wave theory based on a mean
field method. This investigation will make a corporate effort
for the coherent transmission of photons in an artificial struc-
ture, where both the EIT effect and the bandlike structure are
utilized simultaneously.
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APPENDIX A: EQUATIONS OF MOTION FOR THE TWO-
TIME GREEN FUNCTION

In this appendix, we provide a detailed derivation of the
approximately closed system of the equations for two-time
Green functions as following text

��âk�âk
†���, ���k�

− ��k
+���, ���k

−��k
+���,

��âk��k�
+ ���, and ���k

−�âk�
† ���.

�A1�

From the commutation relation between âk and H, the equa-
tion of ��âk � âk

†��� is obtained as

���âk�âk
†��� = ��âk, âk

†�� + ���âk,H��âk
†���

or
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FIG. 5. Real part �1 �solid� and imaginary part �2 �dashed� of
the susceptibility � vs the light detuning � in normalized units of �
according to �a� k=� /2� and J=0.1; �b� k=� /� and J=0.1; �c� k
=0 and J=0.1; �d� k=0 and J=0.8. The other parameters are given
as �C=1 g	n=1.
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�� − �k���âk�âk
†��� = 1 + g���k

−�âk
†���. �A2�

Since the above equation concerns the two-time Green func-
tion ���k

− � âk
†���, we need its motion equation, but here, we

first calculate the equation of ���k�
− ��k

+���

����k�
− ��k

+��� = ���k�
− ,�k

+�� + ����k�
− ,H���k

+���

or

����k�
− ��k

+��� = �A���k�
− ��k

+��� −
g

N
�
k��

e−i�k�−k��������
z âk���k

+���

−
1

N
�
�=0

N−1

e−i�k�−k������
z � . �A3�

The mean field approximation assumes that ���
z � can be fac-

torized from ����
z âk� ��k�

+ ���, i.e.,

����
z âk���k�

+ ��� � ���
z ���âk���k�

+ ��� �A4�

and then the above Green function hierarchy is cutoff. Thus
we get a system of Green function equations

����k�
− ��k

+��� � −
g

N
�
k��

e−i�k�−k�������
z ���âk���k

+���

+
− 1

N
�
�=0

N−1

e−i�k�−k������
z � + �A���k�

− ��k
+���

or

���k�
− ��k

+��� = −
1

N�� − �A���
�=0

N−1

e−i�k�−k������
z �

+ g�
k��

e−i�k�−k�������
z ���âk���k

+���� . �A5�

For k=k�, the Green function ���k
− ��k

+��� satisfies

���k
−��k

+��� = −
1

N�� − �A�

���
�=0

N−1

���
z � + g�

k��

e−i�k−k�������
z ���âk���k

+���� .

�A6�

We notice that the equation of ��âk ��k�
+ ��� is given by

���âk��k�
+ ��� = ���âk,H���k�

+ ���

or

�� − �k���âk��k�
+ ��� = g���k

−��k�
+ ���. �A7�

In order to derive the equation about ���k
− � âk�

† ���, we use
the second kind of motion equation �14b�,

����k
−�âk�

† ��� = − ���k
−��âk�

† ,H����

or

�� − �k�����k
−�âk�

† ��� = g���k
−��k�

+ ���. �A8�

By defining

��k�k
z � =

1

N
�
�=0

N−1

e−i�k−k�������
z �,

fk��� = � − �A +
g2��z�
� − �k

� ,

the equations about ���k
− ��k

+��� and ���k�
− ��k

+��� can finally
be obtained as

fk������k
−��k

+��� = − ��z� − g2 �
k��k

��k�k
z �

���k�
− ��k

+���

� − �k�
,

�A9�

fk�������k�
− ��k

+��� = − ��k�k
z � −

g2��kk�
z ����k

−��k
+���

�� − �k�

− g2 �
k��k,�k�

��k�k�
z �

���k�
− ��k

+���

� − �k�
.

�A10�

APPENDIX B: QUASISPIN WAVES COUPLED TO
TRANSFERRED PHOTONS

In this appendix we analyze the physical meaning repre-
sented by the Green functions for photons and atoms that we
obtained in Sec. III. First we explicitly rewrite the coeffi-
cients Ak and Bk in ��âk � âk

†��� and ���k
− ��k

+��� as

Ak =
�k

�+� − �A

�k
�+� − �k

�−� =
�k + 	�k

2 − 4g2��z�

2	�k
2 − 4g2��z�

�B1�

and

Bk =
�A − �k

�−�

�k
�+� − �k

�−� =
− �k + 	�k

2 − 4g2��z�

2	�k
2 − 4g2��z�

, �B2�

where �k=�k−�A. Let �C−�A=�. When k=� / �2� �, we
obtain GP���â�/2� � â�/2�

† ��� as

GP =
� + 	�2 − 4g2��z�

2	�2 − 4g2��z�
1

� − ��/2�
�+�

+
− � + 	�2 − 4g2��z�

2	�2 − 4g2��z�
1

� − ��/2�
�−� . �B3�

From the above equation we can see that, when ��z��0,
and ��2g	���z��, the amplitudes at the band center

A�/2� → 1, B�/2� → 0,

which means
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��â�/2��â�/2�
† ��� �

1

� − ��/2�
�+� , �B4�

and the group velocity vg
��/2���2J�. Meanwhile, if g→0, the

eigenfrequencies of photons and atoms correspondingly ap-
proximate to their original eigenfrequencies without cou-
pling

��/2�
�+� → �C, ��/2�

�−� → �A. �B5�

If detuning ��−2g	���z��, the values of amplitudes are in
reverse

A�/2� → 0, B�/2� → 1. �B6�

Thus the Green function of photon at the band center only
has one wave

��â�/2��â�/2�
† ��� �

1

� − ��/2�
�−� . �B7�

It also can be obtained that vg
��/2���2J�. Meanwhile, we can

conclude that, when g→0, the eigenfrequencies of photon
and atom are recovered correspondingly by another way that

��/2�
�−� → �C, ��/2�

�+� → �A. �B8�

Next we study the Green function of the doping atoms
GA����k

− ��k
+���:

GA = − ��z�� Ak�

� − �k
�+� +

Bk�

� − �k
�−�� �B9�

with amplitudes

Ak� =
�k

�+� − �k

�k
�+� − �k

�−� = Bk �B10�

and

Bk� =
�k − �k

�−�

�k
�+� − �k

�−� = Ak, �B11�

which has a similar expression as those of photons. Thus we
rewrite the atomic Green function as

GA = − ��z�� Bk

� − �k
�+� +

Ak

� − �k
�−�� . �B12�

We also consider the situation at k=� / �2� �. First we as-
sume ��z��0 and ��2g	���z��, in this case, the value of
the amplitudes approximate to one and zero, respectively,

A�/2� → 1, B�/2� → 0, �B13�

and thus the Green function of the doping atoms becomes

����/2�
− ���/2�

+ ��� � ���z��
1

� − ��/2�
�−� . �B14�

However, when g→0,

��/2�
�−� → �A, ��/2�

�+� → �C. �B15�

If ��z��0 and ��−2g	���z��, we have

A�/2� → 0, B�/2� → 1, �B16�

and thus

����/2�
− ���/2�

+ ��� � ���0
z��

1

� − ��/2�
�+� .

Meanwhile, when g→0, the eigenfrequencies

��/2�
�+� → �A, ��/2�

�−� → �C. �B17�

Finally, we conclude that if ��2g	���z��, ��/2�
�+� is the

eigenfrequency of the photonic part, while ��/2�
�−� is the

eigenfrequency of the atomic part. On the other hand, if
��−2g	���z��, the ��/2�

�−� is the eigenfrequency of the pho-
tonic part and ��/2�

�+� is the eigenfrequency of the atomic part.

�1� Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and
M. Lipson, Phys. Rev. Lett. 96, 123901 �2006�.

�2� R. W. Boyd and D. J. Gauthier, Nature �London� 441, 701
�2006�.

�3� S. E. Harris, Phys. Today 50, 36 �1997�.
�4� M. D. Lukin and A. Imamoglu, Nature �London� 413, 273

�2001�.
�5� M. F. Yanik and S. H. Fan, Phys. Rev. Lett. 92, 083901 �2004�.
�6� D. G. Angelakis, M. F. Santos, and S. Bose, e-print

arXiv:quant-ph/0606159.
�7� M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, Nat.

Phys. 2, 849 �2006�.
�8� A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg,

Nat. Phys. 2, 856 �2006�.

�9� L. Zhou, Y. B. Gao, Z. Song, and C. P. Sun, e-print
arXiv:cond-mat/0608577.

�10� C. P. Sun, Y. Li, and X. F. Liu, Phys. Rev. Lett. 91, 147903
�2003�.

�11� Y. Li and C. P. Sun, Phys. Rev. A 69, 051802�R� �2004�.
�12� D. N. Zubarev, Sov. Phys. Usp. 3, 320 �1960�.
�13� P. A. Wolff, Phys. Rev. 120, 814 �1960�.
�14� T. Izuyama, D. J. Kim, and R. Kubo, J. Phys. Soc. Jpn. 18,

1025 �1963�.
�15� M. O. Scully and M. S. Zubairy, Quantum Optics �Cambridge

University Press, Cambridge, UK, 1997�.
�16� Lan Zhou, Jing Lu, and C. P. Sun, e-print arXiv:quant-ph/

0611159.

HU et al. PHYSICAL REVIEW A 76, 013819 �2007�

013819-10


