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In this paper, we propose and study a hybrid mechanism for coherent transmission of photons in the coupled
resonator optical waveguide �CROW� by incorporating the electromagnetically induced transparency �EIT�
effect into the controllable band gap structure of the CROW. Here, the configuration setup of system consists
of a CROW with homogeneous couplings and the artificial atoms with �-type three levels doped in each
cavity. The roles of three levels are completely considered based on a mean field approach where the collection
of three-level atoms collectively behave as two-mode spin waves. We show that the dynamics of low excita-
tions of atomic ensemble can be effectively described by a coupling boson model. The exact solutions show
that the light pulses can be stopped and stored coherently by adiabatically controlling the classical field.
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I. INTRODUCTION

Electromagnetically induced transparency �EIT� is a phe-
nomenon that usually occurs for atomic ensemble as an ac-
tive mechanism to slow down or stop laser pulse completely
�1–4�. Usually, the EIT effect happens in the so-called
�-type atomic system, which contains two lower states with
separate couplings to an excited state via two electromag-
netic fields �probe and control light�. When the absorption on
both transitions is suppressed due to destructive interference
between excitation pathways to the upper level, the medium
becomes transparent with respect to the probe field.

Most recently, an EIT-like effect has been displayed in the
experiment via all optical on-chip setups with the coupled
resonator optical waveguide �CROW� �5,6�. The bare
CROW for photons behaves as the tight-binding lattice with
band structure for electrons; thus, the CROW forms a new
type of photonic crystal. It was discovered that, by coupling
each resonator in the CROW to an extra cavity, the resonate
spectral line is shifted and the band width is compressed,
thus the propagating of light pulses is stopped and the infor-
mation carried by light is stored �7–9�. The scheme of stop-
ping, storing, and releasing light is also theoretically pro-
posed and analyzed for quantum-well Bragg structures,
which form a one-dimensional resonant photonic band-gap
structure �10�.

Actually, with the help of modern nanofabrication tech-
nology, the hybrid structure, i.e., an array of coupled cavities
with doping artificial atoms can be implemented experimen-
tally with a photonic crystal or other semiconductor systems.
By making use of such a hybrid system �11,12�, a Mott in-

sulator and superfluid state can emerge in different phases of
the polaritons formed by dressing the doping atoms with the
gapped light field. Also the hybrid system of a two-
dimensional array of coupled optical cavities in the photon-
blockade regime will undergo a characteristic Mott insulator
�excitations localized on each site� to superfluid �excitations
delocalized across the lattice� quantum phase transition �13�.
Such a coplanar hybrid structure based on a superconducting
circuit, has been proposed by us �14� for the coherent control
of microwave photons propagating in a coupled supercon-
ducting transmission line resonator �CTLR� waveguide
�15,16�.

By making use of the two time Green function approach,
we studied the coherent control of photon transmission along
the homogeneous CROW by doping two-level atoms �17�.
Usually, to realize the controllable and robust two-level sys-
tem, a three-level atom is used to reduce an effective two-
level structure through the stimulated Raman mechanism,
which is a two-photon process decoupling the two direct
transitions to an upper energy level in the case with large
detuning. Then the induced coupling between two lower en-
ergy levels can be obtained by the adiabatic elimination of
the upper energy level.

In this paper, we study the photon transmission in a ho-
mogeneous CROW controlled coherently by doped three-
level �-type systems, where the upper energy level is not
eliminated adiabatically. To consider the coherent roles of
three energy levels directly, we use the mean field approach
to deal with the collective excitations of all spatially distrib-
uted �-type atoms as two independent bosonic modes of
quasispin waves �18�. These quasispin waves, due to inter-
acting with the cavity modes in CROW, can change the pho-
tonic band structure of CROW so that the dispersion relation
exhibits some exotic feature—a slow �and even zero veloc-*suncp@itp.ac.cn; URL: http://www.itp.ac.cn/�suncp
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ity� light pulse can emerge by some appropriate coherent
control of light-atom couplings.

This paper is organized as follows: In Sec. II, we describe
our model—the homogeneous CROW with each cavity dop-
ing a �-type three-level atom. By the mean field approach in
terms of spin wave excitations, in Sec. III, we derive the
effective Hamiltonian for the hybrid structure. In Sec. IV, we
diagonalize the effective Hamiltonian to determine eigenfre-
quencies of this hybrid photon-atom system: The
quasiparticles—polaritons are introduced to describe the ex-
citations of this system. Then, in Sec. V, we discuss how the
doping atoms modify the band structure of the CROW, and
show how to store the information of incident pulse by ad-
justing the intensity of the control radiation in EIT. The ab-
sorption and dispersion of the atomic medium to the slow
light pulses are studied in Sec. VI. We make our conclusion
and give remarks in Sec. VII.

II. MODEL SETUP AND MOTIVATIONS

The hybrid system that we considered is shown in Fig. 1.
This system consists of N single-mode cavities with homo-
geneous nearest-neighbor interactions, which form a one-
dimensional array of cavities. Each single-mode cavity has
the same resonance frequencies �0. There are three practical
systems to implement such an array of cavities �19�: �1� a
periodic array of coupled Fabry-Pèrot cavities; �2� the
coupled microdisk or microring resonators; and �3� the
coupled defect modes in photonic crystals, where the band-
gap cavities are formed when the periodicity of the photonic
crystal is broken periodically �20,21�. The intercavity photon
hopping is due to the evanescent coupling pathways between
the cavities. In the coupled Fabry-Pèrot cavities and the mi-
crodisk or microring resonators, the doped system can be the

natural atom. For photonic crystals, the photonic band-gap
material is fabricated in diamond; the doping systems can be
realized as some ion-implanted NV centers �13�. Another
promising candidate for electromagnetically controlled quan-
tum device is based on a superconducting circuit �14�, where
the CROW is realized by the superconducting waveguide
with coupled transmission line resonators �15,16�, while the
doping systems are implemented by the biased Cooper pair
boxes �CPBs� �or called charge qubits�, or the current biased
flux qubits.

Generally, we use aj
† �aj� to denote its creation �annihila-

tion� operator of the jth cavity. In each cavity, the two lower
levels �b� and �c� are excited to the upper level �f� by the
quantized field and the coupling field, respectively. The en-
ergy level spacing between the upper level �f� and the ground
state �b� is denoted by � fb=� f −�b. This two-level atomic
transition couples to quantized radiation modes of the wave-
guide cavities with coupling constant g1. The energy differ-
ence between the upper level �f� and the metastable lower
state �c� is denoted by � fc=� f −�c. The atomic transition
from �f� to �c�is driven homogeneously by a classical field of
frequency � with coupling constant g2.

Let J be the nearest-neighbor evanescent coupling con-
stant of intercavity. The model Hamiltonian H=HC+HA
+HAC consists of three parts, the cavity part with intercavity
photon hoppings,

HC = �
j

N

�0aj
†aj + J�

j=1

N

aj
†aj+1 + H.c., �1�

the free atom part,

HA = �
j

N

�� f� f f
j + �b�bb

j + �c�cc
j � , �2�

and the localized photon-atom interaction part,

HAC = �
j

N

�g1� fb
j aj + g2e−i�t� fc

j + H.c.� . �3�

Here, the quasispin operators ���
j = ��� j	�� �� ,�= f ,b ,c� for

��� describe the atomic transitions among the energy lev-
els of �f�, �b�, and �c�. In practical experiments, coupling
constants gi and J depend on the positions of atoms. In this
paper, we take uniform g and J for simplicity. Actually, a
small difference of couplings is unavoidable in the practical
implementation of the present setup, but there should been
no principle difficulty in modern fabrication technique to
achieve quasiuniform coupling �23�. Theoretically, the small
fluctuations of coupling constants are innocuous and do not
change the results of this paper qualitatively.

To illustrate our motivation using this complex hybrid
structure, we may recall the fundamental principle for the
EIT phenomenon briefly. Usually, an absorption region oc-
curs to a weak probe light when it passes through a medium,
but in the presence of the control light, a transparency “win-
dow” appears in the probe absorption spectrum. Here the
probe light is not of single color since the photon propagat-
ing in the CROW has a photonic band. To consider whether
or not EIT phenomenon emerges in this band-gap structure,

( a )

( b )

g1

g2

1δ 2δ
|f>

|c>

|b>

probe
couple

FIG. 1. �Color online� Illustrative configuration for controlling
light propagation in a coupled resonators waveguide by doping
atom systems: �a� A schematic of the coupled resonator optical
waveguide �CROW� doped by three-level systems. The CROW can
be realized as an array of periodic defects in the photonic band-gap
materials, or a waveguide with coupled superconducting transmis-
sion line resonators. �b� The doping three-level atoms interacting
with quantized probe light and the classical couple light. The arti-
ficial atoms can be realized as the quantum dot, or the charge and
flux qubits.
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we should match the photonic band structure with the splits
of the energy level spacing between �f� and �c� �see Fig. 2�.

As for this hybrid structure with EIT effect, it is well
known that, among varieties of theoretical treatments of EIT,
an approach for EIT is the “dressed state” picture, wherein
the Hamiltonian of the system plus the light field is diago-
nalized firstly to give rise to an Autler-Townes type splitting
�24� in the strong coupling limit with the control field. Then
the Fano-type interference �25� between the dressed states
results in EIT. Between the doublet peaks of the absorption
line, a transparency window emerges as the quantum prob-
ability amplitudes for transitions to the two lower states in-
terference. In the CROW, the emitted and absorbed photons
can also be constrained by the photonic band structure. Here,
the single- and two-photon resonances in EIT for a given
Autler-Townes-type splitting should be reconsidered to
match the band structure of the CROW. Particularly, we need
to generalize the polariton approach to describe the stopped
and stored light schemes. Here, the photons of the probe
beam only within the photonic band can be coherently
“transformed” into “dark state polaritons,” which are the
dressed excitations of atom ensemble.

III. COLLECTIVE EXCITATIONS WITH
ELECTROMAGNETICALLY INDUCED

TRANSPARENCY EFFECT

In order to study the novel EIT effect in the CROW, we
use the mean field approach that we developed for the col-
lective excitation of an atomic ensemble with an ordered
initial state �26�. This approach for EIT can be understood as
a fully quantum theory, which not only gives these results
about slow light propagation that can be given by a semiclas-
sical approach, but also emphasizes the quantum states of the
photon and the atomic collective excitations—quasispin
waves, which are crucial for quantum information process-
ing, such as quantum memory or storage.

Let � be the distance between the nearest-neighbor cavi-
ties. The Fourier transformation

Ak =
1


N
�

j

�bf
j exp�ik � j� , �4�

Ck =
1


N
�

j

�bc
j exp�ik � j� , �5�

and its conjugate Ak= �Ak
†�†, Ck= �Ck

†�† define the bosonlike
operators to describe the collective excitation from �b� to �f�
and from �b� to �c�, respectively. In the large N limit, and
under the low excitation condition that there are only a few
atoms occupying �f� or �c�, the quasi-spin-wave excitations
behave as bosons since they satisfy the bosonic commutation
relations

�Ak,Ak
†� = 1, �Ck,Ck

†� = 1,

�Ak,Ck� = 0,

�Ak,Ck
†� = −

T−

N
→ 0. �6�

Thus, these quasi-spin-wave low excitations are independent
of each other. Here, the collective operators

T− = �
j

N

�cf
j , T+ = �T−�†, �7�

T3 =
1

2�
j

�� f f
j − �cc

j � , �8�

generate the SU�2� algebra.
In a rotating frame with respect to the zeroth-order Hamil-

tonian

H0 = �
j

N

��0aj
†aj + � f�� f f

j + �b�bb
j + �c�cc

j � ,

we achieve the coupling boson mode with the model Hamil-
tonian H=�kHk,

Hk = �2Ak
†Ak + �kak

†ak + g1Ak
†ak + g2Ak

†Ck + H.c., �9�

where we have used the Fourier transformation

âk =
1


N
�

j

âj exp�ik � j� .

Here, � f�=� f −�1, �1=� fb−�0 is detuning between the quan-
tized mode and the transition frequency � fb, and �2=� fc
−� is detuning between the classical field and the transition
frequency � fc. The original band structure is characterized
by the dispersion relation

�k = �2 − �1 + 2J cos�k � � . �10�

Obviously, the photonic band is centered at k=	 / �2� �.
To enhance the coupling strength between the probe field

and atoms, we can dope more, say NA, identical noninterac-
tive three-level �-type atoms in each cavity. In this case, the
system Hamiltonian is changed into

f

FIG. 2. �Color online� Electromagnetically induced transparency
�EIT� effect in the coupled resonator optical waveguide �CROW�
with photonic band structure. The problem is equivalent to that of a
multimode optical pulse with different color component couples
between two energy levels near resonantly. The strong light split the
bare energy levels. The EIT phenomenon emerges when the band
structure can match these splits. This mechanism can well control
light propagation in the CROW by doping a three-level system.
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H = HC + �
j

�HA
j + HCA

j � ,

with

HA
j = � fsf f

j + �bsbb
j + �cscc

j , �11�

HCA
j = g1sfb

j aj + g2e−i�tsfc
j + H.c., �12�

where, in each cavity,

s��
j = �

l

���j
l . �13�

denote the collective dipole between ��� and ��� for ���.
For each cavity, the collective effect of doped three-level

atoms can be described by quasi-spin-wave boson operators

Aj =
sbf

j


NA

, Cj =
sbc

j


NA

, �14�

which create two collective states �1c� j =Cj
† �
� and �1 f� j

=Aj
† �
� with one quasiparticle excitation. Here �
�

= �b1 ,b2 , . . . ,bNA
� is the collective ground state with all NA

atoms staying in the ground state �b�. In low excitation and
large NA limit, the two quasi-spin-wave excitations behave as
two bosons �26�, and they satisfy the bosonic commutation
relations

�Aj,Aj
†� = 1, �Cj,Cj

†� = 1, �15�

and �Aj ,Cj�=0. The commutation relations between Aj and
Cj means that, in each cavity, the two quasispin wave gener-
ated by NA three-level �-type atoms are independent of each
other.

In the interaction picture with respect to

H0 = �0�
j

N

aj
†aj + �

j

N

�� f�sf f
j + �bsbb

j + �cscc
j � ,

and by the Fourier transformations

Fk = �
j

Fj


NA

eik�j �16�

for F=a ,A, and C et al., the interaction Hamiltonian reads as
V=�kVk,

Vk = �kak
†ak + �2Ak

†Ak + G1Ak
†ak + g2Ak

†Ck + H.c., �17�

where

�k = 2J cos�k � � + �2 − �1 �18�

is the dispersion relation of CROW. Here, the effective pho-
tonic band-spin wave coupling G1=g1


NA is 
NA times en-
hancement of g1 and thus result in a strong coupling.

We also notice that the SU�2� algebra defined by the qua-
sispin operators T−, T+ and T3 in the coordinate space can
also be realized in the momentum space through the Fourier
transformations as

�T−�k = Ak
†Ck, �T+�k = Ck

†Ak,�T3�k =
1

2
�Ck

†Ck − Ak
†Ak� .

�19�

This means the interaction Hamiltonian possesses an intrin-
sic dynamic symmetry described by a large algebra contain-
ing SU�2� as a subalgebra. Technologically this observation
will help us to diagonalize the Hamiltonian Eq. �17� as fol-
lows.

IV. DRESSED COLLECTIVE STATES: POLARITONS

In each cavity the strong couplings will coherently mix
the photon and the artificial atoms to form dressed states.
The collective effect of these dressed states can make the
collective excitations, which behave as bosons �called polari-
tons� in the low excitation limit. Mathematically we write the
boson operator ak, Ak, and Ck as an operator-valued vector

b�k = �ak

Ak

Ck
� .

In terms of those operator-valued vectors 
b�k�, the interaction
Hamiltonian Vk can be rewritten as

Vk = b�k
†Mb�k,

where

M = � �k G1 0

G1 �2 g2

0 g2 0
� .

Now we solve the eigenvalue problem of the matrix M.
Then Vk can be diagonalized to construct the polariton op-
erators, which are described by the linear combination of the
quantized electromagnetic field operators and the atomic col-
lective excitation operator of quasispin waves. The three real
eigenvalues of M

�k
�1� = �+

�k� + �−
�k� +

1

3
��k + �2� ,

�k
�2� = 
�+

�k� + 
2�−
�k� +

1

3
��k + �2� ,

�k
�3� = 
2�+

�k� + 
�−
�k� +

1

3
��k + �2� , �20�

are written in terms of 
= �−1+ i
3� /2 and

�±
�k� =
3 −

q

2
±
�q

2
�2

+ � p

3
�3

,

p = −
1

3
�k

2 +
1

3
�2�k − G1

2 − g2
2 −

1

3
�2

2,
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q =
1

27
�3�2�k

2 − 2�k
3 + �18g2

2 − 9G1
2 + 3�2

2��k − 2�2
3 − 9G1

2�2

− 9g2
2�2� .

For a nonzero eigenvalue �k
�i�, the polariton operators can be

defined as

Pk
�i� =

1

ri
� G1

�k
�i� − �k

ak + Ak +
g2

�k
�i�Ck� , �21�

where

ri =
 �G1�2

��k
�i� − �k�2

+ 1 +
�g2�2

��k
�i��2

. �22�

When the detunings approximately satisfy the resonance
transition condition so that �k=0 for some k, the dark-state
polariton can be constructed as an eigenstate with vanishing
eigenvalue. For concreteness, we first consider the case with
the detuning �2=�1=0, which means that the probe light and
the classical field are resonant with the �-type atoms in each
cavity. The polariton operators at the band center k=k0
=	 / �2� � can be constructed as

Pk0

�1� =
1

2

�Ak0
− Bk0

� , �23a�

Pk0

�2� = ak0
cos � − Ck0

sin � , �23b�

Pk0

�3� =
1

2

�Ak0
+ Bk0

� , �23c�

with tan �=G1 /g2, and

Bk0
= ak0

cos � + Ck0
sin � . �24�

Here, Pk0

�2� is the dark-state polariton �DSP�, which traps the
electromagnetic radiation from the excited state due to quan-
tum interference canceling; Bk0

is called the bright-state po-
lariton �26�.

For another case, we assume that, in each cavity, the fre-
quency of the probe light �0 has a nonzero detuning from the
transition frequency �ab, i.e., �1=��0. By adjusting the fre-
quency of the classical field, �2=� can be realized, and then
the condition �k=0 is satisfied at the band center. So the
dark-state polariton exists. With the polariton operators

Qk0

�1� = ��G1ak0
+

� − �

2
Ak0

+ g2Ck0
� , �25a�

Qk0

�2� = ak0
cos � − Ck0

sin � , �25b�

Qk0

�3� = ��G1ak0
+

� + �

2
Ak0

+ g2Ck0
� , �25c�

for

� = 
2/�� − ��� ,

the interaction Hamiltonian Vk0
is diagonalized. Here,

� = 
�2 + 4G1
2 + 4g2

2, �26�

the DSP Qk0

�2� is the specific light-matter dressed states, which
particularly appears in EIT.

Actually, for a probe light with nonzero detuning �1 and
small band around k=k1 �k1�k0�, by adjusting the detuning
�2 to satisfy �k1

=0, at the model k=k1, we can also construct
the polariton operators similar to those of Eq. �25� with �2
replacing � and k1 replacing k0.

V. BAND STRUCTURE OF POLARITONS

From the above discussion, it can be observed that the
spectra of the hybrid system consists of three bands, and
there exists gaps among these three bands for a nonvanishing
G1 and g2. Since the number of total excitations

Nk = ak
†ak + Ak

†Ak + Ck
†Ck �27�

commutes with Vk, the number of excitation Nk is conserved,
while the numbers ak

†ak, Ak
†Ak, and Ck

†Ck of different type
excitations are mutually convertible by adjusting some pa-
rameters. In Fig. 3 we plot the eigenfrequencies as a function
of the wave vector k in the one excitation subspace. It can be
seen from Figs. 3�a� and 3�b� that the bandwidth can be
tuned by adjusting the detuning �2 and the coupling strength
g2. For a fixed coupling strength g2, when �2�−�g2�, the
lowest band �the red dashed line� has a large bandwidth,
which ensures the accommodation of the bandwidth of the
entire pulse; when �2� �g2�, the bandwidth of the lowest
band W0�0. Hence, for a light pulse that is a superposition
of many k states, its distribution in the k space can be en-
tirely contained in the photonic band of the CROW by set-
ting �2�−�g2�. By adiabatically tuning the detuning from
�2�−�g2� to �2� �g2�, the light pulse can be stopped. Such an
approach to stopping light with an all-optical process has

(a) ( )b

( )c ( )d

FIG. 3. �Color online� The band structure at the first excitation
space. Here the eigenfrequency is plotted as a function of the wave
vector k. We have set J=−1. The other parameters are set as fol-
lows: �1=0, �a� �2=3 �J�, G1=0.1J, g2=1.0 �J�. �b� �2=−3 �J�, G1

=0.1J, g2=1.0 �J�. �c� �2=0, G1=0.1 �J�, g2=3 �J�. �d� �2=0, G1

= �J�, g2=0.1 �J�. The wave vector k is in units of 1 /�.
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been investigated theoretically by numerical simulations
�7–9� and a similar all-optical scheme has already been real-
ized in a recent experiment �5�.

When the light pulse enters the medium, photons and at-
oms combine to form excitations known as polaritons. Be-
cause the spin wave propagates together with the light pulse
inside the medium, the group velocity of the light pulse is
reduced by a large order of magnitude. Thus, by analyzing
the contribution of photons to the polaritons, it can be well
understood that the group velocity of the probe field is
stopped and revived. For the sake of simplicity, firstly, we
focus on the polaritons at the band center and consider the
situation with the resonance transition. The operators of po-
laritons are the linear combination of that of photons and
atoms with the following form:

Pk0

�1� =
1

2

�Ak0
− ak0

cos � − Ck0
sin �� , �28a�

Pk0

�2� = ak0
cos � − Ck0

sin � , �28b�

Pk0

�3� =
1

2

�Ak0
+ ak0

cos � + Ck0
sin �� , �28c�

where

cos � =
g2


g2
2 + G1

2
, �29�

sin � =
G1


g2
2 + G1

2
. �30�

The contribution of photons to dark polaritons can be ex-
plicitly analyzed. It can be obtained that the dark polariton
appears like photons with probability approximately to one
when g2�G1, that is, Pk0

�2��ak0
. Thus, if we initially set g2

�G1, this means the middle band can accommodate many
components of the input pulse. It is easy to find that when
g2�G1, the contribution of photons in the polariton becomes
purely atomic; that is, Pk0

�2��Ck0
. Thus, when the pulse is

completely in the system, the adiabatical performance
changes the dark polariton from photons to atoms and vice
versa. A similar situation can be found at the second band
under the two-photon resonance from Eq. �25�.

In order to give a general argument, we plot the coeffi-
cients before ak, Ak, and Ck in the polaritons as functions of
the momentum index k, respectively, in Fig. 4. For the con-
venience of expression, we denote djk

�i� �j=1,2 ,3� as the co-
efficients before the operators ak, Ak, and Ck for different
eigenvalues i=1,2 ,3, respectively. From Eq. �21�, the ex-
pression of djk

�i� can be obtained as follows:

d1k
�i� =

1

ri

G1

�k
�i� − �k

,

d2k
�i� =

1

ri
,

d3k
�i� =

1

ri

g2

�k
�i� . �31�

In each figure, the red dashed line represents the magnitude
d2k

�i� of spin waves generated by the atomic transition between
�b� and �f�; the blue solid line denotes the amplitude d3k

�i� of
spin waves between �b� and �c�; and the black dash-dotted
line describes the magnitude d1k

�i� of the photonic component.
It can be observed that for the incident pulse with momen-
tum distribution around k=	 / �2� �, photons make a larger
contribution to the polaritons at G1�g2 than at the condition
G1�g2. The contribution of photons in the polariton of the
second band, shown in Figs. 4�c� and 4�d�, is modified com-
pletely by the coupling strength of light and matter: spin
waves Ck take large proportions when G1�g2 and photons
ak have large contributions when G1�g2. Hence, the second
band can be used to convert the quantum information origi-
nally carried by photons into long-lived spin states of atoms.

The characteristic of our hybrid system is that the “dark
state” can be realized in a straightforward way. This gives
rise to quasiparticles—the dark polariton, which reflects the
crucial idea of the EIT—the coherent population trapping for
the quantized probe field. Actually, a DSP is an atomic col-
lective excitation �quasispin wave� dressed by the quantized
probe light. This point can be seen directly from Eq. �25b�.
The contributions of light or atoms in DSP can be varied by
adapting the amplitude of the classical field, which has been
discussed in the last paragraph. Thus, in our hybrid system,
the DSP offers a possible control scheme for slowing light.
This accessible scheme can be observed from the change of
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FIG. 4. �Color online� The contribution of photons and two spin
waves in the polaritons djk as functions of k for the first eigenfre-
quency �k

�1� �a� and �b�; the second eigenfrequency �k
�2� �c� and �d�,

and the third eigenfrequency �k
�3� �e� and �f�. �1=�2=0, J=−1. For

�a�, �c�, and �e�, we set G1= �J� and g2=0.1 �J�. For �b�, �d�, and �f�,
we set G1=0.1 �J� and g2=3 �J�. The wave vector k is in unit of 1 /�.
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bandwidth. In Figs. 3�c� and 3�d�, we plot the eigenfre-
quency as a function of the wave vector k in the first excita-
tion space for a given �2. It shows that, when g2�G1, the
bandwidth of the middle band �the blue solid line� has a large
bandwidth; when g2�G1, the bandwidth of the middle are
approximately to zero. The couplings also make the center of
bands away from �0, �ab, and �cb, respectively. This fact
means that by tuning the coupling strength from g2�G1 to
g2�G1 adiabatically, we can stop the input light pulse and
then reemit it. Thus, via selecting a classical field with a
suitable frequency, the quantum state of an input pulse can
be converted into the doped three-level atoms simply by
switching off the driving field, and then by turning on the
driving field, the stored information can be retrieved.

To give a concrete example, we consider the resonant
transition with �1=�2=0. In this case, the corresponding
group velocities at each band center are

vg
1�k0� =

G1
2

G1
2 + g2

2J � , �32�

vg
2�k0� =

2g2
2

G1
2 + g2

2J � , �33�

vg
3�k0� =

G1
2

G1
2 + g2

2J � . �34�

It can be seen that, at the band center, when g2�G1, the
lowest band �the red dashed line in Figs. 3�c� and 3�d�� and
the highest band �the black dash-dotted line in Figs. 3�c� and
3�d�� exhibit zero group velocity and zero bandwidth, but the
middle band �the blue solid one in Figs. 3�c� and 3�d�� ex-
hibits a large group velocity and a large bandwidth; in re-
verse, when g2�G1, the middle band exhibits zero group
velocity and vanishing bandwidth, but the lowest band and
the highest band exhibit large group velocities and large
bandwidths. Hence, in this system, focusing on the middle
band, a light pulse can be stopped by the following process:
Initially setting g2�G1, the middle band accommodates the
entire pulse. After the pulse is completely in this system, we
vary the coupling strength until g2�G1 adiabatically. The
lowest band also can be used to stop light by tuning g2 from
g2�G1 to g2�G1.

Finally, we give some estimation about the group velocity
according to the realistic parameters, which are taken for the
array of coupled toroidal microcavities �12,22�. The distance
� between the microcavities is 15.69 �m �5�, and the eva-
nescent coupling between the cavities is J=1.1�107 s−1.
Within each cavity, the coupling strength between the atom
and the quantum fields is g1=2.5�109 s−1, and the Rabi fre-
quency is g2=7.9�1010 s−1. When N=10 000 atoms are
contained in each cavity, the group velocity of light at the
second band center is estimated at 31 m/s.

VI. SUSCEPTIBILITY ANALYSIS FOR LIGHT
PROPAGATION IN THE DOPED CROW

When a light beam incidents on an optically active me-
dium, the medium will give a response to the control light.

Usually, the index of refraction can reach high values near a
transition resonance, but the high dispersion always accom-
panies a high absorption in the resonance point. In EIT, the
resonant transition or the two-photon resonance renders a
medium transparent over a narrow spectral range within the
absorption line. Also in this transparent window, the rapidly
varying dispersion is created, which leads to very slow group
velocity and zero group velocity. In this section, we will
investigate the dispersion and the absorption property of the
gapped light in our hybrid system. We use the dynamic al-
gebraic method developed for the atomic ensemble based
quantum memory with EIT �26,27�.

We begin with the Hamiltonian �17� in the k-space repre-
sentation. When the atomic decay is considered, we write
down the Heisenberg equations of operators ak, Ak, and Ck
for each mode k,

�tak = − �� + i�k�ak − iG1Ak, �35�

�tAk = − ��A + i�2�Ak − iG1ak − ig2Ck, �36�

�tCk = − �CCk − ig2Ak, �37�

where we have phenomenologically introduced the damping
rate of cavity �, and the decay rate �A ,�C of the energy
levels �f� and �c� of the three-level system, respectively. We
also assume that

�A � �C � � .

To find the steady-state solution for the above motion
equations, it is convenient to remove the fast varying part of
the light field and the atomic collective excitations by mak-
ing a transformation

Fk = F̃ke
−i�kt �38�

for Fk=ak, Ak, and Ck. For the convenience of notation, we
drop the tilde, and then the above Heisenberg equations be-
come

�tCk = �i�k − �C�Ck − ig2Ak,

�tAk = �i��k − �1� − �A�Ak − iG1ak − ig2Ck, �39�

where �k=2J cos�k� �.
The electric field of the quantized probe light with k-space

representation

Ek�t� =
 �0

2V�0
ake

−i�kt + H.c. �40�

results in a linear response of medium, which is described by
the polarization

	Pk� = 	pk�exp�− i�k� + H.c.

Here,

	pk� =
�

V

NA	Ak� �41�

is a slowly varying complex polarization determined by the
population distribution on �f� and �c�; � denotes the dipole
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moment between �f� and �c�, and V is the effective mode
volume �28�. It is also related to the susceptibility �k of the k
space by

	pk� = �0�k
 �0

2V�0
	ak� . �42�

The real part �k
r and imaginary part �k

i of the susceptibility
correspond to the dispersion and absorption, respectively.

In order to calculate the susceptibility, we first find the
steady-state solution by letting �tAk=0 and �tCk=0 in Eq.
�39�. The expectation value of Ak over a stable state is ex-
plicitly obtained as

	Ak� =
iG1�i��k + �� − �C�

�i��k − �1� − �A��i��k + �� − �C� + g2
2 	ak� , �43�

where �=�2−�1. Since the coupling coefficient

g1 = − �
 �0

2V�0
,

the real part �k
r and imaginary part �k

i of the linear complex
susceptibility �k are obtained as

�k
r = F��kg2

2 − ��k − �1���C
2 + �k

2��L�k�,

�k
i = F��k

2�A + ��A�C + g2
2��C�L�k� , �44�

where

L�k�−1 = ��A�C + g2
2 − �k��k − �2��2 + ��k�A + ��k − �2��C�2,

�45�

and F=2G1
2 /�0.

Since the susceptibility depends on k, in Fig. 5 the real
and imaginary susceptibilities �k

r, �k
i are plotted versus the

detuning difference �=�2−�1 in units of �A ��A=103�C�,
where we assume that the central frequency of light pulse is
at k=	 /4�.

It is observed that, when the detuning �1 ,�2 satisfy �k
=0, that is, the two-photon resonance is satisfied, both the
real and imaginary susceptibilities vanish, the absorption is
absent, and the index of refraction is unity. Thus the whole
system becomes transparent under the driving of the strong
classical control field. Through Eq. �18�, we obtain that the
momentum index k together with the nearest-neighbor eva-
nescent coupling strength J determine the range where the
transparency window occurs. The width of the transparency
window depends on the control field Rabi frequency g2,
which is shown by comparing Figs. 5�a� and 5�b�.

Finally, to consider the role of the intercavity coupling J,
we plot the real �solid line� and the imaginary �dashed line�
part of the susceptibility as a function of the intercavity cou-
pling strength J, shown in Fig. 6. It can be observed that
when the incident pulse is center at k=	 / �2� �, the suscep-
tibility is independent of J �see Fig. 6�f��; for the input pulse
centered at k=	 / �4� �, in the vicinity of a frequency corre-
sponding to the two-photon Raman resonances, the medium
made of atoms becomes transparency with respect to the in-
put pulse within the photonic band. By comparing Figs. 6�a�
and 6�b�, it can be found that the detuning difference � de-

( )a ( )b

( )c ( )d

( )e ( )f

FIG. 5. Real �solid� and imaginary �dotted� parts of the linear
susceptibility as a function of normalized detuning � at k=	 /4. The
parameters are set as G1=1, J=0.2, �=1. �a� g2=0.5, �2=0; �b�
g2=2, �2=0; �c� g2=0.5, �2=1; �d� g2=0.5, �2=−1; �e� g2=0.5,
�2=2; �f� g2=0.5, �2=−2. � is in units of �A=1.

( )a ( )b

( )c ( )d

( )e ( )f

FIG. 6. Real �solid� and imaginary �dotted� parts of the linear
susceptibility as a function of the intercavity coupling strength J.
The parameters are set as G1=1, �=1. �a� g2=0.5, �2=0, �=1, and
k=	 /4; �b� g2=2, �2=0, �=−1, and k=	 /4; �c� g2=0.5, �2=1, �
=1, and k=	 /4; �d� g2=0.5, �2=−1, �=−1, and k=	 /4; �e� g2

=0.5, �2=2, �=1, and k=	 /4; �f� g2=0.5, �2=0, �=1, and k
=	 /2. J is in units of �A=1.
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termines the position where the transparency window occurs,
and the intensity of the control beam decides the width of the
transparency window; it can also be observed from Figs. 5
and 6 that the larger the detuning ��2� is, the broader trans-
parency window the spectra of this system has.

VII. CONCLUSION AND REMARKS

We have studied a hybrid system, which consists of N
homogeneously coupled resonators with three-level �-type
atoms doped in each cavity. The electromagnetically induced
transparency �EIT� effect can enhance the ability for coher-
ent manipulations on the photon propagation in the CROW,
namely, the photon transmission along the CROW can be
well controlled by the amplitude of the driving field. With
these results, it is expected that the quantum information
encoded in the input pulse can be stored and retrieved by
adiabatically tuning g2 from g2�G1 to g2�G1.

Also it can be seen that our hybrid architecture possesses
more controllable parameters for transferring photons in an
array of coupled cavities: two coupling strength g1 ,g2 and

two detunings. Typically, in two-photon resonance, the light
can be stopped only by controlling the amplitude of the clas-
sical field. In comparison with our scheme, the all-optical
architecture with the passive optical resonator �7� only has
two controllable parameters, the coupling strength between
the side-coupled cavity and each of the CROW and the de-
tuning between resonance frequency of side-coupled cavity
and that of cavity, which constitute the CROW. On the other
hand, the standard EIT approach only uses the single “cav-
ity” and thus there is not a controllable photonic band struc-
ture. The on-chip periodic structure used here actually can
implement the EIT manipulation for photonic storage in the
periodic lattice fixing atoms spatially �26�.
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