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We study the dynamical process of disentanglement of two qubits and two qutrits coupled to an Ising spin
chain in a transverse field, which exhibits a quantum phase transition. We use the concurrence and negativity
to quantify entanglement of two qubits and two qutrits, respectively. Explicit connections between the concur-
rence �negativity� and the decoherence factors are given for two initial states, the pure maximally entangled
state and the mixed Werner state. We find that the concurrence and negativity decay exponentially with fourth
power of time in the vicinity of the critical point of the environmental system.
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I. INTRODUCTION

Entanglement is one of the most essential features in
quantum mechanics �1� and in recent decades has been the
focus for people in many fields of physics. Motivated by the
progress of quantum information, entanglement has become
a basic resource in quantum technologies such as quantum
teleportation and quantum cryptography �2–4�. On the other
hand, generally a realistic system is surrounded by an envi-
ronment. The coupling between a quantum system and its
environment leads to decoherence of the system. Thus, it is
natural for us to consider the process of degradation of en-
tanglement due to decoherence. More recently, Yu and
Eberly �5� showed that two entangled qubits become com-
pletely disentangled in a finite time under the influence of
pure vacuum noise. Surprisingly, they found that the behav-
iors of local decoherence is different from spontaneous dis-
entanglement. The decoherence effects take an infinite time
evolution under the influence of vacuum while the entangle-
ment vanishes suddenly in finite time. Some other research-
ers have investigated the process of disentanglement in the
open quantum systems �6–9�. The problem of decoherence
from spin environments was studied by Cucchietti et al. �10�,
who considered spin environments consisting of N indepen-
dent spins.

In most of the previous studies, uncorrelated environ-
ments were usually considered, and modeled by a reservoir
consisting of harmonic oscillators. Although a collection of
harmonic oscillators is a well approximated model to repre-
sent the environment weakly coupled to a system, however,
in the practical situation, particles in the environment may
have interactions with each other. Consequently, a problem
comes out: How does the entanglement evolve in a corre-
lated environment? In this paper, we consider this problem
and choose a correlated spin chain, the Ising model in a
transverse field, as the surrounding system. Moreover, this
surrounding system displays quantum phase transition �QPT�

at some critical point and thus possesses dynamic hypersen-
sitivity with respect to the perturbation even induced by a
single qubit �11�.

As a quantum critical phenomenon, QPT happens at zero
temperature, at which the thermal fluctuations vanish. Thus,
QPT is driven only by quantum fluctuation. At the critical
point there usually exists degeneracy between the energy lev-
els of the systems when QPT happens. Therefore, it can be
excepted that, when we study the dynamic evolution of the
system coupled to a environment with QPT, some special
dynamic features will appear at the critical point. Quan et al.
�11� have studied the decoherence induced by the correlated
environment. It was shown that at the critical point of a QPT
the decoherence is enhanced. Following this work, Cucchi-
etti et al. �12� discovered that the decoherence induced by
the critical environment possesses some universality with the
Boson-Hubbard model as an illustration.

Now, we consider two spins coupled to the Ising spin
chain in a transverse field to reveal the effect of the corre-
lated environment on the dynamic evolution of the two-spin
entanglement. We will study different cases including two
qubits and qutrits. Moreover, we will consider cases where
the two spins initially start from a pure maximally entangled
state and a mixed Werner state �13�. The “sudden death” of
entanglement is found to be a quite common phenomenon.

This paper is organized as follows. In Sec. II, we intro-
duce the model of two-spin system coupled to Ising spin
chain with a transverse field. By exactly diagonalizing the
Hamiltonian, we give an expression of the time evolution
operator. In Sec. III, the analytical results of the concurrence
�14� of the two qubits are calculated to show the dynamics of
entanglement. Numerical results are also given to illustrate
the details of the dynamical behaviors of entanglement. In
Sec. IV, two qutrits are coupled to the Ising spin chain. The
analytical and numerical results of the negativity �15,16� are
given. We give conclusions in Sec. V.

II. MODEL HAMILTONIAN AND EVOLUTION
OPERATOR

We choose the engineered environment system to be an
Ising spin chain in a transverse field which displays a QPT.
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Two spins are transversely coupled to the chain. The corre-
sponding Hamiltonian reads

H = �
l=−M

M

�l
x�l+1

x + �� +
g

2
�s1z + s2z�� �

l=−M

M
�l

z

2
, �1�

where � characterizes the strength of the transverse field, g
denotes the coupling strength between the Ising chain and
the two spins, s1 and s2, �l

� ��=x ,y ,z� are the Pauli opera-
tors defined on the lth site, and the total number of spins in
the Ising chain is L=2M +1. The Ising model is the simplest
model which exhibits a QPT, and can be exactly calculated.

In order to diagonalize the Hamiltonian, we first notice
that �s1z+s2z ,�l

��=0, thus it is convenient to define an
operator-valued parameter

�̂ = � +
g

2
�s1z + s2z� , �2�

which is a conserved quantity. When we diagonalize the

Ising spin chain, the parameter �̂ can be treated as a c num-
ber with different values corresponding to the eigenvalues of
s1z+s2z in the two-spin subspace.

By combining Jordan-Wigner and Fourier transformations
with the momentum space �17�, the Hamiltonian can be writ-
ten as �18�

H = �
k�0

ei��k/2��kx��k�kz�e−i��k/2��kx + �−
�̂

2
+ 1	�0z, �3�

where we have used the following pseudospin operators
�k� ��=x ,y ,z�: �18�

�kx = dk
†d−k

† + d−kdk �k = 1,2, . . . M� ,

�ky = − idk
†d−k

† + id−kdk,

�kz = dk
†dk + d−k

† d−k − 1,

�0z = 2d0
†d0 − 1, �4�

and dk
† ,dk
k=0,1 ,2 , . . . � denote the fermionic creation and

annihilation operators in the momentum space, respectively.
Here,

�k = ��− �̂ + 2 cos�2	k/L��2 + 4 sin2�2	k/L� , �5�

�k = arcsin
− 2 sin�2	k

L
	

�k
� . �6�

From Eq. �3� and the units where 
=1, the time evolution
operator is obtained as

U�t� = e−i�−�̂/2+1��0zt�
k�0

ei��k/2��kxe−it�k�kze−i��k/2��kx. �7�

Explicitly knowning the evolution operator, we now consider
the entanglement dynamics of the two qubits and two qutrits.

III. DYNAMICAL DISENTANGLEMENT OF TWO QUBITS

A. The case with initial pure entangling state

We investigate the dynamic evolution of two-qubit en-
tanglement and assume that the two qubits initially start from
a maximally entangled state

��� =
1
�2

��00� + �11�� . �8�

Here, �0� and �1� denote the spin up and down, respectively.
The initial state of environment is assumed to be the vacuum
state in the momentum space, namely, ��E�= �0�k=0
�k�0�0�k�0�−k, and the vacuum state �0�k satisfies dk�0�k=0.
We may write a more general initial state of this composite
system as

�
�0�� = �a�00� + b�11�� � ��E� . �9�

From the evolution operator �7�, the state vector at time t is
given by

�
�t�� = a�00� � U0��E� + b�11� � U1��E� , �10�

where the unitary operator U0 and U1 can be obtained from

the unitary operator U�t� by replacing operator �̂ with num-
ber �+g /2 and �−g /2, respectively.

Tracing out the environment, in the basis spanned by

�00�,�11�,�01�,�10��, the reduced density matrix of the two-
spin system is obtained as

�1,2 = � �a�2 ab*F�t�
a*bF*�t� �b�2

	 � Z2�2, �11�

where F�t�= ��E�U1
†U0��E� is the decoherence factor, and

Z2�2 denotes the 2�2 zero matrix. Now, the concurrence
�14� of the reduced density matrix can be readily given by

C = 2�ab*F�t�� = C0�F�t�� , �12�

where C0 is the concurrence of the initial state. We see that
the concurrence is proportional to the norm of the decoher-
ence factor, and when the initial state is in a maximally en-
tangled state �8�, C= �F�t��, namely, the concurrence is equal
to the norm of the decoherence factor.

Let us consider the decoherence factor

F�t� = ��E�U1
†U0��E� = �

k�0
Fk, �13�

where Un �n=0,1� is generated from Hamiltonian Hn with

�̂=�n �a number�. From the unitary operator �7� and the
initial vacuum state, we obtain

�F�t�� = �
k�0


1 − �sin��k
�0�t�cos��k

�1�t�sin �k
�0�

− cos��k
�0�t�sin��k

�1�t�sin �k
�1��2

− sin2��k
�0�t�sin2��k

�1�t�sin2��k
�0� − �k

�1���1/2, �14�

where �k
�n� and �k

�n� are obtained by replacing �̂ with �n in
Eqs. �5� and �6�, respectively. Here, �0=�+g /2 and
�1=�−g /2. This is one of our main results. We see that the
zero mode �k=0� has no contribution to the decoherence
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factor. Clearly, every factor Fk is less than unit. So it can be
expected that in the large L limit, �F�t�� will go to zero under
some reasonable conditions.

By carrying out an analysis similar to Ref. �11�, we intro-
duce a cutoff number Kc and define the partial product for
the decoherence factor

�F�t��c = �
k�0

Kc

Fk � �F�t�� , �15�

from which the corresponding partial sum

S�t� = ln �F�t��c � − �
k�0

Kc

�ln Fk� . �16�

For the case of small k and large L, we have �k
�n���2−�n�,

consequently

sin2��k
�0� − �k

�1�� �
16k2	2��0 − �1�2

L2�2 − �0�2�2 − �1�2 . �17�

As a result, if L is large enough and �0−�1 is very small
perturbation the approximation of S can be obtained as

S�t� � − 2E�Kc��2 − �0�−2�2 − �1�−2

�
��0 − �1�2 sin2��2 − �0�t�sin2��2 − �1�t�

+ �sin��2 − �0�t�cos��2 − �1�t��2 − �1�

− sin��2 − �1�t�cos��2 − �0�t��2 − �0��2� , �18�

where

E�Kc� = 4	2Kc�Kc + 1��2Kc + 1�/�6L2� . �19�

In the derivation of the above equation, we have used
ln�1−x��−x for small x and �k=1

n k2=n�n+1��2n+1� /6.
For our two-qubit case, �0=�+g /2, �1=�−g /2. When

�→2, and with a proper small g we have

�F�t��c � e−�t4 �20�

with �=2E�Kc�g2. Notice that �F�t��c is larger than �F�t��
=C. Therefore, from the above heuristic analysis we may
expect that when the parameter � is adjusted to the vicinity
of the critical point �c=2, the concurrence �or the decoher-
ence factor� will exponentially decay with the fourth power
of time. Moreover, for short times, from Eq. �14�, the con-
currence becomes

C � e−�t4 �21�

with �=1/2�k�0sin2��k
�0�−�k

�1����k
�0��2��k

�1��2.
Now we resort to a numerical analysis of the dynamical

sensitivity and the concurrence decay. In Figs. 1�a� and 1�b�,
we plot the concurrence versus time for different �. We
find that in the vicinity of the critical point about
�� �2−0.3,2+0.3�, concurrence decays monotonously with
time. Extending the time range, however, does not affect the
concurrence. Figure 1�a� shows the cases of ��2. We can
see that concurrence for the case �=2 decays more rapidly
than other cases. It should be noted that the dynamics of the
two-qubit entanglement in Eq. �12� is absolutely determined

by the decoherence factor in Eq. �14�. Thus from a theoreti-
cal point of view, the complete disentanglement cannot be
realized in a finite time. When parameter � becomes larger
than �c, �g=3, 4 and 5�, the numerical results of the concur-
rence are shown in Fig. 1�b�. The concurrence oscillates with
time, and collapses and revivals are observed. This is in con-
trast to the case of small �, where no revivals are found.

The surrounding system displays a QPT near the critical
point and a competition exists between different order ten-
dencies �17�. From another point of view, near the critical
point quantum chaotic behaviors may emerge �19�. For a
system with quantum chaos, though it is prepared in an iden-
tical initial state, two slightly different interactions can lead
to two quite different quantum evolutions. In our system the
decoherence factor can act as a fidelity and quantify the dif-
ference between the two states which are produced through
two different evolutions. Decay of the fidelity can indicate
the presence of quantum chaos �20�, and the monotonous
decay of the decoherence factor �concurrence� at the critical
point may be considered as a signature of quantum chaos.

In Fig. 2, for weak coupling g=0.1 and �=4, the oscilla-
tion of concurrence is suppressed by enlarging the size of the
environment. The larger environment prevents the revival of
entanglement. In the short-time region, we can see that the
larger size of the environment will accelerate the monoto-
nous decay of concurrence. From Eq. �14�, each factor Fk is
smaller than 1, thus it is reasonable to conclude that the large
size of the environment will more effectively suppress the
factor F�t�, and consequently suppress the concurrence.

In Fig. 3, we consider the effects of coupling g on the
dynamics of entanglement. At the critical point �=2, we ad-
just g from a small one g=0.1 to a strong one g=100. It can
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FIG. 1. �a� Concurrence versus time t with different � in the
case of weak coupling strength g=0.1. The size of the environment
is L=300. �b� shows the cases of larger �.
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FIG. 2. Concurrence versus time with different environment size
L=200, 600, and 1000. The transverse field �=4, and the coupling
strength g=0.1.
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be found that when we properly enlarge the coupling, e.g.,
g=1, the concurrence decays more sharply than the case g
=0.1. However, when we continue enlarging the coupling to
about g�10, e.g., g=25, concurrence will oscillate quickly
and no longer decays monotonously to zero. For the case of
very large coupling g=100, concurrence behaves as a weak
oscillation near the initial value of C=1. It can be expected
that up to the strong coupling limit of g, the concurrence will
stay at C=1 without changing with time. The above behav-
iors remind us of the quantum Zeno effects in the process of
quantum measurement �21�. The phenomenon shown in Fig.
3 is similar to the decay probability which can be suppressed
by the increasing coupling between system and measuring
apparatus in quantum Zeno effects.

B. The case of mixed state

Now, we study the dynamics of disentanglement of mixed
entangled state and assume that the two qubits are initially in
a Werner state �13� which is given by

�s = P������ +
1 − P

4
I4�4, �22�

where ��� is the maximally entangled state given by Eq. �8�,
the parameter P� �0,1�, and I4�4 denotes a 4�4 identity
matrix. This state is a mixed state except for the extreme case
of P=1. Only when P�1/3, is the Werner state �s en-
tangled.

We assume the initial state of the whole system �tot in a
direct product form

�tot = �s � ��E���E� , �23�

where ��E� is the initial state of the environment. After the
time evolution, we can obtain the reduce density matrix of
the two-qubit system in the basis spanned by 
�00�, �11�, �01�,
�10�� as follows:

�1,2 =
1

2�
1 + P

2
PF�t�

PF*�t�
1 + P

2
� � �1 − P

4
	I2�2, �24�

where the decoherence factor F�t� is the same as Eq. �14�.
From Eq. �24�, the concurrence is derived as

C = max�0,P��F� +
1

2
	 −

1

2
� . �25�

When P=1, it reduces to Eq. �12� for the pure maximally
entangled state. While in the region 1/3� P�1, the concur-
rence vanishes when the decoherence factor

�F� � �P−1 − 1�/2. �26�

Thus there exists a finite disentanglement time td, after which
the entanglement is zero. According to the results of heuristic
analysis in Eq. �20�, �F�t��c�e−�t4, in the condition of weak
coupling and �→2, we can approximately give the disen-
tanglement time

td = � 1

�
ln

2P

1 − P
	1/4

. �27�

Then, the disentanglement time increases as the probability
P increases from 1/3 to 1.

In Fig. 4, we also numerically calculate the concurrence
versus time for different probabilities. For the mixed states
corresponding to P=0.5 and 0.7, the disentanglement pro-
cess takes only a finite time, while for the pure state case
�P=1�, disentanglement is only completed asymptotically,
and will take an infinite time. Numerical results are consis-
tent with the above analytical results that the disentangle-
ment time increases with the increase of P.

IV. DYNAMICAL ENTANGLEMENT EVOLUTION OF
TWO QUTRITS

Now, we consider the case of two qutrits and use the
negativity �15� to quantify entanglement. For the systems
with spin larger than 1/2, a nonentangled state necessarily
has a positive partial transpose �PPT� according to the Peres-
Horodecki criterion �15�. In the case of two spin halves, and
the case of �1/2 ,1� mixed spins, a PPT is also sufficient.
Vidal and Werner �16� developed the Peres-Horodecki crite-
rion and presented a measure of entanglement called nega-
tivity that can be computed efficiently, and the negativity
does not increase under local manipulations of the system.
The negativity of a state � is defined as

N��� = �
i

��i� , �28�

where �i is the negative eigenvalue of �T2 and T2 denotes the
partial transpose with respect to the second subsystem. If
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FIG. 3. Concurrence versus time at the critical point �=2 with
different coupling strength g.
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FIG. 4. Concurrence versus time at the critical point �=2 and
coupling strength g=0.1 for parameters P=0.5, 0.7, and 1.
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N�0, then the two-spin state is entangled. The negativity
has been used to characterize the entanglement in a large
spin system very well �22–24�. By means of negativity,
Derkacz et al. have also studied the process of disentangle-
ment in a pair of three-level atoms interacting with the
vacuum �8�.

A. The case with initial pure state

Similar to the study of the two-qubit case, we write a
general initial state of the many-body system as

�
�0�� = �a�00� + b�11� + c�22�� � ��E� , �29�

where �0�, �1�, �2� denote the spin-one state with magnetic
quantum number 1, 0, −1, respectively. From the evolution
operator �7�, the state vector at time t is given by

�
�t�� = a�00� � U0��E� + b�11� � U1��E� + c�22� � U2��E� ,

�30�

where the unitary operator U0, U1, and U2 are obtained from

the unitary operator U�t� by replacing operator �̂ with num-
bers �+g, �, and �−g, respectively.

In the basis spanned by 
�00�, �11�, �22�, �01�, �10�, �02�,
�20�, �12�, �21��, the reduced density matrix of the two-qutrit
system is

�1,2 = � �a�2 ab*F1�t� ac*F2�t�
a*bF1

*�t� �b�2 bc*F3�t�
a*cF2

*�t� b*cF3
*�t� �c�2

� � Z2�2 � Z2�2

� Z2�2, �31�

where

F1�t� = ��E�U1
†U0��E� ,

F2�t� = ��E�U2
†U0��E� ,

F3�t� = ��E�U2
†U1��E� �32�

are the decoherence factors.
The partial transpose with respect to the second system

gives

�1,2
T2 = diag��a�2, �b�2, �c�2� � B1 � B2 � B3, �33�

where the three 2�2 matrices

B1 = � 0 ab*F1�t�
a*bF1

*�t� 0
	 ,

B2 = � 0 ac*F2�t�
a*cF2

*�t� 0
	 ,

B3 = � 0 bc*F3�t�
b*cF3

*�t� 0
	 . �34�

Then, from the above matrix �1,2
T2 , one can obtain the nega-

tivity as

N = �ab*F1�t�� + �ac*F2�t�� + �bc*F3�t�� . �35�

For the maximally entangled state, a=b=c=1/�3, and the
negativity simplifies to

N =
1

3
��F1�t�� + �F2�t�� + �F3�t��� . �36�

From the above equation, we can find the negativity is a
linear combination of three decoherence factors. Also with
the vacuum state of environment, the decoherence factors
�F��t��= ��E�Uj

†Ui��E� are given by Eq. �14� by the replace-
ments �k

�0�→�k
�i�, �k

�1�→�k
�j�, �k

�0�→�k
�i�, �k

�1�→�k
�j�. Here,

F��t� denotes the three factors F1�t�, F2�t�, and F3�t�. Uj
†Ui

correspond to U1
†U0, U2

†U0, and U2
†U1 in the three factors Eq.

�32�. The parameters �k
�n� and �k

�n� �n=0,1 ,2� can be ob-
tained by substituting �0=�+g, �1=�, and �2=�−g into
Eqs. �5� and �6�.

During the similar analysis in the case of two qubits, we
can also introduce the cutoff number Kc and define the partial
product for the three decoherence factors. Through the small
k approximation, we can obtain the three partial sums corre-
sponding to the three factors. Therefore, under the condition
of weak coupling g and �→2, in a finite time the three
factors F1�t�, F2�t�, and F3�t� will decay exponentially with
time in a similar form as Eq. �20�.

We numerically calculate the dynamics of negativity. In
Fig. 5�a�, it shows phenomena similar to that in Fig. 1�a�.
When the coupling g is weak and �→2, the dynamical be-
haviors of the three decoherence factors in negativity �36�
are nearly identical. Each of the factors decay with time just
as in Eq. �20�, thus it can be understood that negativity also
decays monotonously with time in the vicinity of �=2. In
Fig. 5�b�, we consider the cases of larger couplings. Compar-
ing it with Fig. 1�b�, the behavior of negativity is different
than concurrence. More revivals are found in the behavior of
the negativity, and they result from the linear superposition
of the three decoherence factors.

In Fig. 6, we numerically study the effects of different
couplings g on the dynamics of negativity. Similar to the
dynamic behaviors of the concurrence. With a properly large
coupling such as g=1, the decay of negativity will be much
sharper. However, very strong coupling �g=15� will make
negativity oscillate rapidly. To the strong coupling limit case
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FIG. 5. �a� Negativity versus time with different cases of �
=0.1, 1, and 2. The coupling g=0.1 and the size of environment
L=300. �b� shows the cases of �=3, 4, and 5. The highest one
�solid line with up triangles� corresponds to the case �=5 and the
lowest one �dashed line with points� corresponds to �=3.
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of g=100, negativity decays from the initial value N=1 to a
steady value 1/3, which is different than the concurrence of
the two qubits. Let us carry out the approximate analysis just
as in the case of two qubits. We can obtain three partial sums
S1, S2, and S3, corresponding to the three decoherence factors
in Eq. �32�, which are similar to Eq. �18�. When g→� and
�→2, we have S2→0 and S1=S3�−2E�Kc�t2, where E�Kc�
is in Eq. �19�, thus negativity will decay sharply to a steady
value of 1 /3. We can see that different dynamic properties of
the factors cause the behaviors of negativity shown in Fig. 6
is different than the concurrence in Fig. 3.

B. The case of mixed state

We then consider the mixed state, namely, the two-qutrit
Werner state

�s = P������ +
1 − P

9
I9�9, �37�

where ��� is the maximally entangled state of two qutrits and
���= ��00�+ �11�+ �22�� /�3. Assume that the whole system is
initially in �tot=�s � ��E���E�. After time evolution operator
in Eq. �7�, we can obtain the reduced density matrix of the
two qutrits at arbitrary time t. Then, we make the partial
transpose with respect to the second system on the reduced
density matrix, and obtain

�1,2
T2 =

1

9
diag�1 + 2P,1 + 2P,1 + 2P� � B1 � B2 � B3,

�38�

where the three 2�2 matrices

Bk =
1

3�
1 − P

3
PFk�t�

PFk
*�t�

1 − P

3
�, k = 
1,2,3� . �39�

From partially transposed reduced density matrix, the
negativity is given by

N =
1

3�
k=1

3

max�0,P��Fk�t�� +
1

3
	 −

1

3
� . �40�

Since �Fk�t���1, the existence of nonzero negativity needs
the parameter P satisfying the condition 1/4� P�1.
From the above equation, we can also see that the

disentanglement occurs only when all three factors satisfy
�Fk�t��� �P−1−1� /3.

Furthermore, we study the case where a d-dimensional
Werner state is the initial state. Thus we give the initial state
of the system as

�s =
P

d
�
i,j=0

d−1

�ii��j j� +
1 − P

d2 Id2�d2, �41�

where the basis vector �ii� is the eigenvector of sz=s1z+s2z
with the eigenvalue 2i+1−d. Then the initial state of the
whole system is also performed by a direct product form as
�tot=�s � ��E���E�. After a process similar to that described
above, we have the matrix �1,2

T2 denoting the reduce density
matrix after the partial transpose over the second subsystem
at time t, which is shown as

�1,2
T2 =

P

d
�
i,j=0

d−1

�ij��ji�Fi,j�t� +
1 − P

d2 Id2�d2

=
1

d2 diag�1 + �d − 1�P, . . . ,1 + �d − 1�P�d�d

� i�j
1

d�
1 − P

d
PFi,j�t�

PFi,j
* �t�

1 − P

d
� , �42�

where the decoherence factors Fi,j�t�= ��E�Uj
†Ui��E�, and

the corresponding time evolution operator Ui can be

obtained from Eq. �7� by replacing operator �̂ with value
�+g /2�2i+1−d�, respectively. It is apparent that we should
only focus on the 2�2 matrices and obtain the negativity as

N =
1

d
�
i�j

max�0,P��Fi,j�t�� +
1

d
	 −

1

d
� , �43�

from which we can see that negativity will completely vanish
when all the norms satisfy �Fi,j�t��� �P−1−1� /d simulta-
neously.

V. CONCLUSION

In summary, we have studied the dynamics of entangle-
ment in a pure dephasing system. By making use of the
concept of concurrence, we studied two qubits coupled to an
Ising spin chain in a transverse field. When the two qubits
initially start from a pure entangled state, we obtain analyti-
cal results of concurrence which are just simple products of
the initial concurrence C�0� and the decoherence factor F�t�.
Thus the dynamic properties of concurrence are absolutely
determined by the decoherence factor. Especially in the case
of weak coupling, the concurrence decays exponentially with
time when �→�c. Moreover, we found that the decay of the
decoherence factor is of the form exp�−�t4�, which is not a
Gaussian form similar to Refs. �11,12�. This is certainly due
to the initial state of the environment we have chosen.

Furthermore, when the two qubits are initially in the
Werner state, we have found that the complete disentangle-
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g=100

FIG. 6. Negativity versus time with different coupling strengths
g=0.1, 1, 15, and 100 at the critical point �c=2.
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ment takes place in a finite time just as the “sudden death” of
entanglement discovered in Ref. �5�. And due to the process
of spontaneous emission, the sudden death of entanglement
in Ref. �5� can occur in an arbitrary entangled state �pure or
mixed�. However, in our system with dephasing effects,
when the two entangled qubits are in a pure state, no such
phenomena exist.

We also considered two qutrits coupled to the Ising spin
chain. When the qutrits initially started from a pure state, we
obtained an expression of negativity which is a linear com-
bination of three decoherence factors. With weak coupling,
negativity also decays monotonously in the condition of
�→2. When the qutrits were initially in a Werner state, the
complete disentanglement could occur in a finite time, and

then the properties of negativity were the three decoherence
factors. Indeed, the correlated environment, especially when
QPT happens, greatly affects the decoherence and disen-
tanglement process. The entanglement decay in other envi-
ronments which displays a QPT �25�, or quantum chaos �26�
deserves further investigation.
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