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I. INTRODUCTION

Quantum control is essentially understood as a coherence-
preserving manipulation of a quantum system, which enables
a time evolution from an arbitrary initial state to an arbi-
trarily given target state �1–4�. Recently, quantum control
has attracted much attention due to its intrinsic relation to
quantum-information-processing algorithms �5�. It has been
demonstrated that the universality of quantum logic gates
can be well understood from the viewpoint of quantum con-
trollability �6�, and the tools of quantum coherent control
may be used to design protocols of quantum computing �7�.

In connection with the fundamental limit of quantum-
information processing in physics, we have developed an
indirect scheme for quantum control �8� where the controller
is a quantum system, and the operations of quantum control
are determined by the initial state of the quantum controller.
This scheme has an implied built-in feedback mechanism,
which enables the quantum controller to probe the status of
the controlled system and then to manipulate its instanta-
neous time evolution in a coherent process. However, due to
the quantum decoherence induced by the quantum control
itself, the quantum controllability is limited by some uncer-
tainty relations in the designed quantum control process. The
key point in this approach is that the controller itself needs to
be well controlled for the exact preparation of a proper initial
state. Now, this approach motivates us to generally investi-
gate indirect control in which a “quantized controller” �or
quantum accessor� interacts with the controlled system co-
herently, and a classical external field couples with the quan-
tum accessor only to fully control the quantum accessor.
From the physical point of view the indirect control is un-
doubtedly meaningful. Actually, in many physical situations
it is very difficult to control the state of a quantum system
directly, but it is easy to manipulate the state of a quantum
accessor and thus the state of the system via their fixed in-
teraction.

Quantum controllability has been well defined �5� and ex-
tensively studied �9�. For a finite-dimensional quantum sys-
tem the complete controllability is well established when the
coupling between the controlled system and external classi-
cal fields is under the dipole approximation �10,11�. From
these results, we observe that it is not difficult to design a
quantum accessor which can be well controlled to arrive at
an expected initial state. In fact, for the simple case where
both the controlled system and the quantum accessor are
spin-1 /2 particles, the controllability problem has been in-
vestigated most recently �12,13� in the spirit of Refs. �14,15�,
which consider quantum controllability in connection with
quantum measurement. We consider the problem of indirect
controllability of an arbitrary finite-dimensional quantum
system by coupling it to a quantum accessor, a fully control-
lable spin chain with nearest-neighbor �anisotropic� XY cou-
pling �see Fig. 1�.

In this paper we utilize the Lie algebra method to system-
atically study the controllability of the total system formed
by the controlled quantum system S and the quantum acces-
sor A with Hamiltonian H0=HS+HA+HSA. In the theoretical
framework of quantum control, it is assumed that the time
evolution of the total system can be externally controlled by
a family of additional steering fields �uj�t�� in a suitable pa-
rameter space through the control Hamiltonian

Hc = �
j

uj�t�Wj�a,s� . �1�

Here HS=HS�s� �HA=HA�a�� is the free Hamiltonian of
S �A� of variable s �a� defined on the Hilbert space VS �VA�
and the coupling Hamiltonian HSA=HSA�s ,a� between the
system S and the accessor A is generally defined on the
space VS � VA. The control operators Wj�a ,s� are usually de-
fined also on VS � VA.

Obviously, it is rather trivial to consider the controllability
of the total system of S and A when Wj�a ,s� depends on
both s and a, since this is essentially the conventional clas-
sical control problem of the composite quantum system of S
and A. But it is equally obvious that an important situation
will arise if Wj�a ,s� is constrained to the space of the acces-
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sor, namely, �sWj�a ,s�=0 or Wj�a ,s�=Wj�a�. This case is not
at all trivial: it suggests the possibility of controlling the
quantum system S through the control of the variables of the
quantum accessor. In fact, this situation is exactly what we
will probe in this paper.

We will prove that under some general conditions the con-
trol of A variables can indeed result in a complete quantum
control of the whole system and thus lead to an ideal control
of its subsystem, the original controlled quantum system S.
From the mathematical point of view, if the whole system is
ergodic in the whole Hilbert space VS � VA, then each state in
the subspace VS must be reachable by the subsystem S in the
same control process. Here we should point out that a broad
dynamical-algebraic framework has been presented, from
different motivations and approaches, for analyzing the
quantum control properties in terms of group representation
theory �16,17�.

In this paper, the first one of a proposed series on indirect
quantum control, we shall consider the indirect controllabil-
ity of an arbitrary N-energy-level quantum system �the qubit�
S through an accessor A modeled as a spin chain of XY type
with nearest-neighbor coupling. The controlled system S and
the accessor A are coupled constantly. We control the system
S by controlling each individual spin of the accessor through
a family of external classical fields. To the end of indirect
control of a quantum system through an accessor, we also
apply a constant classical field to excite the system to be
controlled. However, as we will discuss for the case of the
two-dimensional system �see Eq. �32��, such constant excita-
tion can be removed by rotating the controlled system. In the
terminology of group theory, this quantum control problem is
cased to the Lie group structure �18,19�

U�N�S � GA = U�N�S � U�2�1 � ¯ � U�2�M . �2�

The remaining part of this paper is organized as follows.
In Sec. II, we model the controlled system S and the accessor
A, and formulate the indirect control system. In Sec. III, we
systematically investigate the conditions concerning the
complete controllability of the indirect control system, in-
cluding the coupling between the system and the accessor. In
Secs. IV and V, we apply the general approach to two- and
three-dimensional cases, respectively. In addition, for two-
and three-dimensional systems, we will discuss more eco-
nomical indirect control. Finally, we make a short summary
and some remarks in Sec. VI.

II. INDIRECT QUANTUM CONTROL
WITH MULTIQUBIT ENCODING

First of all, let us point out that throughout this paper the
symbol i stands for the complex number �−1.

Let S be the N-level quantum system �or qudit� with en-
ergy levels 	j
 �j=1,2 , . . . ,n�, described by the Hamiltonian

HS = �
j=1

N

Ejejj . �3�

Here Ej is the eigenenergy and the projection operator ejk
= 	j
�k	 stands for the N�N matrix with the entries �ejk�lm

=� jl�km. Without losing generality, we suppose that the
Hamiltonian HS is traceless, namely, trHS=0 or � j=1

N Ej =0.
Our aim is to answer the question: Can we steer the system S
from an initial state to a target state through an intermediate
quantum system, the accessor A, and a family of classical
fields that control the accessor A only?

Intuitively, we need a high-dimensional accessor A to
control a high-dimensional controlled system. We will use a
qubit chain to implement this high-dimensional accessor A.
Suppose that A consists of M qubits coupled through
nearest-neighbor interaction with the Hamiltonian HA=HA

0

+HA�:

HA
0 = �

j=1

M

�� j�z
j, HA� = �

j=1

M−1

cj�x
j�x

j+1, �4�

where cj�0 is the coupling constant of the nearest-neighbor
interaction of qubits, 2�� j is the level spacing of the jth
qubit, and ��

j ��=x ,y ,z; j=1,2 , . . . ,M� is the Pauli matrix
�� of the jth qubit,

��
j = 1 � ¯ � 1 � �� � 1 � ¯ � 1. �5�

The Hamiltonian �4� describes the well-known Heisenberg
model with nearest-neighbor XY coupling and can be used to
simulate a quantum computer by appropriate coding �25�.
The setup of control system is schematically illustrated in
Fig. 2.

To control the system S through A, S has to be coupled to
A. We first excite the system S by applying a constant clas-
sical field on the system S via the dipole interaction

Accessor
Controlled

System

AV

SVA SV V⊗ (0)φ ( )tφ

Classical External Field

(a)

(b)

FIG. 1. �Color online� Illustration of indirect quantum control.
�a� An external field classically manipulates the quantum accessor
and then indirectly controls the quantum system coupling to the
accessor with a fixed interaction. �b� When each state in the total
Hilbert space VS � VA is reachable under the control via an external
classical field acting on the accessor only, each state in the Hilbert
space VS must be reachable. This enables complete controllability
for indirect control of the controlled system.
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HS� = �
j=1

N−1

djxj � 1A, �6�

where the dj’s are time-independent real coupling constants,
and the xj’s are the Hermitian operators defined as xj =ej,j+1
+ej+1,j. For later use we define xjk, yjk �1� j	k�N�, and hj

as follows:

xjk = ejk + ekj ,

yjk = i�ejk − ekj� ,

hj = ej,j − ej+1,j+1. �7�

Notice that xj =xj,j+1 by definition. For this reason, let us
define yj =yj,j+1. We remark here that, with the fixed cou-
plings of S to an external field, the Hamiltonian of S can still
be diagonalized to take the same form as that of HS, but the
interaction �4� between S and A will then have a compli-
cated form. The skew-Hermitian operators ixjk, iyjk, and ihj
�1� j	k�N� constitute the well-known Chevalley basis of
the Lie algebra su�N� �18�. Hereafter we use 1S and 1A to
denote the identity operator on the Hilbert spaces of the sys-
tem and the accessor, respectively.

We note that, unlike the conventional control problem,
here the interaction HS� is time independent. It seems that the
control scenario considered here is not strictly indirect, since
a constant control field directly coupling all adjacent transi-
tions of the N-level system is required. However, the excita-
tion by djxj � 1A can be removed by a transformation of the
controlled system, which, in effect, will introduce effective
coupling terms to the interaction Hamiltonian HA� . The ex-
plicit proof of this point can be found in Sec. IV where spin
1/2 is used as an example of the controlled system. We also
remark that this constant control field is introduced only for
the convenience of the presentations of the lemmas and theo-
rems.

In the following discussion, for convenience for � j
� �x ,y ,z ,0�, j=1,2 , . . . ,M, we use the abbreviation

��� = ��1,�2, . . . ,�M� ,

and define

���� = �
j=1

M

��j

j , �0 = 1.

The coupling between the system S and the accessor A is
generally given as

HSA = �
j=1

N−1

�
k=1

2

�
���

g���
j�k�sj

�k�
� ����, �8�

where in the summation over ��� each � j is restricted to the
set �x ,y�, sj

�k� �1� j�N−1, k=1,2� denotes either xj or yj

defined in Eq. �7�,

sj
�k� = xj when k = 1,

yj when k = 2,
� �9�

and g���
j�k� is the coupling constant. The above coupling is gen-

eral for spin-large spin interactions and reduces to the
Heisenberg-type coupling when N=2.

Then the total system of S and A is described by the
Hamiltonian H0,

H0 = HS � 1A + HS� + 1S � HA + HSA. �10�

The central point of our protocol is to control the system S
indirectly by controlling the accessor A using classical fields.
Suppose we can completely control every qubit using two
independent external fields f j�t� and f j��t�, j=1,2 , . . . ,M,
which couple to a qubit in the following way �10,11�:

Hx
j = 1S � �x

j , �11�

Hy
j = 1S � �y

j . �12�

Then the total Hamiltonian for indirect control is obtained as

H = H0 + �
j=1

M

�f j�t�Hx
j + f j��t�Hy

j � . �13�

In this paper we shall examine under what conditions the
control system �13� is completely controllable.

III. COMPLETE CONTROLLABILITY
OF INDIRECT CONTROL

In this section we consider the complete controllability of
the system S: whether the system S can be controlled com-
pletely by controlling the accessor A. For this purpose, it is
enough to investigate whether the Lie algebra L generated
by iH0, iHx

j , and iHy
j is su�2MN�, which generates the Lie

group of all the unitary operations on VS � VA through the
single-parameter subgroups. If L is equal to su�2MN�, the
system is completely controllable. Otherwise, the system is
partly controllable.

For the skew-Hermitian operators

iH0, iHx
j , iHy

j , j = 1,2, . . . ,M , �14�

to generate the Lie algebra su�2MN�, some conditions should
be satisfied. This section is mainly devoted to the investiga-

Classic External Field

S

A

FIG. 2. �Color online� Indirect control system consisting of a
quantum accessor A and an N-level controlled system S. Here M
qubits coupled through nearest-neighbor interaction work as the ac-
cessor A. We indirectly control the system S by manipulating the
accessor A with a classic external field.
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tion of such conditions when M is greater than 2, the cases
with M =1,2 being left to the subsequent sections.

For convenience, we introduce the following notions
about conditions on the system S.

Condition 1. cj�0 for j=1,2 , . . . ,M −1.
Condition 2. There exist 2�N−1��N� elements

�
�1 , �
�2 , . . . , �
�N� of the set �x ,y�M such that the matrix

G = �
g�
�1

1�1�
¯ g�
�1

�N−1��1� g�
�1

1�2�
¯ g�
�1

�N−1��2�

g�
�2

1�1�
¯ g�
�2

�N−1��1� g�
�2

1�2�
¯ g�
�2

�N−1��2�

] ] ] ] ] ]

g�
�N�

1�1�
¯

g�
�N�

�N−1��1� g�
�N�

1�2�
¯

g�
�N�

�N−1��2� � �15�

is not singular, namely, the determinant of G is nonzero.
Condition 3. The complete controllability conditions on

the coupling constants and the eigenenergy Ej, presented in
Refs. �10,11�, are imposed.

Notice that Condition 2 implies the restriction 2M �2�N
−1�.

Lemma 1. Given an arbitrary �
�= �
1 ,
2 , . . . ,
M�
� �x ,y�M, we have

iM
†1S � �
M

M ,�1S � �
M−1

M−1 ,†¯ ,�1S � �
1

1 ,i�1S � HA��� ¯ ‡�‡

= 4ic1�
1y�
2y�1S � �z
1�z

2� when M = 2,

0 when M � 2.
� �16�

This lemma can be verified directly. We would rather omit
the proof.

Lemma 2. If i�1S � �x
j�x

j+1��L �j=1,2 , . . . ,M −1�, then
for an arbitrary ���� �x ,y ,z ,0�M except ���= �0,0 , . . . ,0�
we have i�1S � ������L.

Proof. We first consider the element i�1S � ����� with �1

=�2= ¯ =�M =x. From �11� and �12� we have 1S � �y
j �L

and

− 2−1�iHx
j ,iHy

j � = i�1S � �z
j� � L . �17�

As a result,

2−1�i�1S � �x
2�x

3�,i�1S � �z
2�� = i�1S � �y

2�x
3� � L ,

− 2−1�i�1S � �x
1�x

2�,i�1S � �y
2�x

3�� = i�1S � �x
1�z

2�x
3� � L ,

2−1�i�1S � �x
1�z

2�x
3�,i�1S � �y

2�� = i�1S � �x
1�x

2�x
3� � L .

In the same way we can obtain i�1S � �x
1�x

2�x
3�x

4��L. Now
we easily observe that by repeating this procedure we can
prove that

i�1S � �x
1�x

2
¯ �x

M� � L . �18�

Next, we consider the elements i�1S � ����� with � j

� �x ,y ,z�. It is easy to see that such elements lie in the Lie
algebra generated by �i�1S � �x

1�x
2
¯�x

M�, iHx
j , iHy

j 	 j
=1,2 , . . . ,M�, which is a subset of L. It then follows that
i�1S � ������L for � j =x ,y ,z.

Finally, we deal with the general element i�1S � �����. It
remains to prove that i�1S � ������L for the � with some
� j’s being zero. To this end, we observe that

2−1�i�1S � �x
1�x

2�,i�1S � �z
2�� = i�1S � �x

1�y
2� � L ,

so it follows that

− 2−1�i�1S � �x
1�x

2
¯ �x

M�,i�1S � �x
1�y

2��

= i�1S � �0
1�z

2�x
3
¯ �x

M� � L .

Now, having this element at our disposal, with the help of
iHx

j and iHy
j , we can generate in L all the elements i�1S

� ����� with �1=0 and � j � �x ,y ,z�, j�1. After a moment’s
thought, one can see that by using this trick we can actually
prove that i�1S � ������L for the � with one � j, not neces-
sarily �1, being zero. Finally, along the same lines, we can
proceed further to show that i�1S � ������L for the � with n
� j’s �1�n	M� being zero. The lemma is thus proved.

Lemma 3. When M �2, if Condition 2 is satisfied, then
for j=1,2 , . . . ,N−1 and ���� �0,0 , . . . ,0� the elements ixj

� ����, iyj � ����, ihj � 1A lie in L.
Proof. We already know that the elements i�1S � �z

j� �j
=1,2 , . . . ,M� are contained in L. So i�1S � HI

0�, which is a
linear combination of these elements, is also contained in L.
It then follows that iH0− i�1S � HI

0��L, namely,

iH0� � iHS � 1A + iHS� + i�1S � HA�� + iHSA � L . �19�

Now for 
 j � �x ,y�, let us consider the element

iM
†1S � �
M

M ,�1S � �
M−1

M−1 ,†¯ ,�1S � �
1

1 ,iH0�� ¯ ‡�‡ ,

�20�

which belongs to L as i�1S � �
j

j � belongs to L by definition.
Clearly, the term i�HS � 1A�+ iHS� in iH0� has no nonzero

contribution to this element. Moreover, since M �2 Lemma
1 tells us that the term i�1S � HA�� has no nonzero contribu-
tion either.

By straightforward calculation it then follows that

iM
†1 � �
M

M ,�1 � �
M−1

M−1 ,†¯ ,�1 � �
1

1 ,iHSA� ¯ ‡�‡

= i�− 1�M+2M��
j=1

N−1

�
k=1

2

g�
̄�
j�k�

sj
�k�� � �z

1
¯ �z

M � L ,

where 
̄ is defined as


 j = x if 
 j = y ,

y if 
 j = x ,
� �21�

and  is the number of y in �
 j 	 j=1,2 , . . . ,M�. Conse-
quently, for each �
�� �x ,y�M we have

i��
j=1

N−1

�
k=1

2

g�
̄�
j�k�

sj
�k�� � ��z

1
¯ �z

M� � L . �22�

There are altogether 2M such elements. Now Condition 2
guarantees that from these elements we can choose 2�N−1�
linearly independent ones. Then from these linearly indepen-
dent elements in L we can derive

FU et al. PHYSICAL REVIEW A 75, 052317 �2007�

052317-4



isj
�k�

� ��z
1
¯ �z

M� � L, j = 1,2, . . . ,N − 1, k = 1,2,

�23�

by the standard method of linear algebra. Using the same
method as that in the proof of Lemma 2, we can go further to
prove that isj

�k�
� �����L, namely, ixj � ����, iyj � �����L,

for ���� �0,0 , . . . ,0�. Then the lemma follows directly be-
cause we have

�− 2�−1�ixj � ����,iyj � ����� = ihj � 1A.

Lemma 4. When M �2, if Conditions 1 and 2 are satis-
fied, then for ���� �0,0 , . . . ,0� we have i1S � �����L.

Proof. We observe that it follows from Lemma 2 that
iHSA�L and iHS � 1A�L. The former is obvious and the
latter is due to the fact

iHS = i�
j=1

N−1

�E1 + E2 + ¯ + Ej�hj . �24�

Recalling that we also have iHA
0 �L, we obtain

iH0� � i�H0 − HS � 1A − HA − HSA�

= i1S � �
j=1

M−1

cj�x
j�x

j+1 + i�
j=1

N−1

djxj � 1A � L . �25�

It then follows that

†�iH0�,iHy
1�,iHy

1
‡ = − i4c1�1S � �x

1�x
2� � L , �26�

yielding i�1S � �x
1�x

2��L thanks to the condition c1�0. This
leads to the result

†�iH0� − ic11S � �x
1�x

2,iHy
2�,iHy

2
‡ = − i4c2�1S � �x

2�x
3� � L ,

namely, i�1 � �x
2�x

3��L since c2�0. Repeating this process
we can finally prove that

i�1S � �x
j�x

j+1� � L, j = 1,2, . . . ,M − 1. �27�

Then the lemma follows from Lemma 2.
Theorem 1. When M �2, if Conditions 1, 2, and 3 are

satisfied, then we have L=su�2MN�.
Proof. First we claim that under the conditions of the

theorem, for j=1,2 , . . . ,N−1,

i�xj � 1A�, i�yj � 1A� � L . �28�

Recall that iHS � 1A�L and notice that Eq. �27� implies
iHA� �L, and hence

iHS� = iH0� − iHA� � L .

Then according to the result of Refs. �10,11�, if Condition 3
is satisfied the elements i�xj � 1A� and i�yj � 1A� are con-
tained in the subalgebra of L generated by iHS � 1A and iHS�.
This proves the claim.

Since the elements of the set �ixjk , iyjk , ihj 	1� j	k�N�
can be generated from the set �ixj , iyj 	 j=1,2 , . . . ,N−1� it
follows from Lemmas 3 and 4 and �28� that the following
elements are in the Lie algebra L:

ixjk � 1A, yjk � 1A, hj � 1A,

xjk � ����, yjk � ����, hj � ����,

1S � ����,

where ���� �0,0 , . . . ,0�, and 1� j	k�N. It is easily
checked that these elements are linearly independent and the
total number of these elements is

�N2 − 1� + �N2 − 1��4M − 1� + �4M − 1�

= �2MN�2 − 1 = dim�su�2MN�� . �29�

This proves the theorem.
Before leaving this section we would like to note that the

coupling between the system and the accessor plays an es-
sential role in the indirect control. In the above given HSA
there are 2�N−1��2M coupling terms. Actually, as far as the
controllability is concerned, we have simpler choices of HSA.
For example, we can reduce the number of coupling terms to
2�N−1�, just enough to guarantee the satisfaction of Condi-
tion 2.

IV. INDIRECT CONTROL FOR
TWO-DIMENSIONAL SYSTEM

In this section we will consider an explicit example, the
indirect control of a two-energy-level system, to illustrate the
general approach given in last section. We also present a
simpler indirect control scheme for two-dimensional system.

The two-dimensional quantum system can be described
by the Hamiltonian

HS = ��S�z � 1A, �30�

in terms of Pauli’s matrices. In this case, it is possible to use
just one qubit as the accessor. The Hamiltonian of the entire
control system can be written as

H = ��S�z � 1A + g�x � 1 + 1S � ��I�z + gxx�x � �x

+ gxy�x � �y + gyx�y � �x + gyy�y � �y + f1�t��1S � �x�

+ f2�t��1S � �y� . �31�

Here we remark that the excitation term �x � 1 can be re-
moved by rotating the controlled system around the y direc-
tion so that ��S�z � 1A+g�x � 1 becomes ��S��z � 1A. As the
price paid, the rotated Hamiltonian contains the terms gzx� �z
� �x and gzy� �z � �y �see Fig. 3�:

H = ��S��z � 1A + 1S � ��I�z + gxx� �x � �x + gxy� �x � �y

+ gyx�y � �x + gyy�y � �y + gzx� �z � �x + gzy� �z � �y

+ f1�t��1S � �x� + f2�t��1S � �y� . �32�

The following theorem is the main result of this section.
Theorem 2. Suppose that gxygyx�gxxgyy. Then the sym-

plectic Lie algebra sp�4� is included in L. Moreover, if g
�0 is also satisfied, then L=su�4�.

Proof. We observe that, in the present case, Lemma 1
reduces to the trivially true identity since the coupling term
in HA does not appear. On the other hand, the assumption
gxygyx�gxxgyy simply means that Condition 2 is satisfied.
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Therefore Lemma 2 is valid. Noticing that, by definition,
x1=�x, y1=�y, and h1=�z with respect to a proper basis
when N=2, we conclude, from Lemma 2 and the fact that L
contains the elements i�1S � �x� i�1S � �x� by definition, that
L contains the following elements:

i�1S � ���, � = x,y,z ,

i�� � �
, � = x,y,
 = x,y,z ,

i��z � 1A� , �33�

and thus contains the element g�i�x � 1A�, which is obtained
by subtracting from iH0 all the other terms, which lie in L.

Now we claim that we can choose a basis of sp�4� from
those elements in �33�. In fact, we have

i�z � 1 =�
i

− i

− i

i
� ,

i�1 � �z� =�
i

i

− i

− i
� , �34�

i�x � �z =�
i

i

− i

− i
� ,

i�y � �z =�
1

− 1

− 1

1
� , �35�

i�x � �x =�
i

i

i

i
� ,

i�y � �y =�
1

1

− 1

− 1
� , �36�

i�y � �x =�
1

− 1

− 1

1
� ,

i�y � �y =�
− i

i

− i

i
� , �37�

i�1 � �x� =�
i

i

i

i
� ,

x

y

z

(a)

x

y

z

(b)

A

S

B
��

B
��

S

A

FIG. 3. �Color online� �a� There are four terms �denoted by four
dotted lines� in the interaction between the controlled qubit �green
�dark gray�� and the quantum accessor �yellow �light gray�� when a

constant field B� is applied in the x direction; �b� after the controlled
qubit is rotated to be along the direction of the total external field
there will be six terms in the interaction, which are denoted by six
dotted lines.
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i�1 � �y� =�
1

1

− 1

− 1
� , �38�

with respect to the ordered basis �	0
 � 	0
 , 	1
 � 	0
 , 	1

� 	1
 , 	0
 � 	1
�. It is readily checked that these matrices are
linearly independent and satisfy the equation

Stx + xS = 0, �39�

the defining relation of sp�4�, where

S = � I

− I
� �40�

and I is the 2�2 identity matrix. This proves the claim, and
hence the first part of the theorem, as the dimension of sp�4�
is 10.

If g�0, from g�i�x � 1A��L we can derive i�x � 1A

�L. It is easily checked that this element, together with the
elements in �33�, can generate 15 linearly independent ele-
ments by Lie bracket operations. As the dimension of sp�4� is
exactly 15, we conclude that L=su�4�. The proof of Theo-
rem 2 is thus completed.

We remark that it is easy to satisfy the condition gxygyx
�gxxgyy. For example, we can take

gxx = gyy = 0, gxy = gyx � 0, �41�

or

gxy = gyx = 0, gxx = gyy � 0. �42�

In both cases, there are only two terms in the coupling be-
tween the system S and the accessor A.

Finally, we point out that, by making full use of the prop-
erty that the square of Pauli’s matrices is unity, which is
peculiar to the N=2 case, we can manage to control the
system completely by means of simpler couplings between
the system and the accessor. Let us consider, as an example,
the control system

H0 = ��S�z � 1A + g�x � 1 + 1S � ��I�z + gxx�x � �x,

Hc = f1�t��1S � �x� + f2�t��1S � �y� , �43�

where g�0 and gxx�0. Such a control system is essentially
different from the system just discussed above as in this case
Condition 2 is never satisfied. One can easily check that

�2gxx�−1�− �iH0,i�1 � �y�� + 2i��I � �x� = i�x � �z � L ,

�44�

from which we further have

− �2��S�−1�iH0 − ��I1 � �z − igxx�x�x,i�x � �z�

= �2��S�−1���S�z � 1A + g�x � 1,�x � �z�

= i�y � �z � L . �45�

Now it should not be difficult to proceed further to prove that
the two conclusions of Theorem 2 are still valid though the

premise is no longer true. We leave the details to interested
readers.

V. INDIRECT CONTROL FOR THREE-DIMENSIONAL
QUANTUM SYSTEM

In this section we discuss the indirect control of three-
dimensional quantum system based on the approach pre-
sented in Sec. III.

Since Theorem 1 is, generally speaking, not valid when
M �2, we first consider the possibility of using three qubits
to control the system, namely, we assume that M =3.

Let �
�1= �x ,x ,x�, �
�2= �x ,x ,y�, �
�3= �x ,y ,x�, and
�
�4= �y ,x ,x�. To satisfy Condition 2, we can simply choose
g�
�

j�k�=0, except that

g�
�1

1�1� = g�
�2

2�1� = g�
�3

1�2� = g�
�4

2�2� = 1, �46�

namely,

HSA = x1 � �y
1�y

2�y
3 + x2 � �y

1�y
2�x

3 + y1 � �y
1�x

2�y
3 + y2

� �x
1�y

2�y
3. �47�

In fact, in such a case, we have

det�
g�
�1

1�1� g�
�1

2�1� g�
�1

1�2� g�
�1

2�2�

g�
�2

1�1� g�
�2

2�1� g�
�2

1�2� g�
�2

2�2�

g�
�3

1�1� g�
�3

2�1� g�
�3

1�2� g�
�3

2�2�

g�
�4

1�1� g�
�4

2�1� g�
�4

1�2� g�
�4

2�2�
� = 1. �48�

Now assume Condition 1; then Condition 3 is enough to
guarantee the complete controllability. In our present case,
Condition 3 has a simple form �10,11�:

21
2 � 32

2 and d1 � 0, d2 � 0 �49�

or

21
2 = 32

2 and d1 � ± d2 � 0, �50�

where  jk�Ej −Ek �3� j�k�1� is the energy gap.
Now we consider the possibility of using only two qubits

to control the three-dimensional system. As in this case M
=2, the general approach developed in Sec. III cannot be
fully applied. However, we have the following conclusion: if
we can control not only each qubit, but also their coupling
independently, we can indirectly control the three-
dimensional system using two qubits. In fact, if this is the
case, we can take the Hamiltonian as

H = H0 + Hc
1 + Hc

2 + Hc
12,

H0 = �
j=1

3

��Sejj � 1A + �d1x1 + d2x2� � 1A + 1S � �
j=1

2

���I�z
j�

+ �
j=1

2

�
�1,�2=x,y

g�1�2

j�k� sj
�k�

� ���1

1 ��2

2 � , �51�

Hc
j = f j�t��1S � �x

j� + f j��t��1S � �y
j � ,
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Hc
12 = f�t�1S � �x

1�x
2. �52�

Let L be the Lie algebra generated by the elements

iH0, i�1S � �x
j�, i�1S � �y

j �, i�1 � �x
1�x

2� , �53�

where j=1,2. Then mathematically the complete controlla-
bility condition is L=su�4�. Using a method similar to that in
Sec. III, we can prove L=su�4� if the condition �49� and �50�
and the condition

det�
gxx

1�1� gxx
2�1� gxx

1�2� gxx
2�2�

gxy
1�1� gxy

2�1� gxy
1�2� gxy

2�2�

gyx
1�1� gyx

2�1� gyx
1�2� gyx

2�2�

gyy
1�1� gyy

2�1� gyy
1�2� gyy

2�2�
� � 0 �54�

are satisfied. We would rather omit the details to avoid re-
dundancy.

Finally, we conclude this section by pointing out that �54�
can be satisfied by simply choosing

HSA� = x1 � �x
1�x

2 + y1 � �x
1�y

2 + x2 � �y
1�x

2 + y2 � �y
1�y

2.

�55�

VI. CONCLUSION AND REMARKS

In this paper we investigated the controllability of an ar-
bitrary finite-dimensional quantum system via a quantum ac-
cessor modeled as a spin chain with nearest-neighbor cou-
pling of XY type. The general approach is applied to the
indirect control of two- and three-dimensional quantum sys-
tems. We also present indirect control schemes simpler than
the general scheme for two- and three-dimensional systems.
Our approach shows that one can completely control a finite-

dimensional quantum system through a quantum accessor if
the system and the accessor are coupled properly.

We point out that we have supposed that each spin of the
quantum accessor can be individually controlled. In a forth-
coming presentation, we would like to explore the indirect
control of quantum systems by controlling the accessor glo-
bally. Global control of spin chains itself has been studied
recently in the context of quantum computation �26�. It is
definitely of interest to realize indirect control by global con-
trol of quantum accessor. In Sec. IV we found that we can
achieve indirect control without applying the constant exci-
tation field to the system by rotating the system around the y
direction �see Eq. �32��. This example suggests removing the
excitation field from the controlled system to achieve pure
indirect control. We will address this issue in a forthcoming
presentation. Obviously, it is also significant to study a con-
trol system where the fixed interaction between the con-
trolled system and the accessor is so weak that it can be
neglected approximately when the strong field, which con-
trols the accessor, is switched on.

Before concluding this paper we would like to remark
that, in a conventional investigation on the controllability of
quantum systems, the controls are usually classical or semi-
classical since the controlling field is described as a time-
dependent function and directly affects the time evolution of
the closed or open quantum systems to be controlled
�20–24�. So it might be more appropriate to name those types
of control �semi�classical control of quantum systems.
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