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Time-dependent Fröhlich transformations can be used to derive an effective Hamiltonian for a class of
quantum systems with time-dependent perturbations. We use such a transformation for a system with time-
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cavity as a function of their initial position difference and velocity.
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I. INTRODUCTION

Canonical transformations have been widely used in con-
densed matter physics �1,2� to derive effective Hamiltonians
by eliminating degrees of freedom with low-energy excita-
tions �3�. One of the most well-known applications was
Fröhlich’s derivation �4� of an attractive electron-electron in-
teraction from the original electron-phonon interaction.

Fröhlich’s approach �which was also studied by Nakajima
�5�� was to apply a unitary transformation H�=exp
��−gS�H exp�gS�, defined by an anti-Hermitian operator S,
to the Hamiltonian H=H0+gH1, where H0 describes nonin-
teracting electrons and phonons. His goal was to treat the
electron-phonon interaction gH1. The small parameter g is
introduced to stress that the interaction Hamiltonian is per-
turbative compared with the free Hamiltonian and can be set
to 1 during and after the calculation. The transformation can
be evaluated order by order,

H� = H0 + gH1 + g�H0,S� + g2�H1,S� +
g2

2
†�H0,S�,S‡ + O�g3� .

�1�

Fröhlich eliminated the term linear in g by requiring

H1 + �H0,S� = 0 �2�

to get the generator S. In the following, we will use the term
Fröhlich transformation for a canonical transformation that
fulfills Eq. �2�. The transformation leads to a phonon-induced
interaction among electrons with the potential V
=g2��H1 ,S� /2� by averaging over the low-energy phonon
states. This effective Hamiltonian can be attractive or repul-
sive with a singularity at the energy shell.

Since the interaction between atoms and electromagnetic
field is similar to the electron-phonon coupling, it is natural
to try to use Fröhlich transformations in quantum optics �6�.
In the large-detuning limit—i.e., if the difference between
the atomic level spacing and the frequency of the light field
is much larger than the coupling strength—the singularity at
the energy shell is avoided and the Fröhlich transformation is
expected to work well. It will result in an effective Hamil-

tonian which can also be obtained from the adiabatic elimi-
nation method �7� and is equivalent to generic second-order
perturbation theory.

However, in quantum optics and atomic physics, most re-
alistic systems involve time-dependent classical fields. Obvi-
ously, a time-independent Fröhlich transformation cannot
work for these cases. In this paper, we use an effective
Hamiltonian approach to eliminate certain intermediate de-
grees of freedom �e.g., the photon degree of freedom, or the
atomic operators concerning a certain atomic level� corre-
sponding to the time-dependent terms for the general case. A
time-dependent transformation is used to make the first-order
terms zero and to keep the second-order terms. We will call
this method time-dependent Fröhlich transformation
�TDFT�.

The paper is organized as follows: in Sec. II we will
briefly introduce the TDFT to fix the notation. In Sec. III and
the following sections, we will use the TDFT approach to
study the creation of two-atom entanglement after two atoms
successively pass a cavity with a single-mode field. As a
result, we find that the entanglement depends on the atomic
velocity �i.e., the transit time� and the initial distance be-
tween the two atoms. We determine the parameter regions
for which the two atoms are maximally entangled and dis-
cuss the limits of applicability of our method.

II. TIME-DEPENDENT CANONICAL TRANSFORMATION

We consider a general time-dependent quantum system
with a Hamiltonian

H = H0 + H1�t� , �3�

where the unperturbed part H0 is time independent and H1�t�
is a time-dependent perturbation ��H1�t��� �H0��. We perform
the following time-dependent transformation:

����t�� = e−S�t����t�� , �4�

where ���t�� is a quantum state whose time dependence is
governed by the Hamiltonian H. The transformed state
����t�� evolves according to the unitarily transformed Hamil-
tonian
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H� = e−SHeS + i��te
−S� · eS = H + �

n=1

�
1

n!
†. . .�H,S�, . . . ,S‡

+ i�t	�
n=0

�
�− S�n

n!

 · 	�

n=0

�
Sn

n!

 . �5�

Keeping the terms up to second order, we obtain the follow-
ing effective Hamiltonian:

Heff� = H0 + �H1 + �H0,S� − i�tS� + 1
2†�H

1 + �H0,S� − i�tS�,S‡

+ 1
2 �H1,S� . �6�

If the operator S�t� in the time-dependent transformation is
chosen such as to make the first-order term of the effective
Hamiltonian zero, that is,

H1 + �H0,S� − i�tS = 0, �7�

the effective Hamiltonian takes the simple form

Heff� = H0 + 1
2 �H1,S� . �8�

The canonical transformation described by Eqs. �7� and �8� is
the so-called time-dependent Fröhlich transformation.

The form of the effective Hamiltonian after the TDFT is
similar to that in the time-independent case. Moreover, one
also needs to have the formal solution for Eq. �7� to give an
explicit expression for the effective Hamiltonian �8�. We as-
sume ��m��m=0,1 ,2 , . . . � to be a set of eigenstates for the
time-independent zeroth-order Hamiltonian H0 and Em to be
the eigenvalue for �m�. The matrix elements of Eq. �7� in this
basis lead to

Hmn
1 + �Em − En�Smn − i�tSmn = 0, �9�

where we have used the notation ��tS�mn=�tSmn since �m� is
time independent. Thus, the solution for the transformation
matrix elements Smn is given by �8�

S�t� = − i�
m,n



0

t

e−iEmn�t−t��Hmn
1 �t��dt��m��n� , �10�

with EmnªEm−En for any m and n.
We would like to remark that the TDFT is equivalent to

second-order time-dependent perturbation theory �as proven
in the Appendix�. However, the effective Hamiltonian ob-
tained after applying the TDFT, Eq. �8�, which contains only
second-order interaction terms and no first-order interaction
terms, is usually more convenient to be evaluated than the
original Hamiltonian. For the time-independent weak-
coupling atom-photon system �e.g., the systems given in
Refs. �6,12� or the electron-phonon systems in Refs. �3,5��,
time-independent perturbation theory will give a second-
order perturbation solution involving an infinite-dimensional
Hilbert space. The equivalent conventional Fröhlich ap-
proach will give a decoupled effective Hamiltonian which
can involve only the atomic part and can reduce to an ana-
lytically solvable Hamiltonian in a finite-dimensional atomic
Hilbert space. Similarly, in the time-dependent case, the in-
teraction terms are time dependent in the original Hamil-
tonian �3� and the TDFT will give an effective �time-
dependent� Hamiltonian, which may be decoupled from the

photonic part and can be evaluated in the atomic Hilbert
space. Therefore, applying the TDFT can be much more ef-
ficient than using time-dependent perturbation theory.

In the following sections, we will give an example for the
power of the TDFT—namely, a system of two atoms that
cross a single-mode optical cavity. This is by no means the
only example. We expect that many atom-light or electron-
phonon models that have been studied by the conventional
Fröhlich approach �or other equivalent approaches� to elimi-
nate certain degrees of freedom are suitable to be evaluated
by the TDFT if the interaction depends on time. To conclude,
the TDFT is powerful for atom-light or electron-phonon
models whose time-dependent interaction is perturbative.

III. TIME-DEPENDENT MODEL FOR TWO ATOMS
PASSING A CAVITY SUCCESSIVELY

We now use the TDFT method developed above to study
a realistic physics problem in quantum optics. Entanglement
is a defining feature of quantum mechanics that has no clas-
sical counterpart. It is an interesting issue to entangle two
atoms separated by a large distance that have no direct inter-
action. Numerous proposals have been made for entangling
atoms trapped in a cavity or cavities �9–19�. Here, we will
propose a scheme to entangle two identical two-level atoms,
which are not trapped in a cavity but pass the single-mode
optical cavity sequentially in transverse direction; see Fig. 1.
Our goal is to calculate the degree of entanglement between
these two atoms after this process. The coupling of the atoms
to the cavity field is position dependent, and their motion
therefore causes a time-dependent coupling. If the coupling
energy is assumed to be much less than the detuning between
the atomic transition frequency and the optical frequency—
that is, the large-detuning condition is satisfied—we can use
the TDFT to get an effective time-dependent Hamiltonian,
which only involves atom-atom interaction terms and elimi-
nates the optical field.

A similar idea to entangle two atoms crossing a far-off-
resonant single-mode cavity has been studied �12�. However,
there are significant differences between Ref. �12� and our
model: �i� In the proposal in �12�, both two-level atoms enter
�or leave� the cavity with the same velocity at the same time.
In our model, the two atoms have different initial positions;
i.e., they enter the cavity with the same velocity at different
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FIG. 1. �Color online� Two atoms crossing the optical cavity.
The width of the cavity is 2d and determines the profile of the
coupling constant g�z�=g0 exp�−z2 /d2�.
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times. In fact, we will study the degree of entanglement be-
tween the atoms as a function of the difference in initial
position. �ii� In Ref. �12�, the coupling between the atoms
and the cavity is assumed to be constant. Therefore, it is
possible to obtain an effective Hamiltonian with a reduced
atom-atom interaction �assuming large detuning� by elimi-
nating the photons �i.e., by means of the conventional
Fröhlich transformation or other equivalent approaches�. In
reality, the coupling depends on the position the atom and
has a Gaussian shape. Thus, the coupling is time dependent
when the atoms cross the cavity, and this is our motivation to
use TDFT to study the present model. There are many other
works on the generation of entanglement between two atoms
crossing a cavity. Reference �14� describes experiments that
study entanglement between two atoms after crossing a
resonant-coupling cavity one by one. A two-qubit Grover
quantum search algorithm is studied in Ref. �15� by looking
at two atoms crossing a large-detuning cavity �this model is
similar to that in Ref. �12��. The generation and purification
of maximally entangled states of two �-type atoms inside a
large-detuning cavity have also been investigated �18�. The
important difference between all of the above models and
our model is that the atom-photon coupling in the cavity is
assumed to be constant in these models but is time dependent
in our model.

As can be seen from Fig. 1, the atoms are assumed to
have the same constant velocity v along the z direction with
both initial positions z1

0 and z2
0 far away from the cavity. The

Hamiltonian reads ��=1�

Hori = �0�	1
z + 	2

z� + �a†a + g1�t�	1
+a + g2�t�	2

+a + H.c.,

�11�

where 	 j
+= �e� j j�g� and 	 j

z= �e� j j�e� with �e� and �g� the atomic
excited and ground states; gj�t�=g�zj

0+vt�sin�kx� are the cou-
pling constants which are assumed to be of Gaussian form,
g�z�=g0 exp�−z2 /d2�, where 2d is the width of the cavity and
g0 the vacuum Rabi frequency. Here we set sin�kx�=1 since
the atoms are assumed to pass the cavity in transverse direc-
tion at a maximum of the standing light wave. It is also
assumed that the atomic velocity along the x and y directions
is zero. We ignore the back-action of the cavity to the mo-
mentum of the atoms since we assume the velocity to be
large �e.g., v�10 m/s�, such that the atomic decay time is
long compared with the atomic cavity transit time. We as-
sume the condition of large detuning is also fulfilled, �
�
� �g0�� �g1,2�t�� with the detuning 
=�0−�, where �0��� is
the atomic transition frequency �optical frequency�.

In the interaction picture with respect to

Hori
0 = ��	1

z + 	2
z� + �a†a , �12�

the Hamiltonian �11� reads H=H0+H1�t� where

H0 = 
�	1
z + 	2

z� ,

H1 = g1�t�	1
+a + g2�t�	2

+a + H.c. �13�

For large detuning, we can use a time-dependent Fröhlich
transformation defined by

S�t� = x1�t�	1
+a + x2�t�	1

+a − H.c. �14�

to eliminate the photon operators. The coefficients x1,2�t� sat-
isfy the following equation:

gj�t� + 
xj�t� − iẋj�t� = 0 �j = 1,2� �15�

according to Eq. �7�. The explicit solution for the coefficients
x1,2�t� is given by �20�

xj�t� = − i

0

t

gj�t��ei
�t�−t�dt� �j = 1,2� . �16�

After the Fröhlich transformation, the effective Hamil-
tonian reads �up to a constant term�

Heff� �t� = H0 + 1
2 �H1�t�,S�t�� = 
1	1

z + 
2	2
z + f	1

−	2
+ + f*	1

+	2
−,

�17�

where


 j = 
 − �gj
*xj + gjxj

*��1 + 2np� �18�

for j=1,2, np= �a†a� is the mean photon number in the cav-
ity, and

f�t� = − 1
2 �g1

*x2 + g2x1
*� �19�

is the effective coupling between the two atoms. The �first-
order� weak interaction terms between the photons and at-
oms have been eliminated, and only the induced �second-
order� atom-atom interaction terms remain. The Hamiltonian
�17�, which contains no photon operators �except the time-
independent expectation value of the photon number opera-
tor�, is much simpler than the original one �11�. It can be
diagonalized in the atomic basis

��g1g2�, �g1e2�, �e1g2�, �e1e2�� � ��gg�, �ge�, �eg�, �ee�� .

�20�

So far, we do not need any condition except the large
detuning to get the simple effective Hamiltonian �17�. In the
following section, we will further simplify the effective
Hamiltonian �17� using typical parameters for the cavity-
QED system. As we will see below, the adiabatic condition is
satisfied since the time-dependent couplings g1,2�t� are
slowly varying �that is, �ġj�t� /gj�t��� �
� for j=1,2�. Of
course, if the adiabatic condition is satisfied, the result ob-
tained by the TDFT in the next section can also be obtained
by using adiabatic elimination. However, the elimination ap-
proach cannot be expected to describe our model if the adia-
batic condition is not fulfilled.

IV. DYNAMICAL GENERATION OF TWO-ATOM
ENTANGLEMENT

In the following, we will simplify the Hamiltonian �17�
further by taking into account typical parameters for the
cavity-QED system.

First, we will rewrite the coefficients �16� as follows:
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xj�t� � − ie−i
t

−�

t

gj�t��ei
t�dt�

�
− e−i
t


 �gj�t�ei
t +
2v
d



−�

t

gj�t��ei
t�dt��
= −

gj�t�



−
2iv

d

xj�t� . �21�

Here, we have used the explicit Gaussian form of the cou-
pling constants. We have also used



−�

t

�zj
0 + vt�gj�t��ei
t�dt� → d


−�

t

gj�t��ei
t�dt� �22�

since zj
0+vt�d in the effective integration range and the

change of gj�t� �also change of zj
0+vt� is much slower than

that of ei
t:

F„gj�t�… � F�zj
0 + vt� �

v
d

, F�e−i
t� � 
 , �23�

where F�x�ª�tx /x denotes the change of x. For typical sys-
tem parameters �21–23� �wavelength of the atomic transition

=1000 nm, detuning 
=104 MHz, g0=100 MHz, cavity
width �in the z direction� d=30
, and atomic velocity of the
order of v=10 m/s�, �v /d��10−1 MHz ��
�=104 MHz;
that is, the atomic cavity transit time ttransit=2d /v is much
larger than the time 1/
 according to the detuning. Actually,
the fact that v /d� �
� �that is, �ġj�t� /gj�t��� �
� for j=1,2�
means the adiabatic condition is satisfied.

Using these parameter values, xj�t� in Eq. �21� can be
further simplified as

xj�t� � −
gj�t�



− 10−5ixj�t� � −

gj�t�



= xj
*�t� .

The coefficients in Eq. �17� thus take the following form:


 j = 
 +
2�1 + 2np�gj

2�t�



, �24�

and the effective coupling is

f�t� =
g1�t�g2�t�



. �25�

We will now further assume that the shift terms in 
 j can
be ignored since 2gj

2�t� / �
 � � �
�; i.e., we will replace the
coefficients 
 j by 
. Hence,

Heff� �t� = 
	1
z + 
	2

z + f	1
−	2

+ + f	1
+	2

−. �26�

We now apply the transformation U�t�=exp��
	1
z +
	2

z�t� to
the Hamiltonian Heff� �t� defined in Eq. �26� and obtain

Heff� �t� = f	1
−	2

+ + f	1
+	2

−. �27�

The time evolution of a general state governed by Heff� �t� is
given as

���t�� = Cgg�t��gg� + Cge�t��ge� + Ceg�t��eg� + Cee�t��ee� ,

�28�

where Cgg�t��Cgg�0�, Cee�t��Cee�0�, and

Cge�t� = Cge�0�cos ��t� − iCeg�0�sin ��t� , �29�

Ceg�t� = − iCge�0�sin ��t� + Ceg�0�cos ��t� , �30�

with ��t�=�0
t f�t��dt���−�

t f�t��dt�. Hence, the system de-
scribed by Eq. �27� is characterized by a closed subspace
��ge� , �eg��.

In what follows, we will investigate what degree of en-
tanglement can be obtained after both atoms pass the cavity
in transverse direction. We assume that the two atoms are
prepared in the initial state ���0��= �ge�. The time evolution
generated by Eq. �27� leads to

���t�� = cos ��t��ge� − i sin ��t��eg� . �31�

After both atoms have passed through the cavity and are far
outside—that is, t→ +�—one has

��+ �� =��

2

g0
2d

v

exp�−

�z0�2

2d2 � , �32�

where z0=z1
0−z2

0 denotes the difference between the initial
atomic positions.

In general, the state shown in Eq. �31� corresponds to an
entangled state of the two atoms. In the following, we will
study the degree of entanglement as a function of z0 and the
atomic velocity v using the entanglement entropy that is de-
fined as

E„���t��… = − Tr„�1 log2 �1�t�… . �33�

Here, ���t�� is a pure state and �1�t�=Tr2(���t�����t��) is the
reduced density matrix of the first atom. Evaluating this ex-
pression for the state shown in Eq. �31�, we obtain

E„���+ ���… = − cos2���+ ���log2 cos2���+ ���

− sin2���+ ���log2 sin2���+ ��� . �34�

A maximally entangled state for the atoms occurs for
��+��= �2n+1�� /4 for any integer n. Figure 2 shows the
entanglement entropy E(���+���) as a function of initial

0.1
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0.2

0.25

0.3

v

0 1 2 3 4
z0

0
0.25
0.5
0.75
1

E

0
0
0

FIG. 2. �Color online� Entanglement entropy E as a function of
atomic velocity v �in units of g0

2d /
� and initial atomic position
difference z0 �in units of d�.
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atomic position difference z0 �in units of d� and atomic ve-
locity v �in units of g0

2d /
, which is 30 m/s for the system
parameters discussed after Eq. �23��. The possible values for
z0 and v which make the entanglement maximal �that is,
E(���+���)=1� are shown in Fig. 3.

It is interesting that there may be maximally entangled
states for the two atoms even if the first atom has left the
cavity before the second atom begins to enter it. For ex-
ample, when the velocity v is smaller than about 0.23g0

2d /

�corresponding to about 7 m/s for the system parameters
discussed after Eq. �23��, it is possible to obtain a maximally
entangled state although the initial atomic position difference
z0 can be larger than 2d �i.e., the approximate transverse
width of cavity�; see Fig. 3.

In the above calculation, we have ignored the effect of
�photonic and atomic� decay and photonic back-action to the
atoms for the following reasons: �i� We assume that the ve-
locity is of the order of 10 m/s. Higher velocities will lead to
a reduced degree of entanglement; lower velocities will lead
to optical back-action to the atoms and photonic and atomic
decay. �ii� We have assumed large detuning to reduce the
atomic decay. �iii� The mean number of photons np is as-
sumed to be small �e.g., 10−4� in order to reduce the effect
due to photonic decay. For example, the atomic cavity transit
time �which is close to the interaction time� is less than the
effective photonic decoherence time: 2d /v�10−5 s
�1/ �np���10−4 s �where ��108 Hz is the typical cavity
one-photon damping rate �22��. Also, we have chosen

1,2�t�→
 which amounts to ignoring the effect of the shift
terms in Eq. �24�. The explicit form of 
1,2�t� shows that if
the initial atomic position difference z0 is close to 0, then

1�t�→
2�t�, and the effect of the shift terms can be ne-
glected.

Finally, we would like to remark that the time-dependent
Fröhlich transformation is valid under the condition of weak
coupling �which is equivalent to the condition of large de-
tuning here�: H1�t��H0 �g0�
�. The adiabatic condition
that the atomic cavity transit time ttransit=2d /v be much
larger than 1/
 is only used to simplify the effective cou-
pling in Eq. �17� for the present realistic atom-cavity system.
Actually, this adiabatic condition is independent of the above
large detuning condition for the time-dependent Fröhlich
transformation. The above argument proves that the TDFT
approach is valid independent of whether the adiabatic con-
dition is fulfilled or not.

V. CONCLUSION

Using the time-dependent Fröhlich transformation, we
have calculated the degree of atomic entanglement between
two atoms passing an optical cavity sequentially. The
Fröhlich transformation eliminates the photonic operators
and induces an effective atom-atom interaction. We have de-
termined the velocities and initial atomic position differences
for which the entanglement is maximal, and we have shown
that there may be maximally entangled states for the two
atoms even if the first atom has left the cavity before the
second atom begins to enter it.

A number of time-dependent canonical transformation
methods have been proposed �2,24� to discuss time-
dependent problems. The difference of our approach from a
general time-dependent canonical transformation is that our
TDFT requires the generator S�t� in the canonical transfor-
mation to satisfy Eq. �7� in order to eliminate some interme-
diate degree of freedom for a general system. As an example,
we have studied a system of two atoms that pass a cavity,
which can be described by an effective atom-atom interac-
tion Hamiltonian by using the TDFT to eliminate the photon
degrees of freedom. In fact, the TDFT can be used to treat
certain time-dependent atom-light systems by eliminating
some of the atomic degree of freedom �e.g., one atomic
level� like the Fröhlich transformation for the time-
independent cases. The TDFT presented here works well not
only for optical and atomic systems, but also in the field of
condensed matter physics �e.g., time-dependent electron-
phonon interactions� or other systems with weak �first-order�
time-dependent interactions.
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APPENDIX: EQUIVALENCE TO TIME-DEPENDENT
SECOND-ORDER PERTURBATION THEORY

To check the range of validity of the above effective
Hamiltonian obtained by the TDFT, we compare with the
results of standard time-dependent perturbation theory up to
of second order.

To apply time-dependent second-order perturbation theory
for the Hamiltonian H=H0+H1�t� given in Eq. �3�, we as-
sume ��m� �m=0,1 ,2 , . . . � to be a complete set of eigenstates
for the time-independent zeroth-order Hamiltonian H0, with
eigenvalues Em. A state ���t�� satisfies the Schrödinger equa-
tion

i�t���t�� = �H0 + H1�t�����t�� . �A1�

We now employ perturbation theory in H1�t� by assuming

z
0

n

v

FIG. 3. �Color online� Relation between atomic velocity v �in
units of g0

2d /
� and initial atomic position difference z0 �in units of
d� along the lines of maximal entanglement E�+��=1, or ��+��
= �2n+1�� /4, for n=0,1 , . . . ,6.
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���t�� � �
l=0

���l��t�� = �
n=0,l=0

Cn
�l��t�e−iEnt�n� . �A2�

Here, ���l��t�� is the lth-order contribution to the perturbation
expansion. Replacing ���t�� in Eq. �A1� by the perturbation
expansion and comparing the coefficients order by order, we
obtain the following equation:

iĊm
�l+1��t� = �

n

Cn
�l��t�eiEmntHmn

1 �t� . �A3�

If the initial state is �k�, the zeroth-order solution for the
coefficients Cn�t� is

Cm
�0��t� = �mk. �A4�

According to Eq. �A3� the first-order solution is

Cm
�1��t� = − i


0

t

eiEmkt�Hmk
1 �t��dt�. �A5�

The second-order solution is

Cm
�2��t� = − �

n



0

t

dt�eiEmnt�Hmn
1 �t��


0

t�
dt�eiEnkt�Hnk

1 �t�� .

�A6�

We will now consider the time evolution of the state pre-
dicted by the TDFT method. It follows from the Schrödinger
equation

i�t����t�� = �H0 + 1
2 �H1,S������t�� �A7�

governed by the effective Hamiltonian Heff� in Eq. �8� after
applying the TDFT method to the original Hamiltonian H
=H0+H1�t�.

The connection to the original picture before the TDFT—
i.e., the state ���t��, whose time dependence is governed by
H—reads

���t�� � �1 + S + 1
2S2 + ¯ �����t�� . �A8�

Like in Eq. �A2�, we can write down the perturbation expan-
sion for ���t�:

����t�� � �
l=0

����l��t�� = �
n=0,l=0

Cn�
�l��t�e−iEnt�n� . �A9�

Starting with the initial state �k� and keeping terms up to
the zeroth order in Eq. �A8�, it is obvious that

���0��t�� = ����0��t�� �A10�

and

Cm
�0��t� = Cm�

�0��t� = �mk. �A11�

Since the perturbation term in Heff� is of second order, the
first-order correction for ����t�� vanishes: ����1��t��=0. Then,
from Eq. �A8�, the first-order correction for the state ���t�� is

���1��t�� = S����0��t�� . �A12�

Correspondingly, the first-order correction coefficients are

Cm
�1��t� = − i


0

t

eiEmkt�Hmk
1 �t��dt�. �A13�

The results of Eq. �A13� are equivalent to the standard time-
dependent perturbation theory as shown in Eq. �A5�.

The second-order correction for ���t�� is

���2��t�� = ����2��t�� + 1
2S2����0��t�� , �A14�

where ����2��t�� is the correction according to �H1 ,S� /2 in
Heff� , Eq. �8�, with the exact form being given as �according
to Eq. �A5��

����2��t�� = �
m

Cm�
�2��t�e−iEmt�m� , �A15�

with

Cm�
�2��t� = −

i

2



0

t

eiEmkt��H1�t��,S�t���mkdt�.

Then the coefficients for the second-order corrections of the
state ���2��t�� are given as

Cm
�2��t� = Cm�

�2��t� +
1

2�
n

SmnSnk.

By replacing the operator S�t� by that in Eq. �10� in the
above equation, we obtain

Cm
�2��t� = − �

n



0

t

dt�eiEmnt�Hmn
1 �t�� � 


0

t�
dt�eiEnkt�Hnk

1 �t�� ,

�A16�

which agrees with the expression given in Eq. �A6� by time-
dependent second-order perturbation theory.

In this appendix, by reformulating the well-known pertur-
bation solution to the time-dependent Schrödinger equation
in our notation, we have shown explicitly that the second-
order time-dependent perturbation theory agrees with the
TDFT.
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