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We present an exactly solvable model to study the role of the system-bath coupling for the generalized
canonical thermalization, which reduces almost all the pure states of the “universe” �formed by a system S plus
its surrounding heat bath B� to a canonical equilibrium state of S. It is found that, for the overwhelming
majority of the “universe” states �they are entangled at least�, the diagonal canonical typicality remains robust
with respect to finite interactions between S and B. Particularly, a decoherence mechanism is utilized here to
account for the vanishing of the off-diagonal elements of the reduced density matrix of S. The nonvanishing
off-diagonal elements due to the finite size of the bath and the stronger system-bath interaction might offer
more to quantum thermalization.
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Recently a quantum entanglement based mechanism for
universal canonical thermalization has been found in the fol-
lowing meaning: almost all the pure states of the “universe”
can be reduced into a generalized canonical state of the sys-
tem S by tracing over the bath �1�. Here, the allowed “uni-
verse” states are in a subspace defined by a general constraint
R, which limits the number of the states to be finite, yet very
large. It is noticed that in such generalized thermalization,
the constraint R is rather general and does not need to be the
energy shell of the “universe,” and generally speaking, it
does not lead to the usual canonical state in thermal equilib-
rium.

When the constraint R is specialized as a total energy
shell, the generalized canonical state becomes a usual ca-
nonical thermal state. Such a thermalization was described
by the canonical typicality in Ref. �2� associated with the
so-called overwhelming majority rule, based on the law of
large numbers. Significant results concerning such canonical
typicality have been obtained by several authors for different
purposes �3–8�. Actually, to derive the canonical distribution
of S from the microcanonical density matrix �9� or an en-
tangled pure state �2� of the “universe” U=S+B, the interac-
tion between S and B should be weak enough to allow a
physical partition for the “universe.”

In this paper, we will quantitatively consider the effect of
system-bath coupling in the canonical thermalization leading
to the equilibrium canonical state mentioned above. The
present investigation only concerns the usual canonical state.
In the weak interaction limit, the inverse temperature �
=�S�E� /�E emerges from the thermodynamic entropy S�E�
=ln ��E ,��, where ��E ,�� is the microstate number of the
bath in the energy shell �E ,E+��. Since the interaction be-
tween S and B deforms the geometry of the energy shell, we
will reexamine the validity of the temperature definition
from the new perspective offered by the generalized thermal-
ization �1,2�. We understand how the off-diagonal elements
of the reduced density matrix of S vanish due to the factor-
ization structure, in association with the random phase expla-

nation �10,11�. We find that if the number of modes of the
bath is not large enough and the system-bath coupling is
strong enough, generally there exist nonzero off-diagonal el-
ements in the reduced density matrix. Notice that these non-
zero off-diagonal elements introduce quantum coherence into
the usual thermal equilibrium state and thus result in thermo-
dynamic features.

We begin with a simple model: the system S we consider
is an M-level system with the Hamiltonian HS=��n �n��n�,
where �n� is the eigenstate with eigenvalue �n, n
=1,2 , . . . ,M; and the bath B is modeled as a collection of N
harmonic oscillators of frequencies � j�j=1,2 , . . . ,N� with
the Hamiltonian HB=� j� jaj

†aj. This model can be regarded
as a universal approach, because in the weak coupling limit,
any heat bath could be universally modeled as a collection of
harmonic oscillators with linear couplings to the surrounded
system according to the proofs in Ref. �13�. For this reason,
the interaction HI between B and S should be modeled to be
linear with respect to the bath variables aj

†and aj. So we
assume a simplest system-bath coupling

HI = �
j,n

�n�n��n��gjaj
† + H.c.� , �1�

where �n are real numbers. Note that HI is of nondemolition
character since �HS ,HI�=0. Thus, the interaction only causes
the dephasing of S, and the energy dissipation of S will not
appear �11,12�.

Obviously, the eigenvalues of the “universe” formed by B
and S are E�n , 	nj
�=�n���+� j=1

N nj� j, corresponding to the
eigenstates �n , 	nj
�= �n� � � j=1

N �nj�n��, where �n���=�n−��n
2

and the displaced Fock state �nj�n��=D�� jn� �nj� is defined in
terms of the Fock states �nj� of B and the coherent-state-
generate operator D�� jn�=exp�� jnaj

†−H.c.� with the dis-
placement parameters � jn=−�ngj / �2� j�; especially, the pa-
rameter �=	 j �gj�2 / �4� j� reflects the role of the interaction
between S and B.

Note that the system-bath coupling deforms the energy
shell of thickness � defined by the total constraint E

E�n , 	nj
�
E+�. This energy shell determines a subset of
the “universe” states. For convenience, we denote by V�E ,��*suncp@itp.ac.cn; http://www.itp.ac.cn/�suncp
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the subspace spanned by this subset. We consider the follow-
ing simple example: the system S is a harmonic oscillator
with frequency � and �n=n. In this case, the renormalized
energy of S is Es�n�=n�−�n2. In Fig. 1, we illustrate the
deformation of the energy shell when N=1. If there were no
interaction, the above constraint would produce the red area
�vertical strips�.The interaction introduces the nonlinear term
�n2 to deform it into the blue area �horizontal stripes�.

Generally, in order to derive the canonical distribution of
S from an entangled pure state of the “universe,” we need to
calculate the dimension HN�E ,� ,�� of V�E ,�� and the di-
mension �N�E−�n ,� ,�� of the subspace VB�n ,�� spanned
by the states with the constraint

E − �n��� 
 �
j

nj� j 
 E + � − �n��� . �2�

Let us start with a pure entanglement state

��� = �� C�n,	nj
��n,	nj
� �3�

of the constrained “universe,” where �� denotes the summa-
tion under the total constraint. By tracing over the variables
of B, the reduced density matrix �S=TrB������ � � of S is ob-
tained as

�S = �
n

Pn�n��n� + �
n�m

Fnm�n��m� , �4�

where the diagonal elements are Pn= Pn�E ,��
=�� �C�n ,nj��2 and �� stands for the summation under the
constraint �2�. We represent this summation by the summa-
tion over the constrained indices �nj�E,n, then the off-diagonal
elements can be written as

Fnm = �
�mj�E,m

�
�nj�E,n

C�n,nj�C*�m,mj�Dm�mj�
n�nj� , �5�

where

Dm�mj�
n�nj� = �

j=1

N

dmj�m�
nj�n� = �

j=1

N

�mj�m��nj�n� �6�

are decoherence factors with a factorized structure and for
m�n ,mj nj, each factor

dmj�m�
nj�n� = ��

�mj−nj�e−��
2 /2Lnj

�mj−nj����
2�� nj!

mj!
�7�

is expressed in terms of the associated Laguerre polynomials
Ln

m�x� with the variable ��=−gj�n−m� /2� j. In the reduced
density matrix of the system, there exists a “Franck-Condon”
suppression of decoherence factors in Fnm, however, Fnm is a
infinite sum and thus the decoherence cannot automatically
happen so that the off-diagonal elements �S vanishes. There
would be an effect due to the off-diagonal elements induced
by the finite size of the environment.

In order to show the generalized quantum thermalization,
we need to study how the diagonal elements of �S approach
the Gibbs distribution Pn� pn

G=exp�−��n�, while the off-
diagonal elements Fnm vanish as a quantum decoherence ef-
fect. To this end, we use the basic assumptions for statistical
mechanics that ���, but ��� j and N→�.

First, we consider the diagonal elements. Let us establish
the formula

Pn�E,�� =
�N�E − �n,�,��

HN�E,�,��
�8�

in some sense under the reasonable assumption that
�C�n , 	nj
��2 are random variables with an identical distribu-
tion. In fact, if this condition is satisfied, the random vari-
ables have the same mathematical expectation value
��N+1�E ,� ,���−1 due to the restriction �� �C�n , 	nj
��2=1. It
then follows from the law of large numbers that
�� �C�n , 	nj
��2 approaches to �N�E−�n ,� ,�� /HN�E ,� ,��
with high probability. Here we remark that with a straight-
forward calculation �e.g., in Ref. �2��, this formula can
be obtained from the microcanonical state �MC

=���1/HN�E ,� ,��� �n , 	nj
��n , 	nj
� of the “universe.”
We are now in a position to consider how Pn�E ,�� leads

to the canonical distribution. According to Refs. �1,2�, when
there is no interaction, Pn�E ,�=0� does give rise to the ca-
nonical distribution for almost all the pure states ��� of the
constrained “universe.” But when there exists an interaction
between S and B, is it still the case? The answer seems to be
positive when the interaction is weak. We will attack this
problem by theoretical analysis and numerical simulation.

If we can show that Pn�E ,�� possesses a “conformal in-
variance” with respect to the geometrical deformation of the
energy shell caused by the interaction, i.e., Pn�E ,��
 Pn�E ,�=0�, then the problem is solved. We try to justify
this “conformal invariance” for weak interaction ���0�. It
follows from the direct sum decomposition V�E ,��=�n

� VB�n ,�� of the Hilbert space V�E ,�� that the dimension of
V�E ,�� can be written as HN�E ,� ,��=�n=1

M �N�n�. Here,
�N�n� stands for the number of states in the area defined by
Eq. �2�, and M is an upper bound of the summation range,

FIG. 1. �Color online� Geometrical deformation of the energy
shell. Here we show explicitly the deformation, when S is a har-
monic oscillator. �a� Without the interaction, the energy shell is the
red area �vertical stripes�; �b� the interaction deforms the red area
�vertical stripes�into the blue area �horizontal stripes�.
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which is determined by the positiveness of both the bath
energy and the system energy.By straightforward calculation
we obtain

�N�n� �
�E − �n����N−1�

�N − 1� ! �
j=1

N

� j
2

�9�

for very small �. Thus the diagonal elements of �S take the
form

Pn =
�E − �n����N−1

�
n=1

�E − �n����N−1
�10�

with a large N. Since the eigenenergy �n of the system is
much smaller than the total energy of the energy shell, � is
defined as

� =
dS�E�

dE
=

�N − 1��
n

�E − �n����N−2

�
n

�E − �n����N−1
. �11�

Usually the energy correction

��n
2 = �n

2	 j

�gj�2

4� j
�12�

is much smaller than the shell energy E, thus the temperature
becomes independent of �, ���N−1���n�E
−�n�N−2� / ��n�E−�n�N−1�. Therefore, Pn is “conformably in-
variant” with respect to �, and for this reason we can expect
the Gibbs distribution Pn�exp�−��n� /�n=1 exp�−��n�.

It should be pointed out that the above argument is only
heuristic since neither the sum ��N�n� nor the distribution
Pn is calculated analytically. Thus we will resort to numerical
simulation to support our expectation. Let us assume the sys-
tem is a harmonic oscillator. In this case, �n=n and the tem-
perature of the system is exactly

� =

�N − 1��
n

�E − n� + �n2�N−2

�
n

�E − n� + �n2�N−1
.

We choose E=0.5 and �=10−3 and display in Fig. 2 the
relationship between the distribution Pn and n for different �
when N=50. It is clearly shown that Pn indeed decays expo-
nentially as Gibbs distribution as n increases. Table I gives
the inverse temperature of the system for different coupling
parameters �. These numerical results demonstrate that the
state obtained by tracing over the bath is just the Gibbs ca-
nonical state under some conditions.

Now we consider the bath-induced decoherence effect,
which causes the off-diagonal elements of �S to approach
zero. When the system-bath couplings can be ignored in
comparison with the energy level spacing and the total en-
ergy of the bath, any two subspaces defined by the constraint
�2� cannot overlap each other and then the decoherence fac-
tor vanishes. In the present situation, the system-bath cou-

pling will weaken this decoherence for thermalization since
the positive terms �n+1

2 −�n−1
2 reduce the effective system’s

energy spacings

�n+1��� − �n��� = �n+1 − �n − ���n+1
2 − �n−1

2 � �13�

to make them comparable to the thickness � of the energy
shell. Then two subspaces VB�n ,�� and VB�m ,�� of B can
overlap each other and the off-diagonal elements Fnm will
not vanish. However, notice that the norm of each compo-
nent dmj�m�

nj�n� in the decoherence factor is less than unity. Thus,

the decoherence factor D still vanish in the thermodynamic
limit N→�. So we conclude that the factorized structure of
D enhances the decoherence �10,11�, and to some extent
compensates the negative effect of interaction in thermaliza-
tion.

Next, we wish to point out that in the mesoscopic case,
that is to say, N is not large enough, effects may arise. In this
case, if the system-bath coupling is strong, there will exist
finite off-diagonal elements Fnm in the reduced density ma-
trix. This means quantum coherence is introduced into the
usual thermal equilibrium state. Such a state is called a qua-
sithermal state.

For a two-level system with single energy spacing �, the
quasithermal state can be described by the reduced density
matrix

�S = �p+ F

F* p−
� . �14�

The diagonal elements p±=1/ �1+exp�±���� approach the
standard Gibbs distributions while the off-diagonal elements
are nonvanishing, F=F12. We can diagonalize the above re-
duced density matrix to obtain the two effective probabilities

FIG. 2. �Color online� Plot of ln Pn as a function of the number
n of the system, when N=50 with different � :5�10−9 ���, 5
�10−8 ���, and 5�10−7 ���. The fitting of the Gibbs distribution
is shown by the corresponding lines.

TABLE I. Inverse temperature vs interaction.

� 5�10−9 5�10−8 5�10−7

� 98.94 98.85 98.69
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P±�F� exactly. For small F, P±�F� can be approximated as

P±�F� � p± � coth���

2
��F�2. �15�

Then, the von Neumann entropy SVN=−��=±P��F�ln P��F�
is approximated as

SVN � S�E� − ���F�2coth���

2
� . �16�

It is observed that due to the system-bath interaction the von
Neumann entropy explicitly deviates from the thermody-
namic entropy

S�E� �
��

e�� + 1
+ ln�e−�� + 1� ,

which is by definition the entropy of the Gibbs equilibrium
state �G=diag�p+ , p−�. Therefore, generally von Neumann
entropy does not relate to the meaningful usual notion of
temperature. In fact, there is no good physical notion of tem-
perature for a general nonthermal equilibrium. But the era-
sure of quantum information by thermalization indicates
where temperature enters in this matter.

However, only for the two-level system or a system with
homogeneous energy level spacing can we define an effec-
tive temperature Teff=1/�eff �14� by the ratio

r�t� =
P+�F�
P−�F�

= e−�eff� �17�

and the level spacing �. For such a system interacting with a
finite heat bath, even in a nonequilibrium state, we can imag-

ine that it is in a virtual equilibrium state with the effective
inverse temperature

�eff � � +
4�F�2

�
cosh2���

2
�coth���

2
� .

This effective inverse temperature in the quasithermal state is
higher than the usual equilibrium inverse temperature. Such
kind of quasithermal state with a bit of quantum coherence
can demonstrate various exotic natures in thermodynamical
processes. Scully et al. �15� have proposed a quantum Carnot
engine in which the bath atoms are given with some quantum
coherence, which can increase the effective temperature of
the radiation field. In this case, though the second law of
thermodynamics is not violated, the quantum Carnot engine
possesses some features that are not possible in a classical
case.

In summary, based on an exactly solvable model, the
quantum kinetic thermalization of the system is explored for
the case with weak interaction between system and bath. The
effect of finite interaction is demonstrated as the deformation
of the energy shell. Here, a decoherence mechanism is used
to account for the disappearance of the off-diagonal elements
of the reduced density matrix of the system in contact with a
bath of infinitely large particle number in the weak coupling
limit. Moreover, we emphasize the thermodynamic effects
that can result from the nonvanishing off-diagonal elements
of the reduced density matrix when the bath is mesoscopic.
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